Keil C51精确延时程序(C语言)

合集下载

51单片机C程序标准延时函数

51单片机C程序标准延时函数

51单片机C程序标准延时函数在此,我用的是12M晶振,一个时钟周期是1/12us,一个机器周期为12个时钟周期,则机器周期为1us,而51单片机执行一条语句,为1,2,4个机器周期不等,根据语句的长度来定,一般为1个机器周期。

而_nop_()为一条空语句,执行一次需要一个机器周期。

1us#include<intrins.h>_nop_();执行了一条_nop_();所以延时为1us;10usvoid delay10us(){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}执行了6条_nop_(),延时6us,主函数调用delay10us 时,先执行了LCALL指令2us,然后执行6条_nop_()语句6us,最后执行一条RET指令2us,所以总共延时10us。

100usvoid delay100us(){delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}与上面的一样,主函数调用delay100us();先执行了LCALL语句2us,再调用9个delay10us()函数90us,然后执行了6条_nop_()语句6us,最后执行了一条RET语句2us,总共100us。

1msvoid delay1ms(){f=1;TH0=0xe1;TL0=0X13;TR0=1;while(f);}void T0_3() interrupt 1{TR0=0;f=0;}这里就直接用51单片机内部定时器延时了,如果用_nop_();如果要做到微妙不差,那程序就太长了。

这里我用的是定时器0的方式0,13位定时器,这里为了方便,我就没就EA=1;ET0=1;TM0D=0X00;写在延时函数里。

延时1us程序12mhz晶振c语言,51单片机KeilC延时程序的简单(晶振12MHz,一。。。

延时1us程序12mhz晶振c语言,51单片机KeilC延时程序的简单(晶振12MHz,一。。。

延时1us程序12mhz晶振c语⾔,51单⽚机KeilC延时程序的简单(晶振12MHz,⼀。

⼀. 500ms延时⼦程序void delay500ms(void){unsignedchari,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}产⽣的汇编:C:0x0800 7F0F MOV R7,#0x0FC:0x0802 7ECA MOV R6,#0xCAC:0x0804 7D51 MOV R5,#0x51C:0x0806 DDFE DJNZ R5,C:0806C:0x0808 DEFA DJNZ R6,C:0804C:0x080A DFF6 DJNZ R7,C:0802C:0x080C 22 RET计算分析:程序共有三层循环⼀层循环n:R5*2 = 81*2 = 162us DJNZ 2us⼆层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us⼦程序调⽤2us +⼦程序返回2us + R7赋值1us = 5us延时总时间=三层循环+循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5⼆. 200ms延时⼦程序void delay200ms(void){unsignedchari,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}产⽣的汇编C:0x0800 7F05 MOV R7,#0x05C:0x0802 7E84 MOV R6,#0x84C:0x080C 22 RET三. 10ms延时⼦程序void delay10ms(void){unsignedchari,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}产⽣的汇编C:0x0800 7F05 MOV R7,#0x05C:0x0802 7E04 MOV R6,#0x04C:0x0804 7DF8 MOV R5,#0xF8C:0x0806 DDFE DJNZ R5,C:0806C:0x0808 DEFA DJNZ R6,C:0804C:0x080A DFF6 DJNZ R7,C:0802C:0x080C 22 RET四. 1s延时⼦程序void delay1s(void){unsignedcharh,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--); }对1s延时的验证:1.设置仿真的晶振为12MHz2.在延时函数设置断点3.单步运⾏程序,到达延时函数的⼊⼝4.先记下进⼊延时函数的时间5.step out跳出函数,记下此时时间,两个时间相减即为延时函数运⾏时间函数运⾏时间=1.00041400-0.00041600≈1s产⽣的汇编C:0x0808 DCFE DJNZ R4,C:0808C:0x080A DDFA DJNZ R5,C:0806C:0x080C DEF6 DJNZ R6,C:0804C:0x080E DFF2 DJNZ R7,C:0802C:0x0810 22 RET在精确延时的计算当中,最容易让⼈忽略的是计算循环外的那部分延时,在对时间要求不⾼的场合,这部分对程序不会造成影响. void mDelay(unsigned int Delay) //Delay = 1000 时间为1S{unsignedinti;for(;Delay>0;Delay--){for(i=0;i<124;i ){;}}}void waitms(inti){charm;for( ; i ;i--){for(m = 203; m ; m--){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}}}延时1ms的函数时钟频率12MHzunsigned intsleepTime;unsingedchar inSleep = 0;void sleepService(void)}void isr_timer(void) //假定定时器中断1ms 中断⼀次。

