美国MVE公司液氮罐
IVF实验室产品介绍医学类PPT课件
照明光源:0-2000LUX光亮度连续可调,满足不同操作步骤对光亮度的不同需求
三层过滤系统,无净化死角,配有:预滤系统一套,聚酯材料的前过滤层,符合EU3标准,,有效去除尘埃粒子,延长HEPA的使用寿命;活性碳过滤层一套,过滤空气中的VOC及可溶性化学物质。HEPA过滤层一套,符合欧洲EN1822标准,对直径0.3µm以上粒子达到99.999%以上的清除率.
IVF实验室产品介绍
第3页
IVFTECH 工作站性能参数Sterile 180 (带防震台)
用于辅助生殖实验室胚胎操作。
百级超净工作站主机一台,工作站尺寸(H×W×D):686×1631x1335(单位:mm)。台面高760-800mm可调。
净化区体积(D×W×H)不小于564x1500x636(单位:mm),水晶砖台面,台面稳定性更高,更美观,颜色可选
第12页
售后服务
我们确保提供 投标产品符合标书中所标明 技术规格和参数, 质量、性能均为高级机型。产品自到货安装调试投入使用之日起保修期为一年(消耗品、零配件、其它人为造成 损坏除外)。产品 技术服务和售后服务 内容和方法 我们有专业 销售队伍和完善 售前、售后服务保障。这是用户最关心 问题之一, 同时也正是我们 优势所在。 企业在上海有专业 维修人员, 进行售后维护, 每位维修人员都是定时由厂家进行专业培训 。维修人员定时巡回走访用户, 了解使用情况, 立刻处理问题, 而且对所在地 用户 售后申请在二十四小时内进行响应。专业技术人员在安装、调试时, 对用户进行现场培训, 指导使用方法和注意事项。对产品 使用配件, 我们承诺以最低价供给用户。对于产品在保修期外出现故障, 除更换配件外, 不收取其她费用。我们为用户提供产品 终生保养, 维护。当用户设备出现故障时, 上海外海企业能够立刻地为用户处理问题, 最大程度地不耽搁用户 正常工作。
ADC12DC080资料
ADVANCE INFORMATIONSeptember 2007 ADC12DC080/ADC12DC105Dual 12-Bit, 80/105 MSPS A/D Converter with CMOS OutputsGeneral DescriptionNOTE: This is Advance Information for products current-ly in development. ALL specifications are design targets and are subject to change.The ADC12DC080 and ADC12DC105 are high-performance CMOS analog-to-digital converters capable of converting two analog input signals into 12-bit digital words at rates up to 80/105 Mega Samples Per Second (MSPS) respectively. These converters use a differential, pipelined architecture with digital error correction and an on-chip sample-and-hold circuit to minimize power consumption and the external com-ponent count, while providing excellent dynamic perfor-mance. A unique sample-and-hold stage yields a full-power bandwidth of 1 GHz. The ADC12DC080/105 may be operated from a single +3.3V power supply. A power-down feature re-duces the power consumption to very low levels while still allowing fast wake-up time to full operation. The differential inputs provide a 2V full scale differential input swing. A stable 1.2V internal voltage reference is provided, or the AD-C12DC080/105 can be operated with an external 1.2V refer-ence. Output data format (offset binary versus 2's comple-ment) and duty cycle stabilizer are pin-selectable. The duty cycle stabilizer maintains performance over a wide range of clock duty cycles.The ADC12DC080/105 is available in a 60-lead LLP package and operates over the industrial temperature range of −40°C to +85°C.Features■ 1 GHz Full Power Bandwidth■Internal sample-and-hold circuit and precision reference ■Low power consumption■Clock Duty Cycle Stabilizer■Single +3.3V supply operation■Power-down mode■Offset binary or 2's complement output data format■60-pin LLP package, (9x9x0.8mm, 0.5mm pin-pitch) Key Specifications■For ADC12DC105■Resolution12 Bits ■Conversion Rate105 MSPS ■SNR (f IN = 240 MHz)67 dBFS (typ)■SFDR (f IN = 240 MHz)83 dBFS (typ)■Full Power Bandwidth 1 GHz (typ)■Power Consumption800 mW (typ) Applications■High IF Sampling Receivers■Wireless Base Station Receivers■Test and Measurement Equipment■Communications Instrumentation■Portable InstrumentationConnection Diagram30015401© 2007 National Semiconductor ADC12DC080/ADC12DC105 Dual 12-Bit, 80/105 MSPS A/D Converter with CMOS OutputsBlock Diagram30015402Ordering InformationIndustrial (−40°C ≤ T A ≤ +85°C)Package ADC12DC080CISQ 60 Pin LLP ADC12DC105CISQ60 Pin LLP 2A D C 12D C 080/A D C 12D C 105Pin Descriptions and Equivalent CircuitsPin No.SymbolEquivalent CircuitDescriptionANALOG I/O313V IN A+V IN B+Differential analog input pins. The differential full-scale input signal level is 2V P-P with each input pin signal centered on a common mode voltage, V CM .214V IN A-V IN B-511V RP A V RP B These pins should each be bypassed to AGND with a low ESL (equivalent series inductance) 0.1 µF capacitor placed very close to the pin to minimize stray inductance. An 0201 size 0.1 µFcapacitor should be placed between V RP and V RN as close to the pins as possible, and a 1 µF capacitor should be placed in parallel.V RP and V RN should not be loaded. V CMO may be loaded to 1mA for use as a temperature stable 1.5V reference.It is recommended to use V CMO to provide the common mode voltage, V CM , for the differential analog inputs.79V CMO A V CMO B 610V RN A V RN B59V REFReference Voltage. This device provides an internally developed 1.2V reference. When using the internal reference, V REF should be decoupled to AGND with a 0.1 µF and a 1µF, low equivalent series inductance (ESL) capacitor.This pin may be driven with an external 1.2V reference voltage.This pin should not be used to source or sink current.DIGITAL I/O19OF/DCSThis is a four-state pin controlling the input clock mode and output data format.OF/DCS = V A , output data format is 2's complement without duty cycle stabilization applied to the input clockOF/DCS = AGND, output data format is offset binary, without duty cycle stabilization applied to the input clock.OF/DCS = (2/3)*V A , output data is 2's complement with duty cycle stabilization applied to the input clockOF/DCS = (1/3)*V A , output data is offset binary with duty cycle stabilization applied to the input clock.18CLKThe clock input pin.The analog inputs are sampled on the rising edge of the clock input.5720PD_A PD_BThis is a two-state input controlling Power Down.PD = V A , Power Down is enabled and power dissipation is reduced.PD = AGND, Normal operation.ADC12DC080/ADC12DC105Pin No.Symbol Equivalent CircuitDescription42-49,52-55DA0-DA7,DA8-DA11Digital data output pins that make up the 12-bit conversion result for Channel A. DA0 (pin 42) is the LSB, while DA11 (pin 55) is the MSB of the output word. Output levels are CMOS compatible.23-24,27-36DB0-DB1,DB3-DB11Digital data output pins that make up the 12-bit conversion result for Channel B. DB0 (pin 23) is the LSB, while DB11 (pin 36) is the MSB of the output word. Output levels are CMOS compatible.39DRDYData Ready Strobe. The data output transition is synchronized with the falling edge of this signal. This signal switches at the same frequency as the CLK input.ANALOG POWER 8, 16, 17, 58,60V APositive analog supply pins. These pins should be connected to a quiet source and be bypassed to AGND with 0.1 µF capacitors located close to the power pins.1, 4, 12, 15,Exposed Pad AGNDThe ground return for the analog supply.DIGITAL POWER 26, 38,50V DRPositive driver supply pin for the output drivers. This pin should be connected to a quiet voltage source and be bypassed to DRGND with a 0.1 µF capacitor located close to the power pin.25, 37, 51DRGNDThe ground return for the digital output driver supply. This pins should be connected to the system digital ground, but not be connected in close proximity to the ADC's AGND pins. 4A D C 12D C 080/A D C 12D C 105Absolute Maximum Ratings (Notes 1, 3)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Supply Voltage (V A , V DR )−0.3V to 4.2V Voltage on Any Pin (Not to exceed 4.2V)−0.3V to (V A +0.3V)Input Current at Any Pin other than Supply Pins (Note 4)±5 mA Package Input Current (Note 4)±50 mA Max Junction Temp (T J )+150°C Thermal Resistance (θJA )30°C/WESD Rating Human Body Model (Note 6)2500V Machine Model (Note 6)250V Storage Temperature −65°C to +150°C Soldering process must comply with National Semiconductor's Reflow Temperature Profilespecifications. Refer to /packaging.(Note 7)Operating Ratings(Notes 1, 3)Operating Temperature −40°C ≤ T A ≤ +85°CSupply Voltage (V A )+2.7V to +3.6V Output Driver Supply (V DR )+2.4V to V AClock Duty Cycle(DCS Enabled)30/70 %(DCS disabled)45/55 %V CM1.4V to 1.6V|AGND-DRGND|≤100mVADC12DC080 Converter Electrical CharacteristicsThis product is currently under development. As such, the parameters specified are DESIGN TARGETS. The specifica-tions cannot be guaranteed until device characterization has taken place.Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, V A = +3.0V, V DR = +2.5V, Internal V REF =+1.2V, f CLK = 80 MHz, V CM = V CMO , C L = 5 pF/pin. Typical values are for T A = 25°C. Boldface limits apply for T MIN ≤ T A ≤T MAX . All other limits apply for T A = 25°C (Notes 8, 9)SymbolParameterConditionsTypical (Note 10)LimitsUnits (Limits)STATIC CONVERTER CHARACTERISTICSResolution with No Missing Codes 12Bits (min)INL Integral Non Linearity (Note 11) ±0.5LSB (max)LSB (min)DNL Differential Non Linearity ±0.4LSB (max)LSB (min)Under Range Output Code 00Over Range Output Code40954095 REFERENCE AND ANALOG INPUT CHARACTERISTICS V CMO Common Mode Output Voltage 1.5 1.451.55V (min)V (max)V CM Analog Input Common Mode Voltage1.5 1.41.6V (min)V (max)C IN V IN Input Capacitance (each pin to GND) (Note 12)V IN = 1.5 Vdc ± 0.5 V (CLK LOW)8.5 pF (CLK HIGH)3.5 pF V REFExternal Reference Voltage1.201.1761.224V (min)V (max)ADC12DC080/ADC12DC105ADC12DC080 Dynamic Converter Electrical CharacteristicsUnless otherwise specified, the following specifications apply: AGND = DRGND = 0V, V A = +3.0V, V DR = +2.5V, Internal V REF =+1.2V, f CLK = 80 MHz, V CM = V CMO , C L = 5 pF/pin, . Typical values are for T A = 25°C. Boldface limits apply for T MIN ≤ T A ≤T MAX . All other limits apply for T A = 25°C (Notes 8, 9)SymbolParameterConditionsTypical(Note 10)LimitsUnits (Limits)(Note 2)DYNAMIC CONVERTER CHARACTERISTICS, A IN = -1dBFS FPBW Full Power Bandwidth -1 dBFS Input, −3 dB Corner1.0 GHz SNRSignal-to-Noise Ratiof IN = 10 MHz 71.2dBFS f IN = 70 MHz 70dBFSf IN = 170 MHz 68 dBFS SFDRSpurious Free Dynamic Rangef IN = 10 MHz90 dBFS f IN = 70 MHz 88dBFS f IN = 170 MHz 83 dBFS ENOBEffective Number of Bitsf IN = 10 MHz11.5 Bits f IN = 70 MHz 11.3Bits f IN = 170 MHz 11 Bits THDTotal Harmonic Disortionf IN = 10 MHz−88 dBFS f IN = 70 MHz −85dBFS f IN = 170 MHz −80 dBFS H2Second Harmonic Distortionf IN = 10 MHz−100 dBFS f IN = 70 MHz −95dBFS f IN = 170 MHz −85 dBFS H3Third Harmonic Distortionf IN = 10 MHz−90 dBFS f IN = 70 MHz −88dBFS f IN = 170 MHz −83 dBFS SINADSignal-to-Noise and Distortion Ratiof IN = 10 MHz71.1 dBFS f IN = 70 MHz 69.8dBFS f IN = 170 MHz67.7dBFSADC12DC080 Logic and Power Supply Electrical CharacteristicsUnless otherwise specified, the following specifications apply: AGND = DRGND = 0V, V A = +3.0V, V DR = +2.5V, Internal V REF =+1.2V, f CLK = 80 MHz, V CM = V CMO , C L = 5 pF/pin. Typical values are for T A = 25°C. Boldface limits apply for T MIN ≤ T A ≤T MAX . All other limits apply for T A = 25°C (Notes 8, 9)SymbolParameterConditionsTypical (Note 10)LimitsUnits (Limits)DIGITAL INPUT CHARACTERISTICS (CLK, PD_A,PD_B)V IN(1)Logical “1” Input Voltage V D = 3.6V 2.0V (min)V IN(0)Logical “0” Input Voltage V D = 3.0V 0.8V (max)I IN(1)Logical “1” Input Current V IN = 3.3V 10 µA I IN(0)Logical “0” Input Current V IN = 0V −10 µA C IN Digital Input Capacitance5 pF DIGITAL OUTPUT CHARACTERISTICS (DA0-DA11,DB0-DB11,DRDY)V OUT(1)Logical “1” Output Voltage I OUT = −0.5 mA , V DR = 2.4V 1.2V (min)V OUT(0)Logical “0” Output VoltageI OUT = 1.6 mA, V DR = 2.4V 0.4V (max)+I SC Output Short Circuit Source Current V OUT = 0V −10 mA −I SC Output Short Circuit Sink Current V OUT = V DR 10 mA C OUTDigital Output Capacitance5pFPOWER SUPPLY CHARACTERISTICS 6A D C 12D C 080/A D C 12D C 105Symbol Parameter ConditionsTypical(Note 10)LimitsUnits(Limits)IAAnalog Supply Current Full Operation200mA (max)IDRDigital Output Supply Current Full Operation (Note 13)26mAPower Consumption Excludes I DR (Note 13)600mW (max) Power Down Power Consumption PD_A=PD_B=V A30mW ADC12DC080 Timing and AC CharacteristicsUnless otherwise specified, the following specifications apply: AGND = DRGND = 0V, VA = +3.0V, VDR= +2.5V, Internal VREF=+1.2V, fCLK = 80 MHz, VCM= VCMO, CL= 5 pF/pin. Typical values are for TA= 25°C. Timing measurements are taken at 50% ofthe signal amplitude. Boldface limits apply for TMIN ≤ TA≤ TMAX. All other limits apply for TA= 25°C (Notes 8, 9)Symb Parameter ConditionsTypical(Note 10)LimitsUnits(Limits)Maximum Clock Frequency80MHz (max) Minimum Clock Frequency20MHz (min) tCHClock High Time6nstCLClock Low Time6nstCONVConversion Latency7Clock Cyclest OD Output Delay of CLK to DATA Relative to rising edge of CLK426ns (min)ns (max)tSUData Output Setup Time Relative to DRDY5ns (min)tHData Output Hold Time Relative to DRDY5ns (min)tADAperture Delay0.6nstAJAperture Jitter0.1ps rmsADC12DC080/ADC12DC105ADC12DC105 Converter Electrical CharacteristicsThis product is currently under development. As such, the parameters specified are DESIGN TARGETS. The specifica-tions cannot be guaranteed until device characterization has taken place.Unless otherwise specified, the following specifications apply: AGND = DRGND = 0V, V A = +3.3V, V DR = +2.5V, Internal V REF =+1.2V, f CLK = 105 MHz, V CM = V CMO , C L = 5 pF/pin. Typical values are for T A = 25°C. Boldface limits apply for T MIN ≤ T A ≤T MAX . All other limits apply for T A = 25°C (Notes 8, 9)SymbolParameterConditionsTypical(Note 10)LimitsUnits (Limits)STATIC CONVERTER CHARACTERISTICSResolution with No Missing Codes 12Bits (min)INL Integral Non Linearity (Note 11) ±0.5LSB (max)LSB (min)DNL Differential Non Linearity ±0.4LSB (max)LSB (min)Under Range Output Code 00Over Range Output Code40954095 REFERENCE AND ANALOG INPUT CHARACTERISTICS V CMO Common Mode Output Voltage 1.5 1.451.55V (min)V (max)V CM Analog Input Common Mode Voltage1.5 1.41.6V (min)V (max)C IN V IN Input Capacitance (each pin to GND)(Note 12)V IN = 1.5 Vdc ± 0.5 V (CLK LOW)8.5 pF (CLK HIGH)3.5 pF V REFExternal Reference Voltage1.201.1761.224V (min)V (max)ADC12DC105 Dynamic Converter Electrical CharacteristicsUnless otherwise specified, the following specifications apply: AGND = DRGND = 0V, V A = +3.3V, V DR = +2.5V, Internal V REF =+1.2V, f CLK = 105 MHz, V CM = V CMO , C L = 5 pF/pin, . Typical values are for T A = 25°C. Boldface limits apply for T MIN ≤ T A ≤T MAX . All other limits apply for T A = 25°C (Notes 8, 9)SymbolParameterConditionsTypical(Note 10)LimitsUnits (Limits)(Note 2)DYNAMIC CONVERTER CHARACTERISTICS, A IN = -1dBFS FPBW Full Power Bandwidth -1 dBFS Input, −3 dB Corner1.0 GHz SNRSignal-to-Noise Ratiof IN = 10 MHz 70.1dBFS f IN = 70 MHz 69.1dBFSf IN = 240 MHz 67 dBFS SFDRSpurious Free Dynamic Rangef IN = 10 MHz88 dBFS f IN = 70 MHz 85dBFS f IN = 240 MHz 83 dBFS ENOBEffective Number of Bitsf IN = 10 MHz11.3 Bits f IN = 70 MHz 11.2Bits f IN = 240 MHz 10.8 Bits THDTotal Harmonic Disortionf IN = 10 MHz−86 dBFS f IN = 70 MHz −85dBFS f IN = 240 MHz −80 dBFS H2Second Harmonic Distortionf IN = 10 MHz−95 dBFS f IN = 70 MHz −90dBFS f IN = 240 MHz−85dBFS 8A D C 12D C 080/A D C 12D C 105Symbol Parameter ConditionsTypical(Note 10)LimitsUnits(Limits)(Note 2)H3Third Harmonic DistortionfIN= 10 MHz−88dBFSfIN= 70 MHz−85dBFSfIN= 240 MHz−83dBFSSINAD Signal-to-Noise and Distortion RatiofIN= 10 MHz70dBFSfIN= 70 MHz69dBFSfIN= 240 MHz66.8dBFSADC12DC105 Logic and Power Supply Electrical CharacteristicsUnless otherwise specified, the following specifications apply: AGND = DRGND = 0V, VA = +3.3V, VDR= +2.5V, Internal VREF=+1.2V, fCLK = 105 MHz, VCM= VCMO, CL= 5 pF/pin. Typical values are for TA= 25°C. Boldface limits apply for TMIN≤ TA≤T MAX . All other limits apply for TA= 25°C (Notes 8, 9)Symbol Parameter ConditionsTypical(Note 10)LimitsUnits(Limits)DIGITAL INPUT CHARACTERISTICS (CLK, PD_A,PD_B)VIN(1)Logical “1” Input Voltage V D = 3.6V 2.0V (min)VIN(0)Logical “0” Input Voltage V D = 3.0V0.8V (max)IIN(1)Logical “1” Input Current V IN = 3.3V10µAIIN(0)Logical “0” Input Current VIN= 0V−10µACINDigital Input Capacitance5pFDIGITAL OUTPUT CHARACTERISTICS (DA0-DA11,DB0-DB11,DRDY)VOUT(1)Logical “1” Output Voltage I OUT = −0.5 mA , V DR = 2.4V 1.2V (min)VOUT(0)Logical “0” Output Voltage I OUT = 1.6 mA, V DR = 2.4V0.4V (max)+ISC Output Short Circuit Source Current VOUT= 0V−10mA−ISCOutput Short Circuit Sink Current V OUT = V DR10mACOUTDigital Output Capacitance5pF POWER SUPPLY CHARACTERISTICSIAAnalog Supply Current Full Operation242mA (max)IDRDigital Output Supply Current Full Operation (Note 13)32mAPower Consumption Excludes I DR (Note 13)800mW (max) Power Down Power Consumption PD_A=PD_B=V A33mW ADC12DC105 Timing and AC CharacteristicsUnless otherwise specified, the following specifications apply: AGND = DRGND = 0V, VA = +3.3V, VDR= +2.5V, Internal VREF=+1.2V, fCLK = 105 MHz, VCM= VCMO, CL= 5 pF/pin. Typical values are for TA= 25°C. Timing measurements are taken at 50% ofthe signal amplitude. Boldface limits apply for TMIN ≤ TA≤ TMAX. All other limits apply for TA= 25°C (Notes 8, 9)Symb Parameter ConditionsTypical(Note 10)LimitsUnits(Limits)Maximum Clock Frequency105MHz (max) Minimum Clock Frequency20MHz (min) tCHClock High Time4nstCLClock Low Time4nstCONVConversion Latency7Clock Cyclest OD Output Delay of CLK to DATA Relative to rising edge of CLK426ns (min)ns (max)tSUData Output Setup Time Relative to DRDY3ns (min)tHData Output Hold Time Relative to DRDY3ns (min)tADAperture Delay0.6nstAJAperture Jitter0.1ps rmsADC12DC080/ADC12DC105Note 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is guaranteed to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the maximum Operating Ratings is not recommended.Note 2:This parameter is specified in units of dBFS - indicating the value that would be attained with a full-scale input signal.Note 3:All voltages are measured with respect to GND = AGND = DRGND = 0V, unless otherwise specified.Note 4:When the input voltage at any pin exceeds the power supplies (that is, V IN < AGND, or V IN > V A ), the current at that pin should be limited to ±5 mA. The ±50 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of ±5 mA to 10.Note 5:The maximum allowable power dissipation is dictated by T J,max , the junction-to-ambient thermal resistance, (θJA ), and the ambient temperature, (T A ), and can be calculated using the formula P D,max = (T J,max - T A )/θJA . The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.Note 6:Human Body Model is 100 pF discharged through a 1.5 k Ω resistor. Machine Model is 220 pF discharged through 0 ΩNote 7:Reflow temperature profiles are different for lead-free and non-lead-free packages.Note 8:The inputs are protected as shown below. Input voltage magnitudes above V A or below GND will not damage this device, provided current is limited per (Note 4). However, errors in the A/D conversion can occur if the input goes above 2.6V or below GND as described in the Operating Ratings section.30015411Note 9:With a full scale differential input of 2V P-P , the 12-bit LSB is 488 µV.Note 10:Typical figures are at T A = 25°C and represent most likely parametric norms at the time of product characterization. The typical specifications are not guaranteed.Note 11:Integral Non Linearity is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive and negative full-scale.Note 12:The input capacitance is the sum of the package/pin capacitance and the sample and hold circuit capacitance.Note 13:I DR is the current consumed by the switching of the output drivers and is primarily determined by load capacitance on the output pins, the supply voltage,V DR , and the rate at which the outputs are switching (which is signal dependent). I DR =V DR (C 0 x f 0 + C 1 x f 1 +....C 11 x f 11) where V DR is the output driver power supply voltage, C n is total capacitance on the output pin, and f n is the average frequency at which that pin is toggling.Note 14:This parameter is guaranteed by design and/or characterization and is not tested in production. 