偏瘫患者与正常人日常生活活动的三维运动学分析

偏瘫患者与正常人日常生活活动的三维运动学分析
偏瘫患者与正常人日常生活活动的三维运动学分析

puma250机器人运动学分析

焊接机器人运动分析 摘要:针对puma250焊接机器人,分析了它的正运动学、逆运动学的问题。采用D-H坐标系对机器人puma250 建立6个关节的坐标系并获取D-H 参数,并对其运动建立数学模型用MATLAB编程,同时仿真正运动学、逆运动学求解和轨迹规划利用pro-e对puma250建模三维模型。 关键词:puma250焊接机器人;正逆解;pro-e;Matlab;仿真 一、建立机器手三维图 Puma250机器人,具有6各自由度,即6个关节,其构成示意图如图1。各连杆包括腰部、两个臀部、腕部和手抓。设腰部为1连杆,两个臀部分别为2、3连杆,腰部为4连杆,手抓为5、6连杆,基座不包含在连杆范围之内,但看作0连杆,其中关节2、3、4使机械手工作空间可达空间成为灵活空间。1关节连接1连杆与基座0,2关节连接2连杆与1连杆,3关节连接3连杆与2连按,4关节连接4连杆与3连杆,5关节连接5连杆与4连杆。各连杆坐标系如图 2 所示。

图1 puma250 机器人二、建立连杆直角坐标系。

三、根据坐标系确定D-H表。 四、利用MATLAB 编程求机械手仿真图。>>L1=Link([pi/2 0 0 0 0],'standard'); L2=Link([0 0 0 -pi/2 0],'standard'); L3=Link([0 -4 8 0 0],'standard'); L4=Link([-pi/2 0 8 0 0],'standard'); L5=Link([-pi/2 0 0 -pi/2 0],'standard'); L6=Link([0 2 0 -pi/2 0],'standard'); bot=SerialLink([L1 L2 L3 L4 L5 L6],'name','ROBOT'); ([0 0 0 0 0 0])

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

焊接机器人逆运动学位姿分析

1.1连杆的坐标系 应用D-H 法来建立机器人杆件的坐标系。在这种坐标系中,可以把机械手的任一连杆i (i=1,2,3···,n )看作是一个刚体,与它相邻的两个关节i 、i-1的轴线i 和i-1 之间的关系也由它确定,如图1,可以用以下四个参数描 式中,cθi =cosθi ,sθi =sinθi ,i=1,2,3,···,n 图1连杆坐标系{i}到{i-1}的变换 i αi-1/(rad )a i-1/(cm )d i /(cm 12340 90°090°042.5410014.520011.895.3表1机器人连杆参数表

定义了连杆坐标系和相应得连杆参数,就能建立运动学方程,焊接机器人末端关节的坐标系{n}相对于基础坐标系{0}中的齐次变换公式为: 对于6自由度的焊接机器人公式可以写为 (2 变换矩阵0 n T是关于n个关节变量的函数,这些变量 可以通过放置在关节上的传感器测得,则机器人末端连杆再基坐标系中的位置和姿态就能描述出来。 E n表示焊接机器人末端关节的姿态, 器人在世界坐标系中的位置。[3] 2机器人的逆运动学分析 逆运动学求解是已知机器人末端的位置和姿态即 求解机器人对应于该位置和姿态的关节角 只要0 n T表示的末端连杆坐标系的位置和姿态位于机 械手的可达空间内,则运动学方程至少有一个解, 达空间内,机械手具有任意姿态,导致运动学方程可能出现重解。 机器人的运动学方程是一组非线性方程式, 求解过程中,我们逐次在公式(4)的两端同时左乘一 即为 在上式两边的矩阵中寻找简单的表达式或常数, 对应相等,计算过程如下: ( ( ( ( ( (3求取各关节的解集 依靠D-H法求解关节角的过程是和焊接机器人本身的结构相关的,换句话说,也就是特定配置的机器人需要特定的解决方案。通过公式(6)-(16)可以看出每个关节角的结果是不唯一的,如果采用已有的求解方法,显而易见该过程是缓慢的,复杂的。本文提出了一种计算最终执行器位置的所有精确值的算法。该算法是在MATLAB 程实现的。通过该算法得到各节点的解是更快速、有效的。 用变换矩阵 6T定义一条具有两个端点A和B 轨迹,如公式(17)和(19)。从而θ能够被求出,如公式20)

