精馏过程的物料衡算与操作线方程论述.pptx
化工原理二元连续精馏.ppt
F, xF
若 F、xF、q、D、xD、R 相同,则
W* W S
W* W ------间接蒸汽加热流程 V
排出的釜液量大
W xW WxW
xW xW ------间接蒸汽加热流程
排出的釜液浓度小 水蒸汽 S,yS=0
D, xD L W*, xW*
3.直接蒸汽加热流程
适用范围:水溶液,且水是难挥发组分 与间接蒸汽加热流程计算相比:
(1)假设恒摩尔流假定成立,则
D, xD
S V' (R 1)D (q 1)F
L' W
F, xF
V
L
S W*
水蒸汽 S,yS=0 W*, xW*
3.直接蒸汽加热流程
与间接蒸汽加热流程计算相比:
(2)精馏线、q线、提馏线方程形式相同
在相同条件(F、xF、q、D、xD、R相同)下, 直接蒸汽加热与间接蒸汽加热相比,操作线及q
xn-1
也称默弗里(Murphree)板效。其定义为:
E mV
汽相实际增浓程度 汽相理论增浓程度
yn
y
n
yn1 yn1
n
yn
yn*
-------汽相默弗里板效
E mL
液相实际减浓程度 液相理论减浓程度
xn1 xn xn1 xn *
--------液相默弗里板效
E
E
R1
y1
R R1
xL
xD R1
y1 0.5 xL 0.5 0.8
0.71
xW
y1
1 y1
0.499
精馏塔的物料衡算
1 精馏塔的物料衡算1.1 原料液及塔顶和塔底的摩尔分率 甲醇的摩尔质量 A M =32.04kg/kmol 水的摩尔质量 B M =18.02kg/kmol315.002.18/55.004.32/45.004.32/45.0=+=F xxD=(0.98/32.04)/(0.98/32.04+0.02/18.02)=0.898 1.2 原料液及塔顶和塔底产品的平均摩尔质量F M =0.315⨯32.04+(1-0.315) ⨯18.02=22.44kg/kmol D M =0.898⨯32.04+(1-0.898) ⨯18.02=30.61kg/kmol1.3 物料衡算原料处理量 F=17500000/(330⨯24⨯22.4)=98.467kmol/h 总物料衡算 98.467=D+W甲醇物料衡算 ωX +=⨯W D 898.0315.0467.98联立解得 D=48.462kmol/h W=93.136kmol/h Xw=0.001W M =0.001⨯32.04+(1-0.001) ⨯18.02=18.03kg/kmol2 塔板数的确定2.1 理论板层数N T 的求取2.1.1 相对挥发度的求取将表1中x-y 分别代入)1()1(A A AA y x y x --=α得表2所以==∑1212...21a a a m α 4.22.1.2进料热状态参数q 值的确定根据t-x-y 图查得x F =0.315的温度t 泡=77.6℃ 冷液进料:60℃t m =26.7760+=68.8℃查得该温度下甲醇和水的比热容和汽化热如下:则Cp=2.84×0.315+4.186×0.685=3.7579 kJ/kg K r 汽=1091.25×0.315+2334.39×0.685=1942.8 kJ/kgq=汽汽进泡r r )t -(+t Cp =8.19428.19428.686.77×7579.3+)—(=1.017>1 2.1.3求最小回流比及操作回流比采用作图法求最小回流比,在x-y 图中、自点(0.315,0.315)作进料线方程: y=1-q Xf 1--x q q =59.8x -18.53 (1) 操作线方程: y=x )1-α(1αx+= 3.2x14.2x + (2)联立(1)(2)得到的交点(0.321,0.668)即为(Xq,Yq )所以最小回流比R min =-Xq -Yq Xd Yq =321.06658.06658.0898.0--=0.6734取操作回流比为R=2R min =1.34682.1.4求精馏塔的气、液相负荷/h 46.473kmol =34.5061.3468=RD =L ⨯/h80.979kmol =34.506 2.3468=1)D +(R =V ⨯/h 144.94kmol =98.467+46.473=F +L = L' /h 80.979kmol =V =V'2.1.5求操作线方程精馏段操作线方程为1n y +=1R R +n x +1D x R +=3468.23468.1n x +3468.2898.0=0.574n x +0.383 (a )提馏段操作线方程0004.079.10005.0979.80961.63979.8094.144'''1'-=⨯-=-=+m m W m m x x x VW x V L y (b )2.1.5采用逐板法求理论板层数由 1(1)q q qx y x αα=+- 得y yx )1(--=αα将 α=4.2 代入得相平衡方程yyyyx 2.32.4)1(-=--=αα (c )联立(a )、(b )、(c )式,可自上而下逐板计算所需理论板数。