10A D C 12D C 080/A D C 12D C 105Specification DefinitionsAPERTURE DELAY is the time after the falling edge of the clock to when the input signal is acquired or held for conver-sion.APERTURE JITTER (APERTURE UNCERTAINTY) is the variation in aperture delay from sample to sample. Aperture jitter manifests itself as noise in the output.CLOCK DUTY CYCLE is the ratio of the time during one cycle that a repetitive digital waveform is high to the total time of one period. The specification here refers to the ADC clock input signal.COMMON MODE VOLTAGE (V CM ) is the common DC volt-age applied to both input terminals of the ADC.CONVERSION LATENCY is the number of clock cycles be-tween initiation of conversion and when that data is presented to the output driver stage. Data for any given sample is avail-able at the output pins the Pipeline Delay plus the Output Delay after the sample is taken. New data is available at every clock cycle, but the data lags the conversion by the pipeline delay.CROSSTALK is coupling of energy from one channel into the other channel.DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step size of 1 LSB.EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-to-Noise and Distortion Ratio or SINAD. ENOB is defined as (SINAD -1.76) / 6.02 and says that the converter is equivalent to a perfect ADC of this (ENOB) number of bits.FULL POWER BANDWIDTH is a measure of the frequency at which the reconstructed output fundamental drops 3 dB below its low frequency value for a full scale input.GAIN ERROR is the deviation from the ideal slope of the transfer function. It can be calculated as:Gain Error = Positive Full Scale Error − Negative Full ScaleError It can also be expressed as Positive Gain Error and Negative Gain Error, which are calculated as:PGE = Positive Full Scale Error - Offset Error NGE = Offset Error - Negative Full Scale ErrorINTEGRAL NON LINEARITY (INL) is a measure of the de-viation of each individual code from a best fit straight line. The deviation of any given code from this straight line is measured from the center of that code value.INTERMODULATION DISTORTION (IMD) is the creation of additional spectral components as a result of two sinusoidal frequencies being applied to the ADC input at the same time.It is defined as the ratio of the power in the intermodulation products to the total power in the original frequencies. IMD is usually expressed in dBFS.LSB (LEAST SIGNIFICANT BIT) is the bit that has the small-est value or weight of all bits. This value is V FS /2n , where “V FS ” is the full scale input voltage and “n” is the ADC reso-lution in bits.MISSING CODES are those output codes that will never ap-pear at the ADC outputs. The ADC is guaranteed not to have any missing codes.MSB (MOST SIGNIFICANT BIT) is the bit that has the largest value or weight. Its value is one half of full scale.NEGATIVE FULL SCALE ERROR is the difference between the actual first code transition and its ideal value of ½ LSB above negative full scale.OFFSET ERROR is the difference between the two input voltages [(V IN +) – (V IN -)] required to cause a transition from code 2047 to 2048.OUTPUT DELAY is the time delay after the falling edge of the clock before the data update is presented at the output pins.PIPELINE DELAY (LATENCY) See CONVERSION LATEN-CY.POSITIVE FULL SCALE ERROR is the difference between the actual last code transition and its ideal value of 1½ LSB below positive full scale.POWER SUPPLY REJECTION RATIO (PSRR) is a measure of how well the ADC rejects a change in the power supply voltage. PSRR is the ratio of the Full-Scale output of the ADC with the supply at the minimum DC supply limit to the Full-Scale output of the ADC with the supply at the maximum DC supply limit, expressed in dB.SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in dB, of the rms value of the input signal to the rms value of the sum of all other spectral components below one-half the sam-pling frequency, not including harmonics or DC.SIGNAL TO NOISE PL US DISTORTION (S/N+D or SINAD) Is the ratio, expressed in dB, of the rms value of the input signal to the rms value of all of the other spectral com-ponents below half the clock frequency, including harmonics but excluding d.c.SPURIOUS FREE DYNAMIC RANGE (SFDR) is the differ-ence, expressed in dB, between the rms values of the input signal and the peak spurious signal, where a spurious signal is any signal present in the output spectrum that is not present at the input.TOTAL HARMONIC DISTORTION (THD) is the ratio, ex-pressed in dB, of the rms total of the first nine harmonic levels at the output to the level of the fundamental at the output. THD is calculated aswhere f 1 is the RMS power of the fundamental (output) fre-quency and f 2 through f 10 are the RMS power of the first 9harmonic frequencies in the output spectrum.SECOND HARMONIC DISTORTION (2ND HARM) is the dif-ference expressed in dB, between the RMS power in the input frequency at the output and the power in its 2nd harmonic level at the output.THIRD HARMONIC DISTORTION (3RD HARM) is the dif-ference, expressed in dB, between the RMS power in the input frequency at the output and the power in its 3rd harmonic level at the output.ADC12DC080/ADC12DC105Timing Diagrams30015409FIGURE 1. Output TimingTransfer Characteristic30015410FIGURE 2. Transfer Characteristic 12A D C 12D C 080/A D C 12D C 105Physical Dimensions inches (millimeters) unless otherwise notedTOP View...............................SIDE View...............................BOTTOM View60-Lead LLP PackageOrdering Numbers:ADC12DC080CISQ / ADC12DC105CISQNS Package Number SQA60A ADC12DC080/ADC12DC105NotesA D C 12D C 080/A D C 12D C 105 D u a l 12-B i t , 80/105 M S P S A /DC o n v e r t e r w i t h C M O S O u t p u t sTHE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIG HT TO MAKE CHANG ES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIG HTS IS G RANTED BY THIS DOCUMENT.TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY G OVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIG N. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRING EMENT OF ANY PATENT, COPYRIG HT OR OTHER INTELLECTUAL PROPERTY RIGHT.LIFE SUPPORT POLICYNATIONAL ’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN L IFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.Copyright© 2007 National Semiconductor CorporationFor the most current product information visit us at National Semiconductor Americas Customer Support Center Email:new.feedback@ Tel: 1-800-272-9959National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86Email: europe.support@ Deutsch Tel: +49 (0) 69 9508 6208English Tel: +49 (0) 870 24 0 2171Français Tel: +33 (0) 1 41 91 8790National Semiconductor Asia Pacific Customer Support Center Email: ap.support@National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507Email: jpn.feedback@ Tel: 81-3-5639-7560。
P3实验室相关相关仪器解决方案
NU-704
1. 样品处理
NuAire CO2培养箱
NU-5841智能型二氧化碳培养箱 既可用于普通的组织、细胞的培养,也能用于体外 受精或细胞特殊条件下的培养
材质可靠,性能稳定:箱体内胆304不锈钢一体成型,外 部高性能保温层包裹 极近完美的体外细胞培养环境:产品设计独特,各种性 能参数控制更精准,近似细胞原本体内生存环境。 室内气体:闭合环状高效HEPA循环过滤,更洁净 双重灭菌方式:干热和湿热,功能更全,模式任选。更 有纯铜内胆和搁板可选。 独有的智能控制系统 精确控氧:采用氧化锆氧气传感器,氧气浓度控制更精 准
2. 实验用动物的饲养 AD 动物笼
Alt Design (奥德公司)是美国著名的实验室动物 设备制造商,成立于1987年,位于美国阿肯色州。
2. 实验用动物的饲养 AD 动物笼
P3实验室需要配外接管路附件
2. 实验用动物的饲养及样品处理 NuAire LabGard NU-677 动物实验专用生物安全柜
进行埃博拉样本研究
1. 样品处理
COY手套箱
COY所生产的手套箱连续多年稳占美国市场54%以上,是全球最具盛名的 生产商之一。COY手套箱可提供完全密闭的操作环境,工作人员通过与设 备相连的手套进行操作,不需直接接触样品,与样品完全隔离,是埃博拉 病毒研究所需特殊设备
COY通用型乙烯膜手套箱主要特点: ● 乙烯膜手套箱材质柔韧、轻便耐用、可视 性好、操作舒适。 ● 相对于刚性箱体来说更加经济,在乙烯膜 袋达到使用寿命(5-8年)后,仅需购买手套 袋安装于原有的底座和支架上即可。 ● 选配气锁过渡室可用于样品的进出。 ● 除乙烯膜材质外,通用型手套箱还有玻璃 钢和铝质可供选择
P3实验室相关相关仪器解决方案 天美如何帮到您?