使用KeilC进行51单片机延时程序编写的几点心得

使用KeilC进行51单片机延时程序编写的几点心得

使用KeilC进行51单片机延时程序编写的几点心得使用Keil C进行51单片机延时程序编写的几点心得应用单片机的时候,经常会遇到需要短时间延时的情况。

需要的延时时间很短,一般都是几十到几百微妙(us)。

有时候还需要很高的精度,比如用单片机驱动DS18B20的时候,误差容许的范围在十几us以内,不然很容易出错。

这种情况下,用计时器往往有点小题大做。

而在极端的情况下,计时器甚至已经全部派上了别的用途。

这时就需要我们另想别的办法了。

以前用汇编语言写单片机程序的时候,这个问题还是相对容易解决的。

比如用的是12MHz 晶振的51,打算延时20us,只要用下面的代码,就可以满足一般的需要:mov r0,#09hloop:djnzr0,loop51 单片机的指令周期是晶振频率的1/12,也就是1us一个周期。

mov r0,#09h需要2个极其周期,djnz也需要2个极其周期。

那么存在r0里的数就是(20-2)/2。

用这种方法,可以非常方便的实现256us以下时间的延时。

如果需要更长时间,可以使用两层嵌套。

而且精度可以达到2us,一般来说,这已经足够了。

现在,应用更广泛的毫无疑问是Keil的C编译器。

相对汇编来说,C固然有很多优点,比如程序易维护,便于理解,适合大的项目。

但缺点(我觉得这是C的唯一一个缺点了)就是实时性没有保证,无法预测代码执行的指令周期。

因而在实时性要求高的场合,还需要汇编和C的联合应用。

但是是不是这样一个延时程序,也需要用汇编来实现呢?为了找到这个答案,我做了一个实验。

用C语言实现延时程序,首先想到的就是C常用的循环语句。

下面这段代码是我经常在网上看到的:void delay2(unsigned char i){for(; i != 0; i--);}。

利用Keil调试精确实现软件延时

利用Keil调试精确实现软件延时
整个执行时间的比例,点击相应的函数名,可以在该窗口的状态栏看到更详细的数据,如下图:
图2 值得注意的是,用性能分析窗口来观察延时函数的执行时间要求被观察的延时函数中不能再调用其他任何子函数,被测函数只能由C的 基本语句组成,否则观测到的时候并不是整个函数的运行时间。 采用上述方法,得到了以下几个延时程序: /* * 延时400毫秒 */ void Delay400Ms(void){
while(s--){ delay_1_s();
} }
但是我碰到一个比较奇怪的问题:在实现N秒延时函数中,我不调用delay_1_s()这个延时1秒函数,而用delay_1_s()中的语句来替 换delay_1_s(),改后的函数如下:
void delayNs(uchar s) {
uchar loop=10; unint j; while(s--){
比如我需要一个400ms的延时,随便写了个两重循环,外层循环5次,内层循环暂且设为5000: void Delay400Ms(void){
uchar i=5;
unint j; while(i--){
j=5000; while(j--);
//通过keil调试来确定循环次数
} }
在main函数中调用Delay400Ms(): void main()
loop=10; //注意,不能忘了此句 while(loop--){
j=8375; while(j--); } }
}
{ while(1){ P1=0; Delay400ms();
P1=1; }
} 进入uVersion的调试状态,按F10进行单步,当黄色箭头指向Delay400ms()这条语句时记下左边窗中Sys->sec的值,如图, 是0.00042426。