运动学的基本概念

运动学的基本概念 一、质点 1.理想模型 用来代替物体的有质量的点叫质点.是理想化的物理模型. 2.视为质点的条件 实际物体可视为质点的条件:①物体的形状、大小对问题的影响可忽略不计;②物体做平动;③物体虽有转动,但因转动而引起的物体部分差异对所研究的问题不起重要作用.质点是有质量的点的科学抽象,与几何中的点不是一回事. 1.做下列运动的物体,能当做质点处理的是() A.自转中的地球 B.旋转中的风力发电机叶片 C.匀速直线运动的火车 D.在冰面上旋转的花样滑冰运动员 2.关于质点,下列说法正确的是() A.研究刘翔在110 m栏比赛中的过杆技术是否合理时,可以将刘翔看做质点 B.陈中和主教练在奥运会女排决赛中,在战术板上布置队员怎样跑位时,能把女排队员看成质点 C.研究奥运会跳水冠军田亮的跳水动作时,能把他看成质点 D.研究乒乓球比赛中打的弧圈球时,能把乒乓球看做质点 3.子弹沿水平方向射出,如果要计算子弹从枪口飞到靶心所需时间,能否把子弹看做质点?如果要计算子弹穿过一张薄纸所需的时间,能否把子弹看做质点? 二、位置、位移、路程 1.位置

质点的位置可以用规定的坐标系中的点表示.在一维、二维、三维的坐标系中分别表示为S(x)、S(x,y)、S(x,y,z). 2.位移 物体位置的变化,用始位置指向末位置的有向线段表示.位移是矢量,国际单位是“米”.位移的大小与路径无关,位移的方向是由初位置指向末位置.位移的方向不一定是质点运动的方向. 3.路程 路程是物体经过的实际路线的长度.路程是标量.路程不小于位移,当物体做单向无往复的直线运动时位移的大小才等于路程. 三、时刻与时间 1.时刻指某一瞬时,体现在时间轴上为某一点. 2.时间指两时刻间隔,体现在时间轴上为两点间线段对应值. 【名师点拨】注意几种时间和时刻的说法 (1)第1 s内、第2 s内、第3 s内、……、第n秒内指的是时间,在数值上都等于1 s. (2)最初2 s内、最后2 s内、……、最初n s内都是指时间,在数值上对应所述值. (3)第1 s末(或第2 s初),第2 s末(或第3 s初),…….都是指时刻.如下图所示. 1.质点做直线运动的位移x与时间t的关系为x=5t+t2(m)(各物理量均采用国际单位制),则该质点() A.第1 s内的位移是5 m B.前2 s内的平均速度是6 m/s C.任意相邻的1 s内位移差都是1 m D.任意1 s内的速度增量都是2 m/s

运动学测量方法

各位同学,大家早上好,今天我们来继续学习运动技术分析与诊断这门课程,在学习本节课之前,我们先来回顾一下,上节课学习的人体运动的运动学分析的主要内容。 复习:一、人体关节的相关概念 二、人体关节运动的基本形式 三、人体运动链的分类 四、人体运动的自由度 一、人体关节的相关概念 关节:骨与骨以结缔组织相连结构成关节。根据连结组织的性质和活动情况,关节可分为不动关节(韧带联合、软骨结合和骨性结合)、动关节(肩、肘、腕、髋、膝、踝关节)和半关节(耻骨联合)。 二、人体关节运动的基本形式 1)角度运动 邻近两骨间产生角度改变的相对转动,称为角度运动。通常有屈、伸和收、展两种运动形态。 2)旋转运动 骨绕垂直轴的运动称为旋转运动,由前向内的旋转称为旋内,由前向外的旋转称之旋外。 三、人体运动链的分类 开放运动链末端呈游离状态,它的某一关节固定,其余各关节产生运动。 如果运动链首尾相连,形成闭合状态,末端无游离的环节,称为闭合运动链。 四、人体运动的自由度 假如物体不受任何限制(约束),它可以在三度空间运动,也既是相对于三个相互垂直轴的平动及绕三个轴的转动,物体有六个自由度。 当把物体某一点固定时,其自由度为三个,这时不能产生平动,只能以三个坐标轴为轴发生转动(可把原点放在固定点)。 当物体的某两点固定时,只有一个自由度,既以两点的连线为轴的转动。