程控降温法与二步法对胎盘间充质干细胞冻存效果的影响
程控降温法与二步法对胎盘间充质干细胞冻存效果的影响章毅;陈侃俊;李萍;李冉;陈亮;陆薇;伍婷;金魏名【摘要】目的观察对比程控降温法与二步法对胎盘间充质干细胞深低温冻存效果的影响.方法分别采用程控降温法和二步法对3个批次的pMSCs进行液氮冻存,3个月后进行复苏,测定细胞存活率、活细胞数,观察体外培养1~4 d时的细胞形态,CCK8法进行细胞增殖检测,同时用流式细胞术鉴定细胞表面标记抗原,用油红O 染色、茜素红S染色和Masson染色进行细胞三向分化能力鉴定.结果程控降温法对比二步法冻存的细胞活率在冻存前、复苏后均无显著差异(P>0.05).倒置显微镜观察细胞形态,均在24 h时贴壁,呈短梭形,96 h时细胞密度达到95%左右,均匀铺满视野.增殖测定结果显示,培养第3~5天为两组细胞的对数生长期,第5天时增殖倍数达到最高,分别为第1天的6.44倍和6.29倍,经过短暂的平台期后进入衰亡期,增殖趋势一致;但分别在第4天(P<0.01)、第6天(P<0.05)和第7天(P<0.05)时,程控降温法冻存的细胞存活率极显著或显著高于二步法冻存的细胞.两种方法冻存细胞的表面标志性抗原CD73、CD90、CD105阳性细胞数百分比分别为99.85%、99.87%、96.45%和99.73%、99.73%、96.17%.诱导14 d后两组pMSCs均出现明显的成脂、成软骨、成骨细胞特性.结论采用程控降温法或二步法冻存pMSCs均能很好地维持细胞活力及生物特性,在条件允许情况下宜采用程控降温法,以获得增殖能力更好的种子细胞.%Objective To evaluate the effects of programmed or stepwise freezing on human placental mesenchymal stem cells (pMSCs). Methods Programmed or stepwise freezing was applied to three batches of pMSCs cryopreservation at -196℃ for three months. Cell viability and proliferation were measured through Trypan blue staining and CCK8 assay after being thawed and seeded, respectively. We furtherdetermined the characteristic antigenic markers of mesenchymal stem cells by flow cytometry. The adipogenic, osteogenic and chondrogenic differentiation capacities of pMSCs were also tested by Oil red O, Alizarin red S and Masson staining, respectively. Results There was no significant difference with respect to the cell viability between programmed and stepwise freezing of pMSCs before or after being thawed (P> 0.05). Both groups of pMSCs adhered after 24 h culture, and reached about 95% density after 96 h. The pMSCs proliferation was in a logarithmic phase between 3 to 5 d cell culture and then reached to a declined phase. Cell viability of pMSCs cryopreserved by programmed freezing was significant higher than that by stepwise freezing at 4 d (P< 0.01), 6 d (P< 0.05) and 7 d (P< 0.05) culture. Moreover, both methods preserved the expression of antigenic markers and differentiating capacity of pMSCs. Conclusion The cell viability and biological characteristics of pMSCs can be maintained well by programmed method or stepwise cryopreservation. It is worth mentioning that the programmed cryopreservation method should be used to obtain the seed cells with better proliferation ability under permissible conditions.【期刊名称】《中国医药生物技术》【年(卷),期】2017(012)006【总页数】7页(P513-519)【关键词】低温保存;胎盘间充质干细胞;程控降温法;二步法【作者】章毅;陈侃俊;李萍;李冉;陈亮;陆薇;伍婷;金魏名【作者单位】200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院;200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院;200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院;200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院;200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院;200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院;200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院;200051 上海市脐带血造血干细胞库/上海市干细胞技术有限公司/中国干细胞集团有限公司/中国干细胞集团附属干细胞医院【正文语种】中文方法分别采用程控降温法和二步法对 3 个批次的pMSCs 进行液氮冻存,3 个月后进行复苏,测定细胞存活率、活细胞数,观察体外培养1 ~4 d 时的细胞形态,CCK8法进行细胞增殖检测,同时用流式细胞术鉴定细胞表面标记抗原,用油红 O 染色、茜素红 S 染色和 Masson 染色进行细胞三向分化能力鉴定。
全国实验仪器装置公司名录大全245家
公司名称 河南鑫奕佳仪器设备有限公司 安徽迈星登实验设备有限公司 天津市众拓科技发展有限公司 天津永利达试验机有限公司 莱普特科学仪器(北京)有限公 司业务部 广州联方实验器材有限公司 昆山科唯美特仪器设备有限公司 沧州鑫科建筑仪器有限公司 浙江托普云农科技股份有限公司 常州高德仪器制造有限公司 北京华益精点生物技术有限公司 深圳市展芯科技有限公司 北京七维航测科技股份有限公司 山东嘉鑫医疗科技有限公司 东莞市铭涛仪器设备有限公司 南京谷通制冷设备有限公司 南通金钥匙科教设备有限公司 济南帕特生物技术有限公司 徐州宁心电子科技有限公司 厦门敏测实验器材有限公司 济南来宝实验室设备有限公司 淮北软隆生物科技有限公司 武汉盖尔德纳科技有限公司 安徽三木电子科技有限公司 南昌驰希科技有限公司 天津市研途实验仪器开发有限公 司 南京金凌环试仪器设备有限公司 洛阳腾昌旭坤生物科技有限公司 厦门森态仪器仪表有限公司 济南宇晗医疗器械有限公司 东莞市正杰仪器科技有限公司 济南骏驰生物科技有限公司
主营产品:1.应用气相色谱仪、专用气相色谱仪、液相色 经营美国MVE液氮罐,美国PSI渗透压仪冰点仪,法国JRI无 医疗器械 集菌仪,无菌均质器,固相萃取仪,氮吹仪,脂肪测定仪,干式 小型喷雾干燥机,固相萃取装置,氮吹仪,脂肪测定仪,光 万能机、压力机、拉力机、试验仪器、环保设备、环卫设备 玻璃仪器、实验器材、有机玻璃加工及销售 销售办公用品,仪器仪表电子产品等 生物安全柜,pcr仪,均质器,ph计 万能材料拉力试验机,影像测量仪,恒温恒湿高低温试验 杀虫灯,土壤养分速测仪 作为实验室仪器设备集成供应商,可为广大用户提供:生物 生物安全柜、超净工作台、培养箱、灭菌器、离心机、等实 防爆柜,气瓶柜,PP酸碱柜,电子防潮柜,通风柜,实验 销售教学专用设备、实验室专用设备、计算机软件及辅助设 电子元器件及配件,焊接材料,机电设备及配件 宝丽来偏光仪,眼镜检测仪器,眼镜中梁扭转试验机,拉力 中国大陆 电力检测设备的研发生产,电力自动化运行的方案制定,电 济南章炫生物技术有限公司主要生产销售儿科、医院检验科 医疗器械的生产、销售;生物技术相关产品研发、生产、销 高压试验设备、仪器仪表、电力测试仪器、高低压电器、电 你好此公司已注销,此网站所有信息请删除,谢谢!
对二甲苯生产工艺设计方案
张加干
-1-
化学工程学院 2014 年化工设计竞赛(2012 级)
2014 年 3 月 13 日
第一章 总论.............................................7
1.1 项目名称及性质........................................................... 7 1.2 可行性研究报告编制的依据、指导思想和原则..... 7
第五章 项目选择与工艺方案.............. 32
5.1 项目工艺确定............................................................ 32 5.2 原料生产流程方案.................................................... 33
5.2.1 石脑油与加氢精制........................................................................34 5.2.2 重整与分馏........................................................................................35 5.2.3 歧化装置的设置.............................................................................35 5.2.4 二甲苯分馏塔.................................................................................. 36 5.2.5 尾部分离收集装置........................................................................36
mve液氮罐的运行原理
mve液氮罐的运行原理
MVE液氮罐的运行原理
MVE液氮罐是一种常用于生物医药领域的设备,主要用于存储生物样本、细胞、胚胎等低温物品。
其运行原理主要基于液氮的特性和保温设计。
液氮是一种极低温液体,其沸点为-196摄氏度。
在MVE液氮罐中,液氮被储存在一个特制的内胆中,通常由不锈钢或玻璃纤维增强塑料制成,以确保密封性和保温性。
内胆的设计旨在最大限度地减少热量的传导和辐射,从而有效地保持液氮的低温状态。
MVE液氮罐通常还配备有真空层,以进一步减少热传导。
真空层是在内胆外面的一层空间,通过将空气抽出以形成真空状态来减少热量传递。
这种设计可以有效地提高液氮罐的保温性能,延长液氮的存储时间。
MVE液氮罐还配备有液氮供液系统,用于补充液氮。
当液氮的液位降低到一定程度时,用户可以通过液氮供液系统向内胆中加入液氮,以维持内胆内的液氮水平。
这样可以确保存储在液氮罐中的样本始终处于低温状态,不受温度波动的影响。
总的来说,MVE液氮罐的运行原理主要包括液氮的特性、保温设计以及液氮供液系统。
通过这些设计和组件的协同作用,MVE液氮罐可以有效地保持低温状态,确保存储在其中的生物样本和其他物品
的质量和稳定性。
这种设备在生物医药领域起着至关重要的作用,为科研人员和医生提供了可靠的样本存储解决方案。
Sentry 密闭采样器介绍
低温液化气体采样器MLG
高粘度介质采样器RAM
高粘度介质采样器RAM
高粘度介质采样器RAM
高粘度介质采样器RAM
可选项
可选项
Sentry 专利双盘管式样品冷却器
Sentry 专利双盘管式样品冷却器
Sentry 专利双盘管式样品冷却器
Sentry 专利双盘管式样品冷却器
独山子炼油MVD带冷却,吹扫
应用范围
• • • • • 炼油 化工 火电/核电 食品/制药 其他工业
已知部分中国石油和化工的用户名单
美国 Sentry 密闭采样器在中国近年业绩
用户名称 上海高桥石化 项目名称 苯酚丙酮 型号 MVD, MVD 带冷却 带保温箱体 MCL 液化气 MCL 液化气 采样 MCL 液化气 300 公斤 MVD-哈 C 锆材冷却器 ISOLOK 自动采样器 ISOLOK 自动采样器 锆材冷却器 哈 C 冷却器 MIL MIL MIL MCL MCG MVD, MVD 带冷却 MFV SL-100 MIL MCL MCG 样品冷却装置 MCG MCG-C MFV MCG MCL MIL MIL MIL(带涂层) MIL(带涂层) SL-100 SL-100, MVD MVD MVD 带冷却 MIL MCL MCG 数量 24 交货年度 2004
Sentry液相采样器与TSI比较
• TSI 没有自生产的样品 冷却器 , 所采用的是单 盘管冷却器 , 效率低而 无法明确冷却后的温度 . 同时冷却水阀采用简 单球阀 , 没有办法把冷 却器内的冷却水排走 , 冬天的时候更容易冻冰 而损坏冷却器 . 而且当 冷却水葬而需要维护时 很拆卸难处理 .