转用C51编写单片机延时函数

转用C51编写单片机延时函数

转用C51编写单片机延时函数这里假定单片机是时钟频率为12MHz,则一个机器周期为:1us.参考了51单片机Keil C延时程序的简单研究后,我们可知道,在Keil C 中获得最为准确的延时函数将是void delay(unsigned char t){while(--t);}反汇编代码如下:执行DJNZ指令需要2个机器周期,RET指令同样需要2个机器周期,根据输入t,在不计算调用delay()所需时间的情况下,具体时间延时如下:t Delay Time(us)1 2×1+2=4 22×2+2=6 N2×N+2=2(N+1)当在main函数中调用delay(1)时,进行反汇编如下:调用delay()时,多执行了两条指令,其中MOV R,#data需要1个机器周期,LJMP需要2个机器周期,即调用delay()需要3us.Keil C仿真截图与计算过程:加上调用时间,准确的计算时间延时与Keil C仿真对比如下:(可见,仿真结果和计算结果是很接近的)t Delay Time(us)仿真11.0592 Mhz时钟(us)1 3+2×1+2=7|7.7(实际)7.60 23+2×2+2=9|9.9 9.76 N3+2×N+2=2N+5|(2N+5)*1.1/3 11|12.1 11.94 15 35|38.5 37.98 100 205|225.5 222.44 255515|566.5 558.81也就是说,这个延时函数的精度为2us,最小的时间延时为7us,最大的时间延时为3+255×2+2=515us.实际中使用11.0592 MHz的时钟,这个延时函数的精度将为2.2us,最小时间延时为7.7us,最大时间延时为566.5us.这个时间延时函数,对于与DS18B20进行单总线通信,已经足够准确了。

现在,我们将时钟换成11.0592 MHz这个实际用到的频率,每个机器周期约为1.1us.现在让我们来分析一下这个之前用过的延时函数://延时函数,对于11.0592 MHz时钟,例i=10,则大概延时10ms.void delayMs(unsigned int i){unsigned int j;while(i--){for(j=0;j 125;j++);}}它的反汇编代码如下:分析:T表示一个机器周期(调用时间相对于这个ms级的延时来说,可忽略不计)1 C:0000 MOV A,R7;1T 2DEC R7;1T低8位字节减1 3MOV R2,0x06;2T 4JNZ C:0007;2T若低8位字节不为0,则跳到C:0007 5DEC R6;1T低8位字节为0,则高8位字节减1 6C:0007 ORL A,R2;1T 7JZ C:001D;2T若高8位也减为0,则RET 8CLR A;1T A清零9 MOV R4,A;1T R4放高位10 MOV R5,A;1T R5放低位11 C:000D CLR C;1T C清零12 MOV A,R5;1T 13 SUBB A,#0x7d;1T A=A-125 14 MOV A,R4;1T 15 SUBB A,#0x00;1T A16 JNC C:0000;2T A为零则跳到C:0000 17 INC R5;1T R5增1 18 CJNE R5,#0x00,C:001B;2T R5 0,跳转到C:000D 19 INC R4;1T 20 C:001B SJMP C:000D;2T 21 C:001D RET对于delayMs(1),执行到第7行就跳到21行,共需时12T,即13.2us对于delayMs(2),需时9T+13T+124×10T+7T+12T=9T+13T+1240T+7T+12T=1281T=1409.1 us.对于delayMs(3),需时9T×(3-1)+(13T+124×10T+7T)×(3-1)+12T=1269T×(3-1)+12T=2550T=2805us.对于delayMs(N),N 1,需时1269T×(N-1)+12T=1269NT-1257T=(1395.9 N-1382.7)us.利用Keil C仿真delayMs(1)=0.00166558 s=1.67ms截图如下:由分析可知具体的计算延时时间与Keil C仿真延时对比如下:i Time Delay仿真延时1 13.2us 1.67ms 21409.1 us 3.31ms 32805us 4.96ms N(1395.9 N-1382.7)us 10 12.6ms 16.50ms 20 26.5ms 32.98ms 30 40.5ms 49.46ms 50 68.4ms 82.43ms 100 138.2ms 164.84 ms 200 277.8ms 329.56 ms 500696.6ms 824.13 ms 1000 1394.5 ms 1648.54 ms 1500 2092.5 ms 2472.34 ms 2000 2790.4 ms 3296.47 ms 55.6ms 8.26ms 73 100.5ms 120.34 ms 720 1003.7 ms=1s 1186.74 ms计算delayMs(10)得到延时时间为:12576.3 us约等于12.6ms,接近我们认为的10ms。

51单片机C语言精确延时程序(超级准)