当物体上任意三点固定时,则自由度为零,不产生任何方向的平动和转动。 在前面运动技术分析与诊断中我们所讲的是一些运动学、动力学和肌肉力学的一些理论知识,通过上半程的学习对技术分析有个理论上的知识,在后面的学习中将主要进行的是一些实际的应用操作。那么,今天所要学习的就是运动技术分析与诊断的工作环节以及现场数据采集。 第六章运动技术分析与诊断的工作环节及现场数据采集 第一节运动技术数据的意义 运动技术数据是指从人体运动过程中采集到得能够准确描述其运动状态的相关性息。人体运动与时间、空间相关的信息称之为运动学数据;人体运动与作用力、时间相关的信息称之为动力学数据。 一、运动学数据对运动技术的意义 运动学数据包括关节位置和关节角度、位移和角位移、速度和角速度、加速度和角加速度。 1)关节位置和关节角度 人体关节位置和关节角度数据可以准确描述人体运动的姿势。 A.关节位置 人体运动系统的支架是由骨骼和关节组成的一种链状结构,当这种链状结构的枢纽位置(关节位置)发生变化时,便会引起整个支架的形态发生变化。因此,人体运动时身体姿势可以看成是由各个关节在空间位置决定的。 图中显示了关节位置与动作姿态相关的情况。从图中可以看出,当人体任何一个关节点的位置发生变化时,都必然会引起动作姿态发生变化;反之,当人体动作姿态发生变化时,也必然会伴随关节位置的变化。 B.关节角度 人体每个关节的角度决定相邻两个运动环节之间的相互关系,关节角度数据直接描述动作姿态中每个关节的伸展和弯曲状况。在分析评价运动技术姿势时,关节角度也是一个重要的指标。 2)位移和角位移 A.位移 人体动态运动过程可以看成是由一系列有序的静态姿势所组成,当人体从一个姿势连续变化到另一个姿势时,肢体各部位的位置会发生一系列的连续变化,位置变化的距离称之为位移。 我们以100米途中跑时人体总重心的位移情况为例,通过运动员途中跑的影像资料求出途中跑每个瞬时的总重心位置坐标,便可以在坐标中做出途中跑人体

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

六自由度机器人运动分析及优化

本 科 毕 业 论 文(设 计) 题目(中文 学学 完 成 日 期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要 ...................................................................................................................... I Abstract ............................................................................... 错误!未定义书签。 1 绪论 (1) 1.1课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (3) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (5) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3 3.3.1动量矩定理---------------------------------------------------------------6 3.3.2能量守恒定理--------------------------------------6 3.3.3牛顿—欧拉方程------------------------------------7 3.3.4达朗贝尔原理--------------------------------------8 3.3.5拉格朗日方程--------------------------------------9 4 六自由度机器人运动分析 (8) 4.1运动分析的软件背景---------------------------------------3 4.2运用solidworks建立六度机器人机械臂三维模型--------------9 4.3运用Solidworks对进行运动学分析-------------------------4 5 结论 (14)