化工基础第三章(精馏过程的物料衡算与操作线方程)
1.0
0<q<1
q=1
q>1
a
q=0
d
e
y
q<0
b
c 0 xW xF x 不同加料热状态下的 q 线
2018/6/9
xD
1.0
4、 操作线的作法
用图解法求理论板层数时,需先在x–y图上作出精馏段和提
馏段的操作线。
前已述及,精馏段和提馏段的操作线方程在x-y图上均为直
线。
作图时,先找出操作线与对角线的交点,然后根据已知条 件求出操作线的斜率(或截距),即可作出操作线。
Dx D A 100% FxF
塔釜难挥发组分的回收率ηB:
W (1 x w ) B 100% F (1 x F )
2018/6/9
二、 恒摩尔流的假定
精馏操作时,在精馏段和提馏段内,每层塔板上升的汽相 摩尔流量和下降的液相摩尔流量一般并不相等,为了简化精
馏计算,通常引入恒摩尔流动的假定。
2018/6/9
将以上两式联立后,有:
y n 1
L D L D xn x D xn xD V V LD LD
令R=L/D,R 称为回流比,于是上式可写作:
y n 1
R 1 xn xD R 1 R 1
以上两式均称为精馏段操作线方程。
2018/6/9
两点讨论 (1)该方程表示在一定操作条件下,从任意板下降的液体组 成xn 和与其相邻的下一层板上升的蒸汽组成yn+1 之间的关系。 (2)该方程为一直线方程,该直线过对角线上a(xD,xD)点, 以R/(R+1)为斜率,或在y轴上的截距为xD/(R+1)。
(1)恒摩尔汽流
化工原理课件 9.4 精馏
q [rF cP (tb tF )] rF
b. 饱和液体进料(泡点进料) 饱和液体温度等于泡点
iF i
q 1
V V
0 q 1
L LF
c.汽液混合物进料 汽液混合物的温度介于泡点和露点之间
i iF I
V V
LL
q=x(液相分率) 已知进料中汽相与液相的摩尔数之比为2:1,轻组分的摩尔分 数为0.55,则q=_____. A. 1/3 B. 0.55 C.不能确定
传质单元高度
精 馏
实 际 塔 板 数
理论板数
反映分离任务的难易, 与设备型式无关
反映设备效能的高低
全塔效率
④塔板物料、热量衡算及传递速率的最终简化 引入理论板的概念及恒摩尔流假设使塔板过程的物料衡 算、热量衡算及传递速率最终简化为 物料衡算式
Vy n1 Lxn1 Vy n Lxn
相平衡方程
LL q F 以1kmol/h进料为基准,提馏段中的液体流量较精馏段的液 体流量增大的kmol/h数即为q值
L L qF
V V (1 q)F
I iF q I i
iF i I
q 1
L L qF
V V, L L
V V (1 q)F
a. 过冷液体进料 过冷液体温度低于泡点
I iF q I i
L L qF
V V (1 q)F
d.饱和蒸汽进料(露点进料) 饱和蒸汽的温度等于露点
iF I
q0
V V F
LL
e.过热蒸汽进料(过热蒸汽的温度高于露点)
iF I
q0
V V, L L
q cP (tF td ) rF
中山大学化工原理课件 第6章-精馏
0 0 pA P pB yA 0 0 P p A pB
上式为一定总压下汽相组成与温度的关系式。该温度又称为露点 (dew-point),上式又称为露点方程。
严格地说没有完全理想的物系。对那些性质相近、结构相似的组分 所组成的溶液,如苯-甲苯,甲醇-乙醇等,可视为理想溶液;若汽相 压力不太高,可视为理想气体,则物系可视为理想物系。 对非理想物系不能简单地使用上述定律。汽液相平衡数据更多地依靠 实验测定。
塔顶产品 yA 加热器 原料液
减压阀
闪 蒸 罐 xA
Q
塔底产品
三、精馏原理与流程 1. 精馏操作流程 精馏塔 精馏段 提馏段 塔顶冷凝器 塔釜再沸器 塔顶冷凝液 馏出液 回流液 塔釜产品 – 釜液 进料液 – 原料液 进料板
精 馏 段
提 馏 段
2. 精馏原理
T y2 o2 x2 x1 b 0 o1 y1
第四节 物料衡算和操作线方程
V
一. 全塔物料衡算 总:
D, xD