51单片机C语言精确延时程序(超级准)
单片机c语言单片机c语言教程pic单片机c语言教程pic单片机c语言单片机c语言指令集单片机c语言入门单片机c语言中断c语言和单片机avr单片机c语言单片机c语言编程
51单片机 C语言精确延时程序(超级准)
51单片机C语言精密延时程序 程序如下: void delayms(unsigned char t) { unsigned char j; unsigned char i; do { j=3; do { i=165; do { --i; } while(i!=0); --j; } while(j!=0); --t; } while(t!=0); } 该程序延时时基为1ms,所以最大延时时间是255ms 下面是反编译的汇编程序 C:0x0031 7E03 MOV R6,#0x03 C:0x0033 7DA5 MOV R5,#0xA5 C:0x0035 DDFE DJNZ R5,C:0035 C:0x0037 DEFA DJNZ R6,C:0033 C:0x0039 DFF6 DJNZ R7,delayms(C:0031) C:0x003B 22 RET 延时时间计算公式如下: ((R5*2 + 2+1)*R6+2+1)R7
假设R7=1,上式为(165*2+3)*3+2+1 =1002us!!!!! 以上程序使用的晶振是12MHz,如果使用的是其他频率的晶振只需计算出1ms的机器周期 数,代入5*2 + 2+1)*R6+2+1,选择合适的R

C51单片机的几种常用延时程序设计2024

C51单片机的几种常用延时程序设计2024

引言概述:C51单片机是一种广泛应用于嵌入式系统中的微控制器,它具有高度集成化、易于编程和灵活性强等特点。

在C51单片机的软件开发过程中,延时程序设计是非常重要的一部分。

本文将介绍C51单片机中几种常用的延时程序设计方法,包括循环延时、定时器延时、外部中断延时等。

这些方法不仅可以满足在实际应用中对延时的需求,而且可以提高程序的稳定性和可靠性。

正文内容:一、循环延时1. 使用循环控制语句实现延时功能,例如使用for循环、while循环等。

2. 根据需要设置延时的时间,通过循环次数来控制延时的时长。

3. 循环延时的精度受到指令执行时间的影响,可能存在一定的误差。

4. 循环延时的优点是简单易用,适用于较短的延时时间。

5. 注意在循环延时时要考虑其他任务的处理,避免长时间的等待造成程序卡死或响应延迟。

二、定时器延时1. 使用C51单片机内置的定时器模块来实现延时。

2. 配置定时器的工作模式,如工作方式、定时器精度等。

3. 设置定时器的初值和重装值,控制定时器中断的触发时间。

4. 在定时器中断服务函数中进行延时计数和延时结束标志的设置。

5. 定时器延时的优点是精确可控,适用于需要较高精度的延时要求。

三、外部中断延时1. 在C51单片机上配置一个外部中断引脚。

2. 设置外部中断中断触发条件,如上升沿触发、下降沿触发等。

3. 在外部中断中断服务函数中进行延时计数和延时结束标志的设置。

4. 外部中断延时的优点是能够快速响应外部信号,适用于实时性要求较高的场景。

5. 注意在外部中断延时时要处理好外部中断的抖动问题,确保延时的准确性。

四、内部计时器延时1. 使用C51单片机内部的计时器模块来实现延时。

2. 配置计时器的工作模式,如工作方式、计时器精度等。

3. 设置计时器的初值和重装值,使计时器按照一定的频率进行计数。

4. 根据计时器的计数值进行延时的判断和计数。

5. 内部计时器延时的优点是能够利用单片机内部的硬件资源,提高延时的准确性和稳定性。

Keil C51精确延时程序设计

Keil C51精确延时程序设计

Keil C51精确延时程序设计时间:2013-05-16 10:45:33 来源:电子设计工程作者:吴挺运,林成何摘要针对C语言代码的执行时间的可预见性差,结合Keil C51开发工具,分析了在Keil C51开发工具中利用C语言实现精确的延时程序的设计,指出了常用延时方法优缺点。

并通过一些实例分析了延时时间的计算方法,使C语言代码的延时时间可以被预见。

C语言中嵌套汇编语言是一种有效的方法,可以充分发挥出各语言的优势特点、提高开发效率。

关键词 Keil C51;C语言;软件延时;单片机C语言具有较强的数据处理能力、语言功能齐全、使用灵活方便、开发效率高,被广泛应用于在单片机系统开发应用中。

在单片机幕统开发的过程中,经常需要使用到延时程序,但C语言代码执行时间。

的可预见性和实时性较差,在开发一些具有严格通信时序要求的系统时,往往需要反复调试延时代码,给开发者带来了较大困难。

比如使用DS18B20进行温度测控时,必须按照其单总线通信协议,否则无法读取温度数据。

针对上述问题,结合Keil C51开发工具和Proteus仿真软件,介绍在Keil C51开发系统中,利用C语言编写的延时程序设计及其运行的时间的计算方法。

1 常用延时程序的设计方法1.1 利用定时器/计数器延时利用C51单片机内部2个16位定时器/计数器实现精确的程序,由于定时器/计数器不占用CPU的运行时间,可以提高CPU的使用效率。