完善的质量管理体系, ISO 9001 认证 Sentry 专利开发的,有特色的标准产品 专长于按用户的使用情况和要求进行设计 具有丰富的采样经验 产品具有美国ASME 标准 (压力容器的设计和制造) 完善的售前和售后服务(彩思(上海)机械设备有 限公司) 良好的当地支持 采样上的主要部件由自己生产, 其他部件采用世界顶 尖的品牌 能应用在任何介质,包括固体和粉体 创新的设计概念
美国Endress+Hauser公司的水样采集站设备说明说明书
How to use a liquid monitoring and sampling station to increase process efficiency Sampling stations have improved over the years and now can be used for much more than just satisfying EPA regulationsBy Tracy Doane-Weideman, Endress+Hauser, USAWater sampling has been required by the U.S. EPA since the 1980s. Every water and wastewater utility or business holding a NPDES permit employs some kind of technique or equipment to acquire water samples, and a method to analyze the samples according to EPA guidelines. While some plants still take manual samples, in many cases, automatic water samplers are used.The vast majority of existing stationary automatic water samplers are used mainly to meet EPA NPDES permit requirements. These samplers are designed to minimize effects on the chemical and physical integrity of the sample, and to ensure adequate storage conditions until they can be analyzed in the laboratory.Most of the stationary units available on the market today use peristaltic pumps as the sample transport method. These units periodically take samples and combine them into a single bottle that’s stored in the sampler at 4°C. Lab technicians remove the sample bottles, and take them to the laboratory for analysis and subsequent reporting to the EPA.In recent years, automatic samplers have improved to the point where they can be used for much more than just meeting EPA regulations. Today, several robust automatic sampling transfer methods and systems are available to meet a wide variety of matrix and sample compositions. Advanced features provide data which can be used for increasing the process efficiency of water and wastewater plants.Sampling the samplersAutomatic sampling systems offer various means of obtaining water samples from basins, closed tanks and pipes. Typically, this involves the installation of a line from the basin, pipe or vessel made from Teflon® or C-Flex® pump tubing from the pipe to the sampling pump. Three types of sample transfer configurations are available:Peristaltic pumps These pumps meet the EPA recommended line velocity of at least 2 feet/sec at head heights up to 26 feet. Peristaltic pumps are the most common method used for sampling, and are good for toxic applications.Vacuum pumps These pumps also meet EPA requirements, and have no internal tubing that must be cleaned and maintained. Vacuum pumps can transport samples faster, reducing the time particles have to settle. The lack of compression from tubing avoids particle shearing. This is especially important when determining the dewatering of sludge, the permeation rate of water through membranes, or the head loss in granular media filters. These pumps work well in industrial applications where particle size and shape are important quality parameters.Closed pipe systems These are used on high-pressure pipes or vessels, and no sample pump is required. A pneumatic probe protrudes through the wall of the pipe or vessel, and extends a plunger into the stream to collect a sample. The sampler can be used on pipes or vessels at pressures up to 87 psi. Some closed-pipe samplers are available with automatic cleaning systems to reduce maintenance of the sample probe.Monitoring water qualityWhile the EPA-required analysis of the samples is done in a lab, modern sampling systems can have their own sensors to provide event-driven, online monitoring. These online and real-time measurements can be fed to automation systems to improve process control.For example, the Endress+Hauser Liquistation sampler (Figure 1) can accept inputs from up to four industrial grade sensors including pH/ORP, conductivity, total suspended solids/turbidity, dissolved oxygen, SAC and nitrate, ammonium/nitrate and free chlorine—in addition to analog inputs from flow or level devices. With the ability to combine sequential sample collection with composite sampling in one system, it’s possible to provide the obligatory EPA sample, and collect samples based on events.Data from the sensors can be stored internally in logbooks or on an industrial SD card, displayed locally on an LCD, and transmitted in real-time via standard industrial networks including EtherNet/IP™, HART®, Profibus® DP, Modbus RS485 and Modbus TCP.Data collected typically includes measured values with date/time stamps, and information regarding calibration, configuration and diagnostics. Some systems come with built-in web server capability, allowing access to the data from any web browser. With such access, an operator or engineer can check sampler status, read measurement values or change sampling programs remotely from a smartphone, a tablet or a PC.While most automatic sampling systems are used to meet EPA regulations, and are therefore installed on the output side of a water and wastewater plant, samplers can be installed anywhere in the process as required to control, monitor and improve operation.Figure 1: A modern sampling station, such as this Endress+Hauser Liquistation, can accommodate up to four additionalprocess sensors, such as pH, conductivity, total suspended solids/turbidity and dissolved oxygen, to provide information thatthe W&WW plant can use to control processes.2Controlling processesWhen sent to the plant’s automation system in real-time, water quality data from the sampling system can be used to monitor and control various treatment processes such as chemical dosing, aeration, sludge activation, carbon load entering the plant, nitrogen in wastewater, load spikes, denitrification, recirculation, carbon in the biological treatment, and dosing of precipitants. Water from different sources carries with it different loads. For example, water from springs and wells contains particles; surface water contains biologically active elements; and water from industrial processes contains chemicals. Using an automated sampler with analyzers helps determine the quality of untreated raw water, which allows the automation system to adjust processes accordingly.Event monitoring at the inlet of a treatment plant identifies excursions of effluent entering the plant, such as a large influx of TOC, or a large shift in pH or turbidity, each of which can occur due to accidental discharges by industrial entities upstream of the plant.Continuous monitoring of the discharge values ensures safety. Complete documentation can be used as proof of wastewater treatment performance to authorities, and for internal monitoring purposes. For example, if the sludge profile is monitored, changes caused by a heavy downpour can be detected quickly, and countermeasures can be taken.Automated samplers, therefore, can do more than just satisfy EPA reporting requirements. When combined with on-board analyzers, modern industrial networks, and supporting software—automated samplers provide vital data for controlling and optimizing water and wastewater processes.References:1. Handbook for Sampling and Sample Preservation of Water and Wastewater; United States Environmental Protection Agency; EPA-600/4-82-029; Sept. 1982.2. 40 CFR Part 136, part 136.3 (e)3. EPA Handbook for Analytical Quality Control in Water and Wastewater LaboratoriesAbout the authorTracy Doane-Weideman has been consulting on process control for more than 20 years. She received her two undergraduate degrees in Environmental Chemistry and Biochemistry, and additionally received an MBA in Management with an emphasis in Statistical Process Control.She began her career as an Applications Chemist for Isco, Inc. From there Tracy went on to work for Pfizer as a QC Biochemist and then Teledyne Isco where she held various positions including Applications Chemist, Research Applications Lab Manager, Global Product Manager for Supercritical Fluid products. Most recently she was the Global Product Manager for the Process Monitoring Business Unit which was acquired by Endress+Hauser.Tracy joined Endress+Hauser in 2005, where she began her role as Liquid Analytical Product Manager. Currently, as Head of Product Management, Analytical Products, she directs and oversees all aspects of the Liquid and Gas Analytical product lines in the U.S.TrademarksTeflon is a registered trademark of E.I. DuPont De Nemours & Co.C-flex is a registered trademark of Saint-Gobain Performance PlasticsProfibus is a registered trademark of the PROFIBUS User Organization.HART is a registered trademark of the HART Communication Foundation.EtherNet/IP is a registered trademark of ODVA, Inc.All other trademarks are the property of their respective owners.3Endress+Hauser, Inc.2350 Endress Place Greenwood, IN 46143Tel: 317-535-7138888-ENDRESS (888-363-7377)Fax: 317-535-8498 ***************.com WP121C/24/EN/1.15(9.15)©Endress+Hauser,Inc.215。
Statebourne液氮罐介绍资料
技术参数
大容量系列
型号 可放罐数 容积 L 静态蒸发率 L/天 静态保持时间 天 颈直径 总高度 总重量 mm mm kg Bio 12 9 12 0.19 63 70 470 408 20.4 10.8 NA 39 46 X 120 4680 9902070 Bio 21 6 21 0.19 110 89 579 480 32.6 15.6 NA 69 68 X 120 4920 9902095 Bio 22 10 21 0.28 75 120 537 480 32.7 15.7 NA 47 73 X 120 8200 9902096 Bio 34 6 34 0.18 189 89 710 480 45.3 17.8 684 118 69 X 275 9840 9902110 Bio 36 10 36 0.30 120 120 710 480 47.4 19.1 1020 75 73 X 275 16400 9902130
Note. Actual evaporation rates will vary according to method of product use
顾登实业(上海)有限公司 或 400-670-1199
Biosystem
Biosystem 10 和 20 为使用者提供全自动、安全可靠的超低温液氮存储系统。所有系列均采用优 质不锈钢罐体,自带脚轮和制动装置,铰链式盖子方便开启,大口径开口便于样品存储。样品可 以在液态(-196℃)和气态(-190℃)下方便存储。系统最大可存储 67600 个冷冻瓶。微电脑 触摸式键盘控制系统提供了更高的便利性和安全性。
最大直径 mm 总高度 mm 罐颈直径 mm
Part No.