F D W
轻:
F, xF
FxF DxD WxW
W, xW
应用1: 确定产量及组成之间的关系
应用2: ① 确定馏出液采出率
F, xF
V
L
D, xD
D xF xW F xD xW
② 确定xD,max或 Dmax
露点
气相区
t/C
两相区
露点线
泡点 泡点线
液相区
0
xA
xf x(y)
yA
. 1.0
当温度达到该溶液的露点,溶液全部汽化成为组成为 yA= xf 的气相, 最后一滴液相的组成为 xA。
化工原理精馏PPT课件
D,xD
•
(xD,xD)
3
(二) 提馏段操作线方程
总物料衡算:L=V+W
m Lxm V ym+1
m+1
易挥发组分衡算 :Lxm= Vym+1+ WxW
yN
ym 1LL Wxm LW WxW 或 ym 1V Lxm V WxW
N xN
V
LxN
W,xw
提馏段操作 线方程
•(xW,xW)
4
【例1】在连续精馏塔中分离某理想二元混合物。已知原料液流量 为100kmol/h,组成为0.5(易挥发组分的摩尔分率,下同),提馏 段下降液体量与精馏段相等,馏出液组成为0.98,回流比为2.6。若 要求易挥发组分回收率为96%,试计算: (1) 釜残液的摩尔流量; (2) 提馏段操作线方程。
IV IL
(1)饱和液体进料——泡点进料
LV F
此时,IF=IL
q=1
原料液全部与精馏段下降液体汇合进入 提馏段。
L V
饱和液体
L =L+F
V =V
11
(2)饱和蒸汽进料
IF=IV
q=0
q IV IF IV IL
原料全部与提馏段上升气体汇合进入 精馏段。
L =L V=V +F
(3)冷液进料
内容回顾
一、精馏原理
(1)无中间加热及冷凝器的多次部分气化和多次部分冷凝 (2)顶部回流及底部气化是保证精馏过程稳定操作的必不可 缺少的条件。 (3)精馏操作流程 (4)相邻塔板温度及浓度的关系
tn1tntn1 xn1xnxn1 yn1ynyn1
1
二、理论塔板
三、恒摩尔流假定 四、全塔物料衡算
化工原理-精馏过程的物料
加料板
L' IL'
(6)式变为:
FI F V IV LI L VIV LI L
V V IV FI F L LIL 将(5)式代入 F L LIV FI F L LIL FIV L LIV FI F L LIL F IV IF L LIV IL
令 q IV IF L L
V 1 qF V y L qF Lx Fx f
q 1Fy qFx Fx f
∴ y q x xf
q 1 q 1
q 1y qx x f
(13)
此式即为加料板的操作线方程,也叫q线方程,
它表示在加料板的上升蒸气组成和回流液组成之间的 关系。即y与x的关系。
6、提馏段操作线方程的另一种形式
R 1
精馏段操作线。
2、q线
y q x xf q 1 q 1
若x=xf 时,
y
q
q
1
x
f
xf q 1
xf
在y-x图上,q线通过对角线上y = x = xf一点,
q
斜率为 q 1 的直线,料液的进料状况不同, q线的斜率不同。
冷料
y
饱液
气液混合
-+ +-
饱气
x
过热
xf
14、进料热状况
进料状况 q值
(3)、各组分的气化潜热接近相等。
2、精馏段操作线方程
精馏段的作用:利用回流把上升蒸气中的重组分逐 步冷凝下来,同时把回流液中的轻组分气化,从而在 塔顶得到比较纯的轻组分。
精馏段的操作线方程 可以根据物料衡算导 出。按下图圈定的范 围(n+1板以上)作
物料衡算:
V
L
D
化工原理精馏PPT课件全
用饱和蒸气压表示的气液平衡关系
2)用相对挥发度表示 ☆挥发度定义
某组分在气相中的平衡分压与该组分在液相中
的摩尔分率之比
挥发度意义
vi
pi xi
某组分由液相挥发到气相中的趋势,是该组分 挥发性大小的标志
双组分理想溶液
vA
pA xA
pAo xA xA
pAo
vB
pB xB
pBo xB xB
pBo
☆相对挥发度定义
pA pyA
pB pyB p(1 yA )
p
o A
xA
pyA
yA
p
o A
xA
p
pBo xB pyB
yB
pBo xB p
yA
p
o A
x
A
p
xA
p pBo pAo pBo
yA
pAo p
p pBo pAo pBo
xA
p pBo pAo pBo
,
yA
pAo p
p pBo pAo pBo
解 (1)利用拉乌尔定律计算气液平衡数据
xA
p pBo pAo pBo
yA
p
o A
x
A
p
t/℃ x y