但假设使用12 MHz晶振,定时器工作在方式1模式下,其最长定时时间也只能达到65.53 ms,由此,可以采用中断方式进行溢出次数累加的方法进行长时间的延时程序设计。

但在开发过程中要考虑C51自动对断点的保护和重装初值所带来的延时误差,也可以使用定时器工作在方式2模式下,减少重装初值所带来的误差。

1.2 利用空操作实现延时当所需的延时非常短,可以利用Keil C51自带intrins.h头文件中的_nop_()函数实现函数延时。

51单片机c语言延时

51单片机c语言延时

1,_nop_() 适用于us级的少量延时标准的C语言中没有空语句。

但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。

这在汇编语言中很容易实现,写几个nop就行了。

在keil C51中,直接调用库函数:#include<intrins.h> //声明了void _nop_(void);_nop_(); //产生一条NOP指令作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。

NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。

2,一般延时大于10us一,定义的C51中循环变量,尽量采用无符号字符型变量。

二,在FOR循环语句中,尽量采用变量减减来做循环。

三,在do…while,while语句中,循环体内变量也采用减减方法这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的例:unsigned char i;for(i=255;i>0;i--);用keil C51编译后MOV09H,#0FFHLOOP:DJNZ09H,LOOP指令相当简洁,也很好计算精确的延时时间。

3,延时更长,达到MS级,这时需要嵌套循环循环嵌套的方法常用于达到ms级的延时。

对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。

例:unsigned char i,jfor(i=255;i>0;i--)for(j=255;j>0;j--);或unsigned char i,ji=255;do{j=255;do{j--}while(j);i--;}while(i);或unsigned char i,ji=255;while(i){j=255;while(j){j--};i--;}下面给出有关在C51中延时子程序设计时要注意的问题(一些经验之谈)1、在C51中进行精确的延时子程序设计时,尽量不要或少在延时子程序中定义局部变量,所有的延时子程序中变量通过有参函数传递。

51单片机c语言延时

51单片机c语言延时

51单片机c语言延时51单片机(8051微控制器)是一种广泛使用的嵌入式系统芯片,其编程语言包括C语言和汇编语言等。

在C语言中,实现51单片机延时的方法有多种,下面介绍其中一种常用的方法。

首先,我们需要了解51单片机的指令周期和机器周期。

指令周期是指单片机执行一条指令所需的时间,而机器周期是指单片机执行一个操作所需的时间,通常以微秒为单位。

在C语言中,我们可以使用循环结构来实现延时。

#include <reg51.h> // 包含51单片机的寄存器定义void delay(unsigned int time) // 延时函数,参数为需要延时的微秒数{unsigned int i, j;for (i = 0; i < time; i++)for (j = 0; j < 1275; j++); // 1275个机器周期,约等于1ms}void main() // 主函数{while (1) // 无限循环{// 在这里添加需要延时的代码P1 = 0x00; // 例如将P1口清零delay(1000); // 延时1秒P1 = 0xFF; // 将P1口清零delay(1000); // 延时1秒}}在上面的代码中,我们定义了一个名为delay的函数,用于实现延时操作。

该函数接受一个无符号整数参数time,表示需要延时的微秒数。

在函数内部,我们使用两个嵌套的循环来计算延时时间,其中外层循环控制需要延时的次数,内层循环控制每个机器周期的时间(约为1微秒)。

具体来说,内层循环执行了约1275次操作(具体数值取决于编译器和单片机的型号),以实现约1毫秒的延时时间。

需要注意的是,由于单片机的指令周期和机器周期不同,因此我们需要根据具体的单片机型号和编译器进行调整。

在主函数中,我们使用一个无限循环来不断执行需要延时的操作。

例如,我们将P1口的所有引脚清零,然后调用delay函数进行1秒钟的延时,再将P1口清零并再次调用delay函数进行1秒钟的延时。

单片机C语言的精确延时程序设计

单片机C语言的精确延时程序设计

PUBLIC _delay3
RSEG ?PR?_delay3?DLY
_delay3:
DJNZ R7, ¥ 4 s
RET
4s
END
嵌入汇编的方法如下
void delay4(unsigned char vd)
{ #pragma asm
DJNZ R7, ¥
#pragma endasm