顾登实业(上海)有限公司 或 400-670-1199
美国Quantum公司继续获得碳纤维天然气储罐合同
中 闪耀 白光 ,像 巨大 的 “ 缸 ”样 的建 筑 物 以崭 浴
新 姿 态 登场 。据 说 ,作 为 复 合材 料 新 型 建筑 物 ,
这在 世界 上属 最大 规模 等 级 。 这 次 增 建 的 “ 姆 斯特 丹 市 立近 代 美 术 馆 ” 阿
新 馆 , 同1 9 年 建立 的历 史 建筑 物 本 馆 形 成对 照 85 的近代 外 观 ,预计 2 1 年初 期 完成 。 02 “ 于增 建 部 分 使用 的板 材 ”,其 增 强 性 能 关 优 异 ,即便 温 度 变 化 几 乎 零膨 胀 和 收 用 玻 纤 复合材 料 和铝 材 相 比 ,膨
胀 率 降低 6 %。 O
纤维/ 基体树脂偶联 剂
位 于 美 国新 墨 西哥 州 阿布 奎基 的Ad e e t h rn 技
术 公 司 开发 出一 种 纤 维涂 层体 系 , 以待 定 专利 为 基 准 的热 活 性 偶 联 剂 ,使 碳 纤维 和 基 体树 脂 问形 成 共价 键 ,可 提 高 复 合材 料 的韧 性 与 刚度 。据 报
与 树脂 非常 坚 固地 粘接 在 界面 上 ,该 试验 在 键 点
上 未发 生 断 裂 。在 试验 样 品 中 ,该涂 层 体 系 提 供
料 高容 量CNG 罐 系统 的需求 ,Qu n u 储 a t m公 司声 称 ,这 种 碳 纤 维 复合 材 料 天 然 气储 罐 在 行 业 里 是
于 夕 ”产 品 ,以最 大 的 1 ×32m的板为 主 , 5 .
完 成 1 5 个 。在 新 馆 正 面 和 天 蓬 设 置 后 进 行 涂 8 层 。全 长 约 l 0m,面 积 约30 0m 接 缝 ,在 空 0 0 无
玻纤 / 碳纤维纳 米管混杂 织物
nbs发酵罐
产品名称:NBS发酵罐>> BioFlo 415型原位灭菌发酵罐产品详细介绍:美国新布朗什维克科学公司(简称美国NBS 公司)建立于1946 年,是具有近六十年历史的专业生产和销售各类高品质科学仪器和装备的美国纳斯达克上市公司(交易所代码:NBSC )。
NBS 公司的产品主要有全自动控制微生物发酵罐和用于细胞培养的细胞罐、INNOV A 系列摇床、C 系列摇床及超低温冰箱、二氧化碳培养箱、洁净空气取样器等。
在发酵罐和细胞罐的设计上,NBS 公司一直走在世界的前沿。
1970 年中期,从NBS 公司领先设计出带计算机控制的发酵罐开始,我们的产品在工艺设计和计算机全自动控制上一直占据着世界领先地位。
1997 年我们开发了全新的发酵罐和生物反应器的控制系统,为BIOFLO6000 型等发酵配备了ML-6100 全自动控制触幕式控制系统,从而大大方便了操作过程,使没有任何操作经验的人也可使用。
21 世纪初期,NBS 公司成功地将PLC 控制方式引入发酵罐和细胞罐的控制,成为新一代GaMP 发酵和细胞培养设备的典范。
美国NBS 公司又是世界上唯一拥有篮式细胞搅拌桨和细胞提升式搅拌桨专利技术及掌握相关细胞培养技术的公司,此项设备和技术已广泛应用于人类基因工程药物生产并取得包括中国卫生部和多国医药卫生主管部门的批准。
BioFlo 415型原位灭菌发酵罐产品特点:新型BioFlo 415系列罐为全316L不锈钢台式发酵罐(取代原BioFlo410系列),具备原位自控灭菌功能(无需外援蒸汽),配置先进的工业型15英寸彩色触摸屏界面监控多达32参数回路及图形显示。
系统可供同时监控运行4套罐。
3种不同总体积罐体供选择,分别为7.0升、14.0升、19.5升(实际20升)316L不锈钢培养罐体,精工抛光精度:20Ra内表面,35Ra外表面,具备ASME/CE质量认证控制系统:32参数回路控制,10个工艺配方储存,8个过程参数变量趋势图表可同时控制1-4台反应器触屏显示器:15英寸工业用彩色触摸屏显示器,可支持多达四台发酵罐, 可根据使用需要4向转动可应用显示器监测控制反应过程中所有参数、参数走势图、报警等温度控制:控温范围4℃至80℃,PID控制方式, +/-0.1℃温控精度, 铂质RTD温度传感器, 配置电加热器&自动灭菌控制,可达到每分钟温度上升1℃搅拌控制:顶部电磁力搅拌,单机械轴密封,数字显示按每分钟1转增量,控速范围50-1200转/分钟,控速精度:100 rpm +/- 1,500 rpm +/-2,1000 rpm +/-5,不锈钢尾气排放冷凝器,1.2微米原位消毒除菌过滤器通气系统:气体流量自动控制及四气体混合,导气管路提供0.2微米原位消毒除菌过滤器,pH控制:控制范围2-14,PID控制模式, 数字显示精度在0.01增量DO溶氧控制: 数字显示精度在0.1%增量,控制范围0-200%,PID控制模式,可级联到搅拌电机、气体、泵以及其他附加回路提供2套泡沫液位传感器蠕动泵: 三套WM 400F/B1内置定速蠕动泵,0-100% 输出范围, 可由控制器控制流速比率, 泵1/泵2流速比率:12转/分钟,0.12-7.1毫升/分钟,泵3流速比率:100转/分钟,1.00-59.0毫升/分钟,流量取决于管径,循环时间及设定输入输出信号连接:外接设备七组模拟信号输入/输出。
国外实验室试剂知名品牌
国外实验室试剂知名品牌转载:huahaixindian 来源:点击数:337 更新时间:2021年07月31日--------------------------------------------------------------------------------一些国外生物技术公司的简介QIAGEN:德国著名的试剂公司,该公司的核酸别离纯化系列基于多项专利技术,纯度高,产量高,快速方便,品种齐全,为世界知名品牌。
其大多数产品以即用型试剂盒形式提供,随产品有非常详细的操作技术手册。
此外,还提供优质的传染系统,RT/PCR反响系统〔包括高特异性的逆转录酶及热启动的Taq酶〕,蛋白及多肽表达、纯化、检测分析系统。
Ambion:该公司始终致力于开发RNA相关产品,在RNA的别离纯化、RACE、RT-PCR方面有许多非常有特色的产品,并提供优质的Northern杂交体系,和高效的体外翻译体系。
如今,其产品在RNA研究领域已经成为研究人员的首选品牌。
Invitrogen:该公司成功地提供了PCR产物快速克隆试剂盒,及与之配套的系列产品,包括高效转染和转化试剂、高效感受态细胞、全面的原核及真核基因表达系统、酵母双杂交系统等多种特色产品。
大大便利了分子克隆的全过程操作。
其成功并购了Gibco/BRL,Novex,Research Genetics等知名公司,产品覆盖更为广泛。
Clontech:现已成为B.D.公司旗下分子生物学主力舰。
该公司的cDNA试剂盒、荧光蛋白报告基因系统、酵母双杂交系统、基因Array产品是独具特色的产品,其中一些试剂盒〔GFP、Tet Off &On等〕获得过屡次大奖。
Clontech公司聚集了一大批优秀的科学家,在分子研究的各个领域开发出了许多设计思路独特,快捷便利的试剂产品,紧跟科学前沿。
Strategene:该公司的特色产品包括:预制基因文库、定制文库、文库构建产品、感受态细胞、高效转染试剂、点突变试剂盒、PCR仪及多种专利产品,在分子生物学研究的多个方面有非凡表现,受到全球实验室的好评,成为迅速崛起的佼佼者。
四川省首家区域细胞制备中心落户三医创新中心
四川省首家区域细胞制备中心落户三医创新中心康景生物成四川省唯一一家拥有细胞制备资质的企业2017年12月27日,成都市发展和改革委员会、成都市卫生和计划生育委员会、成都市质量技术监督局、成都市食品药品监督管理局四部门正式批复,支持成都康景生物科技有限公司建设“成都(康景生物)区域细胞制备中心”。
该中心是四川省第一家获得政府批复、拥有细胞制备资质的机构,同时代表着四川首家(规模最大的一家)正规化、规范化的细胞生产加工基地的落地。
该区域细胞制备中心的建立,标志着四川省在细胞产业化道路上的一大进步,对推动四川细胞的研究和临床转化健康有序发展具有重大意义!严格细胞质量标准,构筑四川细胞产业的基石成都(康景生物)区域细胞制备中心落户于成都医学城三医创新中心,包括样本接收区、细胞制备区、细胞储存区、质量检测区、物料储存区、实验研发区等;引进配套五分类血细胞分析仪、生物安全柜、倒置显微镜、CO2培养箱、超速离心机、全自动细胞分析仪、流式细胞仪、程序降温仪、MVE气相液氮罐等细胞制备、储存先进设备。
项目计划将于2018 年年底正式开始运营。
成都(康景生物)区域细胞制备中心,将实现标准的统一。
从人员资质、设备配置、物料采购、工艺流程、发放等全部采用严格的统一标准,以保证供给该区域所有科研机构和临床应用机构的细胞有效性和安全性。
与此同时,成都(康景生物)区域细胞制备中心还将率先建设细胞大数据库。
通过汇集成都地区的区域人群细胞数据、基因数据、临床研究数据等,掌握第一手国民细胞大数据,确保该区域的科研机构和临床应用机构在细胞应用过程中更有效、更安全。
政府全面支持,建设细胞制备中心产业平台“成都(康景生物)区域细胞制备中心”,在成都市、温江区各职能部门大力支持下由成都康景生物科技有限公司承建,是四川省首家区域细胞制备中心。
“区域细胞制备中心”是指某区域内,由独立法人建设具有统一标准的大型细胞制备公共平台,利用先进的细胞工程和基因工程等技术,为该区域内的医疗机构、科研机构等提供“按需制备”的研究级、临床级、可回溯的细胞制品,兼顾个体化治疗需求多样性、生产制备规模化与监督管理的便利性,并可提供相应的细胞储存服务,是串起细胞产业上、中、下游的核心。
武汉双生子出生队列研究方案
武汉双生子出生队列研究方案一、研究背景随着社会经济的发展,我国儿童和青少年期生长发育及心理行为相关疾病的患病率有不断上升的趋势[1-3]。
例如,我国城市儿童肥胖率由1985年的0.2%上升至2010年的8.1%,局部地区已经接近甚至超过发达国家流行水平[3]。
由于各类疾病病因复杂,影响因素众多,传统的横断面研究和病例对照研究结果均较难满足病因学推断的需要。