80.1 84 88 92 96 100 104 108 110.8 1.000 0.822 0.639 0.508 0.376 0.256 0.155 0.058 0.000 1.000 0.922 0.819 0.720 0.595 0.453 0.305 0.127 0.000
xF,y,x---原料液、气相、液相产品的组成,摩尔分数
y
1
F D
x
化工原理下1-3精馏的物料衡算
L内=L外+Φ V外=V-Φ L外=RD Φrm=L外Cpm(tb-tR) L外:塔外的液相回流量,kmol/h Φ:被冷凝下来的流量,kmol/h rm:回流液在泡点温度下的气化 潜热,kJ/kmol Cpm:回流液的平均比热,kJ/(kmol·K) tb:回流液的泡点温度,OC tR:冷回流液的温度,OC
y1 = xD= 0.95
解:
(3) V (质)= ( R + 1 ) D(质) = ( 2 + 1 )×50 kg / h = 150 kg / h M氯访= 119.35 kg / kmol M四氯化碳 = 153.8kg / kmol Mm= (0.95×119.35 + 0.05×153.8) kg / kmol =121.1 kg / kmol V = (150kg/h) /( 121.1kg/kmol) = 1.24 kmol / h L(质)= R﹒D = 2 ×50 kg / h = 100 kg / h L = 100 / 121.1 kmol / h = 0.826 kmol / h
V = L+D
精馏段轻组分物料衡算
V yn+1=Lxn + D xD V=L+D
2பைடு நூலகம்精馏段物料衡算及操作线方程
2
1
* 精馏段操作线方程的意义:
上升蒸汽组成y n+1之间的关系。
在一定的操作条件下,从任一塔板(n)向
下流的液体组成xn与相邻的下一块塔板(n+1)
L = R D V = L+ D =(R + 1)D
a
b
c
d
e
t
x(y)
化工原理 精馏
返回主目录
返回
前页
后页
返回主目录
返回
第三节
平衡蒸馏和简单蒸馏
1 平衡蒸馏 平衡蒸馏又称为闪蒸,是一种单级蒸馏操作,常以连续 方式进行。原料连续进入加热器中,加热到一定温度后经节 流阀减到规定的压力,部分液体迅速汽化,汽液两相在分离 器中分开。由于汽液两相成平衡状态,所以称为平衡蒸馏。
4-1 精馏原理和流程
汽相与液相离开后,汽相中的易挥发组分浓度高, 液相中难挥发组分提高。 于是,经过多次部分汽化和部分冷凝,最后在塔顶 得到高纯度的轻组分,而在塔底获得高纯度的重组 分,达到较完善的分离程度。 精馏与平衡蒸馏之区别在于是否需要外界换热。
回流是保证精馏过程连续稳定操作的必要条件。
B ln P A t C
0
式中 A 、 B 、 C 为组分的安托因常数,可由有关 手册查得。
前页
后页
返回主目录
返回
2 )用相对挥发度表示气液平衡关系 ( 1 )挥发度 • 对纯液体,挥发度指该液体在一定温度下的饱和蒸汽压
0 A PA
0 vB P B
• 对混合液,各组分的挥发度可用它在蒸气中的分压和 Pi 与之平衡的液相中的摩尔分数之比表示,即 i xi ( 2 )相对挥发度:溶液中易挥发组分的挥发度与 难挥发组分 的挥发度之比,用 α 表示。 A PA / xA 操作压强不高 PyA / xA yA xB vB PB / xB PyB / xB yB xA
前页
后页
返回主目录
返回
第一节
概述
2)闪蒸 是一种单极的平衡操作,连续或间歇、稳定的。 混合液经加热器升温后液体温度高于分液器压强 下的液体沸点,然后通过减压阀使其降压后进入 分离器中,这时过热的液体混合物即被部分气化, 平衡的气液两相在分离器中得到分离,将分离器 又称为闪蒸罐(塔) 例如:高压锅,冷却后才可以打开
精馏计算 ppt课件
少使提馏段操作线越来
越靠近平衡线。
q=1
q>1
e
xW
xF
xD
20
(1)五种进料热状况:
1、冷液进料 ; 2、泡点进料(饱和液体进料); 3、气液混合物进料 ; 4、露点进料(饱和气体进料); 5、过热蒸气进料
21
(2)进料热状况对进料板物流的影响
(1)冷液进料
tF tV ,
L'LF V' V
(2)对于泡点进料
1、精馏段操作线方程
L
D
yn1LDxnLDxD
令 R L(回流比得)精馏段操作线方程:
D
R
1
1
yn1R1xnR1xD
2
n
V y1
V LL
y2 x 1L x
2
L V xn yn+1
馏出液
D , xD
R
1
yn1R1xnR1xD
精馏段操作线方程物理意义:
➢表示精馏段内任意相邻两板 间气液组成之间的关系。即xn 与yn+1之间的关系。 ➢斜率为R/(R+1),截距为 xD/(R+1),过(xD,xD) ➢在稳定操作条件下,精馏段 操作线方程为一直线 ab
提馏段原始的物料衡算方程: V'yL'xW xW
两式相减,可得: ( V ' V )y (L ' L )x (D x D W x W )
DxDWxWFxF
V'V=(q-1)F
y q x xF q 1 q 1
L' L=qF
➢在 x-y
截距为
图上,该式为通过点(
x F 的直线方程。
xF
精馏过程的物料衡算与操作线方程论述
精馏过程的物料衡算与操作线方程论述1. 引言精馏是化工过程中常用的分离技术之一,它通过物料在不同沸点下的汽液平衡来分离混合物中不同挥发性组分。
在精馏过程中,物料衡算和操作线方程的论述非常重要,可以帮助我们确定操作条件、优化设备设计和提高产品质量。
2. 精馏过程的基本原理精馏过程基于挥发性组分的沸点差异,利用加热和冷凝来实现分离。
在精馏塔中,混合物被加热至沸腾并蒸发,产生蒸汽。
蒸汽上升到精馏塔顶部,通过冷凝器被冷凝成液体,与从塔底部向上流动的液体相接触,发生质量传递。
通过连续冷凝和汽化,塔顶收集到的液体(称为顶物)和塔底排出的液体(称为底物)具有不同的成分。
3. 物料衡算物料衡算是精馏过程设计和优化的基础。
在精馏塔中,我们需要确定几个关键的物料衡算参数,包括塔顶和塔底的组分和流量。
3.1 塔顶组分塔顶收集到的液体(顶物)的组分是通过分析塔顶收集液体的样品得到的。
通过对样品进行化学分析,我们可以确定顶物中各组分的浓度,从而衡算出塔顶液体的组分。
3.2 塔底组分塔底排出的液体(底物)的组分可以通过分析底物样品得到。
同样地,化学分析可以帮助我们确定底物中各组分的浓度。
3.3 塔顶和塔底流量塔顶和塔底的流量是通过流量计测量得到的。
通过测量塔顶和塔底的液体流量,我们可以进行物料衡算,确定物料平衡。
4. 操作线方程操作线方程是精馏过程中的一个重要数学模型,用于描述在设定操作条件下塔中液相和汽相之间的质量传递。
操作线方程基于物料衡算和热平衡原理,可以用来计算塔的塔顶和塔底组分的变化。
操作线方程通常用来解决以下问题:•确定操作变量:通过操作线方程,我们可以计算出在给定操作条件下,塔底组分的变化。
这有助于我们确定适当的操作变量,例如塔底温度、塔顶温度、回流比等。
•优化设备设计:操作线方程可以用来优化精馏塔的设计。
通过改变操作条件,例如增加回流比或改变塔顶温度,可以改善精馏塔的分离效率。
•提高产品质量:操作线方程可以帮助我们确定最佳操作条件,以提高产品的纯度和收率。
化工基础第三章(精馏过程的物料衡算与操作线方程)
操作压力
操作压力的选择会影响精馏塔的分离效果和能源消耗,因此需要合理选择。
通过建立精馏塔的数学模型,可以模拟不同操作条件下的性能,从而进行优化。
数学模型法
通过实验测定精馏塔在不同操作条件下的性能,找出最优的操作条件。
实验法
利用人工智能技术,如神经网络、遗传算法等,对精馏塔进行优化。
在实际应用中,操作线方程的精度会受到多种因素的影响,如进料组成的变化、温度和压力的波动等。
使用操作线方程时需要注意其适用范围和限制条件,并采取相应的措施来减小误差和提高计算精度。
精馏塔的设计与优化
CATALOGUE
04
分离效率
精馏塔的设计首要考虑的是其分离效率,即塔顶和塔底产品之间的质量差异。
热力学效率
1
2
3
操作线方程在精馏过程中用于描述原料液与塔顶、塔底产品之间的相互关系,是进行物料衡算和能量衡算的基础。
通过操作线方程,可以计算出原料液的进料量、塔顶产品的采出量以及塔底产品的采出量,以满足生产需求。
操作线方程还可以用于优化精馏过程,通过调整操作参数,提高产品质量、降低能耗和减少环境污染。
操作线方程的应用有一定的限制,例如在处理非理想溶液时可能会出现偏差。
原理
基于溶液的蒸汽压随温度升高而增大,在一定温度下,溶液的蒸汽压是组分的蒸汽压之和。通过加热溶液,使部分溶液汽化,利用组分蒸汽压的不同,使轻组分随蒸汽一起汽化,重组分留在母液中,再经冷凝得到各组分的液体产品。
分类
按操作方式可分为连续精馏和间歇精馏;按进料位置可分为原料液、加料液、回流液和釜残液。
特点
01
操作线方程
第三节二元连续精馏的计算
截距:
xD R 1
b
xD R 1
F, xF
V ,yn+1 L ,x n
过点a(xD, xD),b(0,
xD R 1)
x
xD
x~y图上联a、b点得精馏段操作线。
3、思考:操作线斜率大,对精馏是否有利?