编译后的形式
汇编时代常用的延时指令为
MOV R7 DDLY
DJNZ R7 ¥
产生最小 4 s 的延时 仿造的 C 程序如下
void delay1(ndly)
{for( ndly>0 ndly--)

生成的汇编代码与 D J N Z 无关 是如下形式的 其
中无关的编译注释已删除
RSEG ?PR?_delay1?DLY2
法 在生成目标代码时 会有所不同 开发人员必须研 究它生成的汇编语言代码 来保证时间的准确性 这也 许是除了使用嵌入汇编或直接编写汇编函数的唯一方 法 其实在单片机的 C 编译器中 已经有足够底层操作 方面的扩展 所以这里只考虑纯 C 语言的方法
3 延时程序设计
以德国 Keil 公司的 C 5 1 编译器为例 目前它已被公 认为业界的标准 以下讨论均假设 5 1 单片机时钟晶振 为 6 M H z 以小模式下编译 这时程序指令执行的最小 单位是 2 s 如果使用非英特尔且内核优化过的单片 机 应切换回普通模式 或仔细研究它的时序 以 D S 1 8 B 2 0 为例 临时在程序中需要延时 2 s 那么可以 用下述程序
以上代码调用一次也有 14 s 之多 还是无法使用
也就是说 采用 f o r 形式的语句 生成的汇编代码都是

Keil C中软件实现精确延时的几种方法

Keil C中软件实现精确延时的几种方法
1.2使用while循环或for循环
两种循环可以单独使用,也可以嵌套使用,即可以编写成延时函数使用,也可以在程序中直接使用,但是会有微小的差别,即增加了调用函数的时间。下面的函数可实现1ms到1s的延时,误差为16us,基本满足一般应用的要求。需要注意的是使用不同的循环变量类型,得到的延时也会不同。
[3]徐爱钧.Keil Cx51 V7.0单片机高级语言编程与uVision2应用实践[M].北京:电子工业出版社,2004.
void Delayl0us()
{
_nop_();
_nop_();
_nop_();
_nop_();
_p_();
_nop_();
}
每个语句执行时间为1us,主函数调用Delayl0us()时,先执行一个LCALL指令(2us),然后执行6个_nop_()语句(6us),最后执行了一个RET指令(2s),所以执行上述函数时共需要10us。可以把这一函数当作基本延时函数,在其他函数中调用,即嵌套调用,以实现较长时间的延时;但需要注意,如在Delay40us()中直接调用4次Delayl0us()函数,得到的延时时间将是42us,而不是40us。这是因为执行Delay40us()时,先执行了一次LCALL指令(2us),然后开始执行第一个Delayl0us(),执行完最后一个Delayl0us()时,直接返回到主程序。依此类推,如果是两层嵌套调用,如在Delay80us()中两次调用Delay40us(),则也要先执行一次LCALL指令(2us),然后执行两次Delay40us()函数(84us),所以,实际延时时间为86us。简言之,只有最内层的函数执行RET指令。该指令直接返回到上级函数或主函数。如在Delay80us()中直接调用8次Delayl0us(),此时的延时时间为82us。通过修改基本延时函数和适当的组合调用,上述方法可以实现不同时间的延时。在KeilC语言中,使用_nop_()语句需要在程序的前面加上“#include<intrins.h>”语句。每一个_nop()_语句编译后需要一个字节的程序空间。因此在短暂延时的场合使用较多。