队列研究在先因后果的时间顺序上观察有害暴露的致病作用,是进行病因学研究的重要方法[4]。
双生子队列研究除具有一般队列研究的特点外,又具有双生子特有的优势(双生子儿童同时出生、共享母体宫内环境和早期家庭环境(共同抚养),能有效控制年龄、宫内及儿童生命早期环境等因素),是分析复杂疾病遗传与环境因素作用的有效方法[5]。
例如,通过比较同卵双生子脐血或胎盘基因DNA甲基化差异,可以在控制遗传和宫内环境因素的影响下分析表观遗传对儿童和青少年期相关疾病的影响[6];利用同卵与异卵双生子粪便肠道菌群结构和丰度的差异,可评估肠道菌群及遗传因素对近远期相关疾病的影响[7];对不同喂养模式下的同卵双生子,可分析肠道菌群在喂养模式与疾病发生中的中介效应[8]等。
近年来,虽然国内外出生队列研究较多[9-14],但基于双生子的研究较少[15,16]。
在我国除李立明等开展的基于中国成人双生子队列[17]和何明光等开展的基于7-15岁青少年和50-70岁中老年人的双生子队列[18],双生子出生队列甚是罕见[19]。
基于以上研究现状,武汉双生子出生队列(Wuhan Twin Birth Cohort,WTBC)于2016年3月启动,以研究单位为现场,通过现场流行病学调查的方式,开展孕前、孕期及儿童保健期问卷调查和生物标本采集,前瞻性纳入和随访1000对双生子家庭,以研究儿童和青少年期生长发育及心理行为相关常见疾病的遗传与环境病因,特别是表观遗传因素。
项目开始以来相继得到本单位院内基金(WHFE201601)、中国疾病预防控制中心妇幼保健中心合生元母婴营养与健康研究项目基金(2018FYH018)和武汉市卫生计生委面上重点项目(S201803030007)经费支持。
生物医药实验室环境远程监控系统
EM1:环境监测的功能多样并且配置灵活,我们的客户都非 常热衷选用。EM1提供4组不同探头区域,每组探头支持同时 连接一个温度探头、一个湿度探头以及一个渗水探头或一个 门禁探头。
2
洁净区环境、液氮罐温度及液位监控
液氮罐温度、液位监控
液氮罐远程监控是对用户单位中使用的各类液氮罐进行温度、液位等数据的实时采集、分析、存储,提供完善 的数据分析和报警功能。支持市面各类液氮罐数据的监控(MVE、THERMO等),可根据用户需求,采用设 备数据采集或置入第三方探头两种监控方案。
网络拓扑图
3
数据接口 超低温探头
CO2培养箱、冰箱监控 CO2培养箱监控
CO2培养箱是生物医药企业实验 室内常用的设备,对培养箱的温 度、湿度、CO2浓度等参数的实 时监测,有助于用户实时记录和 掌握培养箱的运行状态,确保培 养样本的安全。通过完整的数据 记录了解样本培养过程的环境数 据变化对样本质量的影响。培养 箱数据的监控有两种模式,一种 是在培养箱中放入第三方的传感 器进行数据采集,另一种是利用 培养箱自身的传感器和数据通讯 接口进行数据的采集。
数据记录仪
红外测温计
无限温度传感器
6
NPORT:NPORT系列数据采集模块,是专RS232、RS485、TCP等)采集设备自身传感器的数据, 实现设备的远程监控和告警功能。
EM1
U16
NPORT
FlashLink数据记录仪
FlashLink数据记录仪解决您冷链管理的需要。精确监测温度能确保敏温产品及物料的品质安全,妥善管理产 品在储藏、运输过程中的温度条件,可以减少损耗,最大限度地延长货架寿命,避免经济损失。若您需要在储 藏、运输中温度控制,保护商家利益的证明文件,本系列是您管理冷链的首选。
美国气体公司产品介绍
一、美国气体产品编号公司产品编号产品介绍胺类催化剂DABCO 33LVR A-33 33%三乙烯二胺的二丙二醇溶液,工业标准产品。
三乙烯二胺的化学结构很独特,是一种笼状化合物,两个氮原子上连接三个亚乙基。
这个双分子的结构非常密集和对称。
从结构式上可以看出来,N原子上没有位阻很大的取代基,它的一对空电子容易接近。
在发泡体系中,一旦氨基甲酸酯键生成后,它就会游离出来,有利于更进一步催化。
由于这个原因,虽然三乙烯二胺不是强碱,却对异氰酸酯基团和活泼氢化合物的反应表现出极高的催化活性。
是一种强凝胶催化剂。
其他公司相同产品牌号,美国GE:NIAX Catalyst A-33;日本东曹:TEDA L33;国内厂家一般用A-33作产品名。
DABCOR 1027 1027 改性三乙烯二胺,用于单乙醇聚酯及聚醚鞋底原液系统,能调整纤维及脱模时间。
DABCO 1028 1028 改性三乙烯二胺,用于1,4丁二醇聚酯及聚醚鞋底原液系统,能调整纤维及脱模时间。
DABCO 8154 8154 延迟性三乙烯二胺型催化剂,可改善泡沫流动性。
DABCO B16 B16 改善表面固化,适用于模塑及其他自结皮系统。
DABCO BDMA BDMA 减低于高水份配方中产生之脆性及表面固化。
二甲基苄胺减低于高水份配方中产生之脆性及表面固化。
具有良好的前期流动性和均匀的泡孔。
适用于软质泡沫,硬质泡沫,夹心板材。
DABCO BL-11 A-1 70%双(二甲胺基乙基)醚的二丙二醇溶液,「发泡」型催化剂。
A-1催化剂主要用于软质聚醚型聚氨酯泡沫塑料的生产,也可用于包装用硬泡。
A-1对水的催比效力特别强,因此可使泡沫密度降低。
它用于控制产生气体的反应的功效约占80%,用于控制凝胶反应的功效约占20%。
该催化剂活性高,用量少,调节该系列的用量,可控制发泡上升和凝胶时间。
A-1与有机锡催化剂共用,能使泡沫塑料的生产宽容度明显地提高,确保在生产中不致因操作不小心或计量系统的微小误差导致不必要的质量问题,生产出优质的软质泡沫塑料。
MVE液氮罐
LAB 4 4
LAB 5 5
LAB 10 10
LAB 20 21
LAB 30 32
LAB 50 50
SS 转移单 元 5
0.19
0.15
0.18
0.18
0.22
0.49
N/A
1.4 (35.5) 2.2 (56) 2.2 (56) 2 (51) 2.5 (64) 2.5 (64) 6 (152)
7.8 (198) 10.5(266) 13.5(343) 13.7(348) 14.9(378) 22 (559) 14 (356)
XC 43/28
6
XC47 /11-6 SQ 6(方)
1,260 -
1,764 -
360
-
- 750 42.2 47.4
0.14 0.39
193 76
5/127 2.75/
70
26.4/ 670 20/ 508 11/ 279 2.22/ 56 36/ 16.4 111/ 50.5
26.5/ 673 20/ 508
-
储存血袋数量
N/A
(Fenwal 4R-5461)
SUC-1 筒的数量
22
(2.5”x 2.5”x11”)
筒中 1.2 & 2.0 ml 冻存管数 3696
1/2 cc 冷冻管的数量(10/筒) 6820 性能
液氮容量(升)
39
电源
-
单位尺寸规格
罐颈开口尺寸 (英寸/毫米) 16.0/
406
可用高度(英寸/毫米)
套
产品符合 MDD 93/42/EEC-欧盟医疗设备指令 为期五年的真空保证
MVE ETERNE 系列冻存罐 大多数冷冻保存的生体试样都有一个临界温度这。一被称为
WAVE生物反应器
Filtrate drawoff nozzle Polyethylene top
ాዃဦԇপାఈ
Cellbag ဦԇಢᄢڀ ಢᄢᅂ
Ԓڢፌߛဦԇ܈ǖ4×107 cell/ml CHO 7×107 cell/ml NSO
9×107 cell/ml T-cells 10×107 cell/ml S2 cell
疗、植物细胞以及细菌酵母发酵等多种培养体系。WAVE生物反应器兼容批式 (Batch)、批式流加 (Fed
Batch)或连续灌注 (Perfusion) 等培养方式,适合实验室规模细胞培养,以及工艺开发放大和cGMP商业
生
化规模生产。
物
反 应
易于线性放大
器
WAVE波浪生物反应器克服了传统搅拌式反应器搅拌桨叶端剪切力高的弊端,大的气液交换表面可在
WAVE
单克隆抗体
WAVE生物反应器系统已经被广泛用于单克隆抗体生产,包括常见的CHO细胞、杂交瘤细胞、NS0细
5
胞,S2昆虫细胞等。
初始阶段可采用小体积进行培养,随后当细胞密度提高后不断补充新鲜培养基而实现扩增。这使得接
种后放大培养避免在不同容器间的频繁转移,从100ml扩增到500L规模仅需WAVE20/50和WAVE1000两 台生物反应器,快速灵活,节省硬件设备投资。
生
摇动平台集成空气泵,可选CO₂或O₂混合功能,内置高精度气体质量流量计,可分别用于不同种类的
物
细胞培养和发酵应用。
反
应
器
选
择
指
南
摇动平台集成空气泵和质量流量计
触摸屏数字智能调节控温/灌注培养/空气流量
摇动平台可选称重功能,结合预置细胞截留膜的灌注细胞培养袋,可设定灌注速率进行自动连续灌注 培养,显著提高细胞密度,无需额外细胞截留装置,使用方便灵活。连续灌注培养已经成功验证于 CHO细胞、杂交瘤细胞、昆虫细胞、HEK293细胞和T细胞等,一般可获得1-5x107cell/ml以上的细胞密 度,其中S2昆虫细胞密度超过108cell/ml,使用较小的反应器即可实现较大规模的样品制备和生产,有 利于减小前期投资。
美国MVE公司液氮罐
56 / 1422
984 / 447 2517 / 1144
MVE 18302T
-
N/A
561
104,346 173,910
1400 24 VDC
25 / 635
2x13 / 2x330
53.9 / 1368
60 / 1528
56 / 1422
1184 / 538 3700 / 1682
产品符合 MDD 93/42/EEC-欧盟医疗设备指令 为期五年的真空保证
MVE ETERNE 系列冻存罐
大多数冷冻保存的生体试样都有一个临界温度。这一被称为“玻璃相变(Tg)”的温度因其-130 至-135°C 排列顺序而广被人所接受。如果生体样品的储存温度高于此温度,则会严重损害 冰冻样品的长期活性。再者,如果冷冻样品受到经由温度的数次转变,任何热方向的额外的 退化都会发生。再者,如果生体样品受到经由温度的转变,无论哪个热方向的额外退化都会 发生。