y xD
汽相 增浓 程度
复习:平衡级和精馏原理
1.平衡级(理论塔板)定义 使不平衡的汽液两相(汽相温
Vy Lx Dx D
V y L x Wx W
(V V ) y ( L L) x ( DxD WxW )
L L qF V V (q 1)F
d1
d4 d5
; 其 蒸 气 的 平 均 比 热 容 cp,V=1.26kJ.kg-1.K-1 ; 在 总 压
若将 F ' , kg / h F , kmol / h F F' ; M F M A x F M B (1 x F ); MF
釜残液采出率:
例 10-6 一 精 馏 塔 用 于 分 离 乙 苯 - 苯 乙 烯 混 合 物 , 进 料 量 3100kg.h-1,其中乙苯的质量分数为0.6,塔顶,塔底产品中质 量分数分别要求是 0.95、 0.25。求塔顶,塔底产品的质量流率 和摩尔流率。 分析: 已知F,xF,xD,xW,求D,W 总物料衡算
问题1:L、V如何计算? 问题2:与精馏段L、V有何关系?
(a)过冷液体
}
}
} V L (b)饱和液体
V L (c)汽液混合物
V L (d)饱和蒸汽
V L (e)过热蒸汽
V, iV F, iF
L, iL
V > V , L > L
精馏段操作线方程3
已知 xF、xW、xD
求V、L 已知R
利用精馏段物料衡算
求 V 、L L L qF 求q
V V (q 1)F
解: (1)产品量
xF
41/ 78 41/ 78 59 / 92
0.4504
xD
97.5 / 78 97.5 / 78 2.5 / 92
0.9787
一、理论板及恒摩尔流
1、理论板
离开这种板的气液两相互成平衡,而且塔板上的液相 组成也可视为均匀的。
2、操作关系
y n+1与 x n 之间的关系
3、恒摩尔汽流
V1 V2 ...... Vn V
V1 V2 ......Vm V
4、恒摩尔液流
L1 L2 ...... Ln L
塔顶产品的组成应满足
xD
FxF D
塔顶易挥发组分回收率:易挥发组分从塔顶采出的量占全部 进料量中轻组分的百分数。
D
DxD FxF
100%
塔底难挥发组分回收率:
W
W (1 xW ) 100% F (1 xF )
2、精馏段操作线方程
对总物料:
V LD
对易挥发组分:
Vyn1 Lxn DxD
xm
W L W
xw
5、进料热状况对操作的影响
1)定义式
q L L F
2)q的计算 物料衡算:
F V L V L
热量衡算: FiF V iV LiL ViV LiL
q L L iV iF F iV iL
将1kmol进料变为饱和蒸汽所需热量 原料液的kmol汽化潜热
精馏塔的物料衡算
1 精馏塔的物料衡算1.1 原料液及塔顶和塔底的摩尔分率 甲醇的摩尔质量 A M =32.04kg/kmol 水的摩尔质量 B M =18.02kg/kmol315.002.18/55.004.32/45.004.32/45.0=+=F x 898.002.18/06.004.32/94.004.32/94.0=+=D x1.2 原料液及塔顶和塔底产品的平均摩尔质量FM =0.315⨯32.04+(1-0.315) ⨯18.02=22.44kg/kmol DM=0.898⨯32.04+(1-0.898) ⨯18.02=30.61kg/kmol1.3 物料衡算原料处理量 h kmol F /467.9844.22243301075.17=⨯⨯⨯=总物料衡算 98.467=D+W甲醇物料衡算 ωX +=⨯W D 898.0315.0467.98联立解得 D=48.462kmol/h W=93.136kmol/h 0005.0=WxWM =0.0005⨯32.04+(1-0.0005) ⨯18.02=18.03kg/kmol2 塔板数的确定2.1 理论板层数N T 的求取2.1.1 相对挥发度的求取将表1中x-y 分别代入)1()1(A A A A y x y x --=α得表2所以==∑1212...21a a a m α 4.22.1.2进料热状态参数q 值的确定根据t-x-y 图查得x F =0.315的温度t 泡=77.6℃ 冷液进料:60℃t m =26.7760+=68.8℃查得该温度下甲醇和水的比热容和汽化热如下:则Cp=2.84×0.315+4.186×0.685=3.7579 kJ/kg K r 汽=1091.25×0.315+2334.39×0.685=1942.8 kJ/kg q=汽汽进泡r r )t -(+t Cp =8.19428.19428.686.77×7579.3+)—(=1.017>12.1.3求最小回流比及操作回流比采用作图法求最小回流比,在x-y 图中、自点(0.315,0.315)作进料线方程: y=1-q Xf 1--x q q =59.8x -18.53 (1)操作线方程: y=x)1-α(1αx += 3.2x14.2x+ (2)联立(1)(2)得到的交点(0.321,0.668)即为(Xq,Y q )所以最小回流比R min =-Xq-Yq Xd Yq =321.06658.06658.0898.0--=0.6734取操作回流比为R=2R min =1.34682.1.4求精馏塔的气、液相负荷/h46.473kmol =34.5061.3468=RD =L ⨯/h 80.979kmol =34.506 2.3468=1)D +(R =V ⨯/h 144.94kmol =98.467+46.473=F +L = L'/h80.979kmol =V =V'2.1.5求操作线方程精馏段操作线方程为1n y +=1R R +n x +1D x R +=3468.23468.1n x +3468.2898.0=0.574n x +0.383 (a )提馏段操作线方程0004.079.10005.0979.80961.63979.8094.144'''1'-=⨯-=-=+m m W m m x x x VW x VL y(b )2.1.5采用逐板法求理论板层数由 1(1)qq qx y x αα=+- 得yyx )1(--=αα将 α=4.2 代入得相平衡方程yy yyx 2.32.4)1(-=--=αα (c )联立(a )、(b )、(c )式,可自上而下逐板计算所需理论板数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/6
2020/11/6
2、进料热状况参数
为了定量地分析进料量及其热状况对于精馏操作的影响, 须引入进料热状况参数的概念。
对进料板作物料及热量衡算,以单位时间为基准,可得:
一层塔板(n+1板)上升的蒸汽组成yn+1之间的关系称之为操作 关系,描述它们之间关系的方程称为操作线方程。
操作线方程可通过塔板间的物料衡算求得。
在连续精馏塔中,因原料液不断从塔的中部加入,致使精 馏段和提馏段具有不同的操作关系,现分别予以讨论。
2020/11/6
2020/11/6
1、 精馏段操作线方程
式中:V——精馏段上升蒸汽的摩尔流量,kmol/h; V’——提馏段上升蒸汽的摩尔流量,kmol/h。
2020/11/6
(2)恒摩尔溢流
恒摩尔溢流是指在精馏塔内,从精馏段或提馏段每层塔板 下降的液相摩尔流量分别相等,但两段下降的液相摩尔流量 不一定相等。
精馏段内,每层塔板下降的液体摩尔流量都相等,即:
式中:
F——原料液量,kmol/h; D——塔顶产品(馏出液)量,kmol/h; W——塔底产品(釜液)量,kmol/h; xF——原料液组成,摩尔分率; xD——塔顶产品组成,摩尔分率; xW——塔底产品组成,摩尔分率。
2020/11/6
回收率η
在精馏计算中,对分离过程除要求用塔顶和塔底的产品组 成表示外,有时还用回收率表示。
(1)恒摩尔汽流
恒摩尔汽流是指在精馏塔内,从精馏段或提馏段每层塔板 上升的汽相摩尔流量各自相等,但两段上升的汽相摩尔流量 不一定相等。
2020/11/6
在精馏段内,每层塔板上升的蒸汽摩尔流量都相等,即:
V1=V2=∙∙∙∙∙∙=V=常数
同理,提馏段内每层塔板上升的蒸汽摩尔流量亦相等,即:
V1’=V2’=∙∙∙∙∙∙=V’=常数
2020/11/6
三、精馏塔的进料热状况