基于MATLAB的仿人焊接机械手运动学分析和仿真_王求

作者简介:王求(1978-),男,在读硕士研究生;研究方向为焊接机器人运动学,材料焊接及其数值模拟。 合肥工业大学材料科学与工程学院 王求 胡小建 李雷阵 摘 要:关键词:针对在狭小空间或密闭容器内以及危险作业环境中焊接的特殊要求,以UG软件为基础设计了一种仿人焊接 机械手。采用D-H方法建立了焊接机械手的运动学方程,并讨论了该机械手的运动学问题。然后运用MATLAB软件对机械手的运动学进行了仿真,通过仿真观察到机械手各个关节的运动,并得到所需的数据,说明了所设计参数的合理性和运动算法的正确性,为焊接机械手的动力学、控制及轨迹规划的研究提供了可靠的依据。焊接机械手;运动学;仿真;Matlab 基于MATLAB的仿人焊接机械手运动学分析和仿真 机器人技术作为信息技术和先进制造技术的典型代表和主要技术手段,已成为世界各发达国家竞相发展的高技术,其发展水平已经成为衡量一个国家技术发展水平的重要标志之一。焊接是制造业中最重要的工艺技术之一,它在机械制造、核工业、航空航天、能源交通、石油化工及建筑和电子等行业中的应用越来越广泛。从21世纪先进制造技术的发展要求来看,焊接自动化生产已是必然趋势,而焊接机器人是焊接自动化的革命性进步 。但是现阶段的焊接机器人都是具 有固定底座的机械手(臂),只能在固定位置完成一定范围内的操作,适应性较低。进行复杂苛刻条件(如小直径的容器内径中焊接)和危险环境(如有辐射等作业环境)中焊接作业时,要求可以代替人类从事焊接作业的机器人,而焊接机械手是实现焊接机器人的关键技术,因此设计出一种小型焊接机械手,可以作为仿人焊接机器人的执行末端,也可以直接作为 [1] [2] 焊接的执行末端,能代替焊工实现在狭小空间或者密闭容器内以及危险作业环境中的焊接。本文根据预定要求对焊接机械手进行机械结构设计,以UG软件进行造型,然后运用D-H坐标系理论为基础建模,讨论了机械手的运动学问题,并运用Matlab中的Ro-boticsToolbox完成了机械手的运动学仿真和轨迹规划。 机械手主要用于点焊或弧焊,其 末端载荷要求不高,能够承受焊枪质量即可,以抓持力1kg为依据进行设计。考虑机械手的工作条件,机械手本体质量小于10kg。机械手本体由基座、肩部、大臂、小臂、手腕、末端执行器所组成,共6个自由度,其中前3个自由度用于控制焊枪端部的空间位置,后3个自由度用于控制焊枪的空间姿态。机械手共6个关节,6个关节全部为转动关节,每个关节实现1个自由度,6个关节实现的运动分别是:1-肩部回转;2-大臂俯仰;3-小臂俯仰;4-小臂回转;5-手腕俯仰;6-手腕 [3] [4] 1焊接机械手结构设计 回转,如图1所示。根据机械手的设计要求,对机械手进行整体设计,使用UG软件进行机械手的三维建模,三维造型如图2所示。 机械手的运动学主要研究机械手 相对于固定参考系的运动,特别是研究机械手末端执行器位置和姿态与关节空间变量的关系。机械手运动学要 2运动学分析 [5]Analysis and simulation of kinesiology of simulated welding mechanical hand based on MATLAB

FANUC 机械手资料相关 机器人正运动学方程的D-H表示法

2.8机器人正运动学方程的D-H表示法 在1955年,Denavit和Hartenberg在“ASME Journal of Applied Mechanics”发表了一篇论文,后来利用这篇论文来对机器人进行表示和建模,并导出了它们的运动方程,这已成为表示机器人和对机器人运动进行建模的标准方法,所以必须学习这部分内容。Denavit-Hartenberg(D-H)模型表示了对机器人连杆和关节进行建模的一种非常简单的方法,可用于任何机器人构型,而不管机器人的结构顺序和复杂程度如何。它也可用于表示已经讨论过的在任何坐标中的变换,例如直角坐标、圆柱坐标、球坐标、欧拉角坐标及RPY坐标等。另外,它也可以用于表示全旋转的链式机器人、SCARA机器人或任何可能的关节和连杆组合。尽管采用前面的方法对机器人直接建模会更快、更直接,但D-H表示法有其附加的好处,使用它已经开发了许多技术,例如,雅克比矩阵的计算和力分析等。 假设机器人由一系列关节和连杆组成。这些关节可能是滑动(线性)的或旋转(转动)的,它们可以按任意的顺序放置并处于任意的平面。连杆也可以是任意的长度(包括零),它可能被弯曲或扭曲,也可能位于任意平面上。所以任何一组关节和连杆都可以构成一个我们想要建模和表示的机器人。 为此,需要给每个关节指定一个参考坐标系,然后,确定从一个关节到下一个关节(一个坐标系到下一个坐标系)来进行变换的步骤。如果将从基座到第一个关节,再从第一个关节到第二个关节直至到最后一个关节的所有变换结合起来,就得到了机器人的总变换矩阵。在下一节,将根据D-H表示法确定一个一般步骤来为每个关节指定参考坐标系,然后确定如何实现任意两个相邻坐标系之间的变换,最后写出机器人的总变换矩阵。

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.360docs.net/doc/5e11919924.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

相关文档
最新文档