美国 MVE 公司
●技术规格
型号
最大储存容量 置于架里的 1.2&2.0ml 冻存管数 架子数量(100 个冻存管) 架子数量(25 个冻存管) 架子总数 储存血袋数量 (Fenwal 4R-5461) SUC-1 筒的数量 (2.5”x 2.5”x11”) 筒中 1.2 & 2.0 ml 冻存管数量 1/2 cc 冷冻管的数量(10/筒) 性能 液氮容量(升) 电源 单位尺寸规格 罐颈开口尺寸 (英寸/毫米)
129
23,994 39,990
482 24 VDC
35.5 / 902
19.4 / 492
44 / 1118
42 / 1067
39.5 / 1003
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MVE Stock 系列液氮罐主要为液氮里置于筒内的冻存瓶/管的冷冻保存而设计。除了使 用中长期耐久的结构以外,样本检索的人机控制性也是该类冻存环境至关重要的因素。 MVE1370 的双层盖有助于在维持储存区域内临界温度的情况下移动样品。1830 型的旋转样 品盘可最大化利用储存空间并且更方便样本的存取。所有 MVE Stock 系列产品的设计都着 重于样品的安全性以及为您的贵重样品提供长期安全保存的能力方面。
产品符合 MDD 93/42/EEC-欧盟医疗设备指令 为期五年的真空保证
MVE ETERNE 系列冻存罐
大多数冷冻保存的生体试样都有一个临界温度。这一被称为“玻璃相变(Tg)”的温度因其-130 至-135°C 排列顺序而广被人所接受。如果生体样品的储存温度高于此温度,则会严重损害 冰冻样品的长期活性。再者,如果冷冻样品受到经由温度的数次转变,任何热方向的额外的 退化都会发生。再者,如果生体样品受到经由温度的转变,无论哪个热方向的额外退化都会 发生。
五年真空保证 产品符合 MDD 93/42/EEC-欧盟医疗设备指令
LAB 系列液氮罐
美国 MVE 公司
MVE Lab 系列产品低温冷却液杜瓦瓶被世界范围内的医疗机构及实验室而接受。这些
高效、高级绝缘的杜瓦瓶是保存及分配液氮的最经济方便的方式。许多 LAB 系列仪器可装
配浇注槽、压力分配装置或长柄勺以协助液氮的转移。
60 / 1524
56 / 1422
984 / 447 2517 / 1144
MVE 18302T
-
N/A
561
104,346 173,910
1400 24 VDC
25 / 635
2x13 / 2x330
53.9 / 1368
60 / 1528
56 / 1422
1184 / 538 3700 / 1682
XC 20 6 720
1122
210
20.5
0.095
140
2.18/ 55.4 25.7/ 652 14.5/ 368 11/ 279 1.65/ 41.9 23/ 10.5 59.5/ 27
XC 21/6
9 N/A
3,870
N/A
21
0.35
53
3.5/ 89 17.2/ 438 18.2/ 464 5/127 2.75/ 70 30/ 13.6 62.5/ 28.3
XC 43/28
6 1,260
1,764
360
42.2
0.14
193
2.75/ 70
26.4/ 670 20/ 508 11/ 279 2.22/ 56 36/ 16.4 111/ 50.5
XC47 /11-6 SQ 6(方)
-
-
750 47.4
0.39
76
5/127 26.5/ 673 20/ 508
空罐重量(磅/千克) 42 (19)
53 (24)
96 (43)
107 (48)
静态蒸发速度及静态控温时间是名义值。实际的控温时间及速度将受液氮罐使用性质、空气
条件及制造公差的影响。
正常工作状态是一个任意参考值,估计正常操作条件下液氮罐的性能。实际工作时间会因空
气条件、液氮罐的使用历史、制造公差及任何使用个案而异。
XC 33/22
6 1,260
1,764
360
33.4
0.14
154
2.75/ 70
26/66 0
18.2/ 464 11/ 279 2.22/ 56 34/ 15.4 94/ 42.5
XC 34/18
6 2,100
3,000
630
34.8
0.18
123
3.5/ 89 26.6/ 675 18.2/ 464 11/ 279 2.81/ 71 34/ 15.4 96/ 43.5
MVE Lab 系列配件
转移软管
分相器 浇注器 旋转勺 长柄勺 备用软木塞 卸压装置 脚轮座
A 易于维护的盖子 B 高强度的管颈减少了液氮损失 C 高级化学真空保持系统-为产品使用寿 命中的高级真空性能而设计 D 高强度且重量轻的铝结构 E 绝缘-MVE高级的绝缘系统提供了最大 的热性能
美国 MVE 公司
19 (9) 56 (26)
24.1(611) 17 (432) 14 (356) 27 (12) 84 (38)
30.7(779) 17 (432) 14 (356) 34 (15) 123 (56)
16.5(419) 8 (203) 6 (152) 11 (5) 20 (9)
MVE STOCK 系列液氮罐
26.5/ 673 20/ 508 11/ 279 2.81/ 71 42/19 120.4 /54.6
美国 MVE 公司
A 耐用且防干扰的盖子设计 B 易维护的盖子设计 C 高强度,低重量的铝质结构 D 高强度的颈形管减少了液氮损失 E 锁定带
●Cryosystem 系列液氮罐
配件: • 脚轮基座 • 备用软木塞 •罐 • 液位探测棒 • 传输软管 • 方形架 (限47/11-6) • 液位报警 • 分相器 • 塑料盒
MVE 810
11,700 12 (9/2 架) 4(9/2 架) 16 N/A
61
11,346 18,910
230 24 VDC
25 / 635
21.4 / 544
41.5 / 1054
31 / 787
28.2 / 716
250 / 114 660 / 300
MVE 1370
20,800 24(8/2 架) 8(8/2 架) 32 N/A
16.8(426) 7.3 (185) 5.5 (139) 6 (2.7)
13 (6)
18.2(462) 8.8 (222) 6.5 (165)
8 (4) 17 (8)
21.5(546) 10.3(260) 8.3 (210)
13 (6) 31(14)
24.7(627) 14.5(368) 11.4(289)
129
23,994 39,990
482 24 VDC
35.5 / 902
19.4 / 492
44 / 1118
42 / 1067
39.5 / 1003
410 / 186 1269 / 577
MVE 1830
-
N/A
300
55,800 93,000
860 24 VDC
25 / 635
13 / 330
40.9 / 1039
38
70
104
仪器尺寸
罐颈开口尺寸 (英寸/毫米)
5 (127)
8.5 (216)
8.5 (216)
8.5 (216)
总高度(英寸/毫米) 26.5 (673)
27.5 (680)
37.5 (950)
37.5 (950)
外径(英寸/毫米)
20 (508)
22 (559)
22 (559)
26 (665)
XC 22/5
6 2,400
3,666
810
22.4
0.35
40
3.81/ 97
22/55 9
14.5/ 368 11/ 279 3.09/ 79 26/ 11.8 66/ 30
XC 32/8
9 2,520
3,960
855
-32
0.35
57
3.81/ 97
21.5/ 546 18.2/ 464 11/ 279 2.62/ 67 30/ 13.6 87/ 39.5
特征
z 耐用、防干扰的盖子设计 z 易于维护的盖子设计 z 高强度,轻重量的铝质结构 z 高强度管颈减少了液氮损失 z 高级的化学真空保证系统- 设计用于较好的
真空性能 z 芯型支座设计- 易于检索及样品筒的插放 z 绝缘 – MVE高级的绝缘系统提供了最大的
热性能
附件
脚轮座 备用软木塞 液氮液位标尺 转移软管 分相器 盒(2”或3”塑料或纸盒) 架子2”, 3”或圆筒 液面报警器
最大储存容量
架子数量
6
4
4
6
1.2 & 2.0 ml 冻存管数 750 量(100/盒)
2000
4000
6000
盒子数量/盒
5(25 格)
5
10
10
性能
液氮容量(升)
47.4
61
121
175
静态蒸发速度(升/天) 0.39
0.85
0.99
0.99
工作体积(升)
47
51
111
165
正常工作持续时间 76
美国 MVE 公司
● 技术参数
型号
筒的数量 1/2 cc 管数 (10/罐) 1/2 cc 管数 (单层
散装) 1.2&2.0ml 冻存管数 量(5/罐) 架子数量 液氮容量 (升) 静态蒸发 速度 (升/天)* 正常工作 持续时间 (天)** 瓶口尺寸 (英寸/毫 米) 总高度(英 寸/毫米) 外径(英寸/ 毫米) 筒高(英寸/ 毫米) 筒径(英寸/ 毫米) 空罐重量 (磅/公斤) 满载重量 (磅/公斤)
MVE Cryosystem 750, 2000, 4000 及 6000 结合了低液氮消耗量与中等范围的冻存管容
量两方面优势,满足全球范围内当今专家的不同需求。较轻的重量以及较小空间需求使它们
成为同类产品中最经济的仪器。
MVE Cryosystem 系列产品因其创新性、高绝缘性及真空技术成为同行业的佼佼者。
● 应用范围
MVE 的解决方案能够最好地优化冻存条件和技术,也为众多用户带来了成功。 其产品种类 齐全,性能优异,是各种科研、工业和临床机构液氮冻存和低温运输的不可多得的产品。 特性 1.MVE XC 系列液氮罐的容量自 700 – 5000 管及 150 至 1000 多个冻存管。 2.产品持久耐用、重量轻,制造技术世界领先,并有 5 年的真空保证,诸多优势使 MVE 系 列产品成为大多数需求中可依赖的产品。 3.XC 系列产品专为那些需要大容量储存及低液氮消耗的用户设计