精馏塔在操作过程中,精馏段和提馏段汽液两相流量间的 关系与精馏塔的进料热状况有关,因而进料热状况对精馏段 和提馏段的操作线方程有直接的影响。
根据工艺条件和操作要求,精馏塔可以不同的物态进料。 组成为xF 的原料,其进料状态可有以下几种:
2020/11/6
1、五种进料热状态
在图片虚线范围(包括精馏段的第n+1层板以上塔段及冷凝 器)内作物料衡算,以单位时间为基准,可得:
总物料衡算: V=L+D
易挥发组分的物料衡算: V yn+1=Lxn+DxD
式中: V——精馏段内每块塔板上升的蒸汽摩尔流量,kmol/h; L——精馏段内每块塔板下降的液体摩尔流量,kmol/h; yn+1——从精馏段第n+1板上升的蒸汽组成,摩尔分率; xn——从精馏段第n板下降的液体组成,摩尔分率。
2020/11/6
将以上两式联立后,有:
y n 1
L V
xn
D V
xD
L LD
xn,于是上式可写作:
y n 1
R R 1
xn
1 R 1 xD
以上两式均称为精馏段操作线方程。
2020/11/6
两点讨论 (1)该方程表示在一定操作条件下,从任意板下降的液体组 成xn 和与其相邻的下一层板上升的蒸汽组成yn+1 之间的关系。 (2)该方程为一直线方程,该直线过对角线上a(xD,xD)点, 以R/(R+1)为斜率,或在y轴上的截距为xD/(R+1)。
q
H hF H h
L'L F
每千摩尔原料液汽化为饱和蒸气所需的热量
原料液的摩尔汽化潜热
q 称为进料热状况参数。进料热状况不同,q 值亦不同。
2020/11/6
各 种 进 料 状 态 下 的
q
值
进料热状态对塔内气、液流量的影响.swf
2020/11/6
四、 操作线方程
在精馏塔中,任意塔板(n 板)下降的液相组成xn与由其下
满足恒摩尔流假设的条件
在精馏塔的每层塔板上,若有n kmol的蒸汽冷凝,相应有n kmol的液体汽化,恒摩尔流动的假定才能成立。为此必须满 足以下条件: (1) 混合物中各组分的摩尔汽化潜热相等; (2)汽液接触时因温度不同而交换的显热可以忽略; (3) 塔设备保温良好,热损失可以忽略。
恒摩尔流动虽是一项简化假设,但某些物系能基本上符合上 述条件,因此,可将这些系统在精馏塔内的汽液两相视为恒 摩尔流动。
第三章 传质分离过程
3.2.3 精馏过程的物料衡算与 操作线方程 一、全塔物料衡算 二、恒摩尔流的假定 三、精馏塔的进料热状况 四、操作线方程
2020/11/6
精馏过程的计算内容
精馏过程的计算可分为设计型计算和操作型计算两类。 此处讨论板式精馏塔的设计型计算问题,其主要内容包括: (1) 确定产品的流量或组成; (2) 确定精馏塔的理论板层数和适宜的加料位置; (3) 确定适宜的操作回流比; (4) 计算冷凝器、再沸器的热负荷等。
塔顶易挥发组分的回收率ηA:
A
DxD FxF
100%
塔釜难挥发组分的回收率ηB:
B
W (1 xw ) F (1 xF )
100%
2020/11/6
二、 恒摩尔流的假定
精馏操作时,在精馏段和提馏段内,每层塔板上升的汽相 摩尔流量和下降的液相摩尔流量一般并不相等,为了简化精 馏计算,通常引入恒摩尔流动的假定。
2020/11/6
2020/11/6
2、 提馏段操作线方程
在图虚线范围(包括提馏段第m层板以下塔段及再沸器)内 作物料衡算,以单位时间为基准,可得:
2020/11/6
2020/11/6
一、 全塔物料衡算
精馏塔各股物料(包括进料、塔顶产品和塔底产品)的流量、 组成之间的关系可通过全塔物料衡算来确定。
在图片虚线范围内作全塔物料衡算,并以单位时间为基准 ,可得:
总物料衡算: F = D + W
易挥发组分的物料衡算:
FxF DxD WxW
2020/11/6
L1=L2=∙∙∙∙∙∙=L=常数
2020/11/6
同理,提馏段内每层塔板下降的液体摩尔流量亦相等,即:
L1’=L2’=∙∙∙∙∙∙=L’=常数
式中:L——精馏段下降液体的摩尔流量,kmol/h; L’——提馏段下降液体的摩尔流量,kmol/h。
恒摩尔汽流与恒摩尔溢流总称为恒摩尔流假设。
2020/11/6