Keil_C51_for循环精确延时

Keil_C51_for循环精确延时
C:0x080A DFF6 DJNZ R7,C:0802
C:0x080C 22 RET
500ms延时子程序
程序:
void delay500ms(void)
{
uchar i,j,k;
for(i=15;i>0;i--)
for循环实现C语言精确延时(晶振12MHz,一个机器周期1us.)
2ms延时子程序
void delay2ms(void)
{
uchar i,j,k;
for(i=5;i>0;i--)
for(j=8;j>0;j--)
for(k=25;k>0;k--);
}
10ms延时子程序
程序:
void delay10ms(void)
{
uchar i,j,k;
for(i=5;i>0;i--)
for(j=4;j>0;j--)
for(k=248;k>0;k--);
uchar i,j,k;
for(i=5;i>0;i--)
for(j=8;j>0;j--)
for(k=248;k>0;k--);
}
200ms延时子程序
程序:
void delay200ms(void)
{
C:0x080A DDFA DJNZ R5,C:0806
C:0x080C DEF6 DJNZ R6,C:0804
C:0x080E DFF2 DJNZ R7,C:0802
C:0x0810 22 RET
for(j=202;j>0;j--)
for(k=81;k>0;k--);

C语言延时计算

C语言延时计算

C语言延时计算C语言的延时计算C51中精确的延时与计算的实现C51由于其可读性和可移植性很强,在单片机中得到广泛的应用,但在某些时候由于C51编写的程序对在有精确时间要求下,可能就得要用汇编语言来编写,但在C51是否也能实现时间的精确控制呢,答案是肯定的。

在C51中要实现对时间的精确延时有以下几种方法其一:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒,就插入个这样的函数。

NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M 晶振,延时1uS。

其二:对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。

在选择C51中循环语句时,要注意以下几个问题第一、定义的C51中循环变量,尽量采用无符号字符型变量。

第二、在FOR循环语句中,尽量采用变量减减来做循环。

第三、在do…while,while语句中,循环体内变量也采用减减方法。

这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。

下面举例说明:unsigned char I;for(i=0;i<255;i++);unsigned char I;for(i=255;i>0;i--);其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令: MOV 09H,,0FFHLOOP: DJNZ 09H,LOOP指令相当简洁,也很好计算精确的延时时间。

同样对do…while,while循环语句中,也是如此例:unsigned char n;n=255;do{n--}while(n);或n=255;while(n){n--};这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,故其精确时间的计算也很方便。

其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。

对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。

C语言延时程序

C语言延时程序

标准的C语言中没有空语句。

但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。

这在汇编语言中很容易实现,写几个nop就行了。

在keil C51中,直接调用库函数:#include<intrins.h> // 声明了void _nop_(void);_nop_(); // 产生一条NOP指令作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP 指令,延时几微秒。

NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。

对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。

在选择C51中循环语句时,要注意以下几个问题第一、定义的C51中循环变量,尽量采用无符号字符型变量。

第二、在FOR循环语句中,尽量采用变量减减来做循环。

第三、在do…while,while语句中,循环体内变量也采用减减方法。

这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。

下面举例说明:unsigned char I;for(i=0;i<255;i++);unsigned char I;for(i=255;i>0;i--);其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:MOV09H,#0FFHLOOP:DJNZ09H,LOOP指令相当简洁,也很好计算精确的延时时间。

同样对do…while,while循环语句中,也是如此例:unsigned char n;n=255;do{n--}while(n);或n=255;while(n){n--};这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,故其精确时间的计算也很方便。

其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。

对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。

C51延时程序分析

C51延时程序分析

C51 延时程序分析
应用单片机的时候,经常会遇到需要短时间延时的情况。

需要的延时时
间很短,一般都是几十到几百微妙(us)。

有时候还需要很高的精度,比如用单片机驱动DS18B20 的时候,误差容许的范围在十几us 以内,不然很容易出错。

这种情况下,用计时器往往有点小题大做。

而在极端的情况下,计时器
甚至已经全部派上了别的用途。

这时就需要我们另想别的办法了。

汇编语言写单片机程序的时候,这个问题还是相对容易解决的。

比如用的
是12MHz 晶振的51,打算延时20us,只要用下面的代码,就可以满足一般
的需要:
mov r0, #09h
loop: djnz r0, loop
51 单片机的指令周期是晶振频率的1/12,也就是1us 一个周期。

mov r0, #09h 需要2 个极其周期,djnz 也需要2 个极其周期。

那幺存在r0 里的数就是(20-2)/2。

用这种方法,可以非常方便的实现256us 以下时间的延时。

如果需要更长时间,可以使用两层嵌套。

而且精度可以达到2us,一般来说,这已
经足够了。

现在,应用更广泛的毫无疑问是Keil 的C 编译器。

相对汇编来说,C 固然有很多优点,比如程序易维护,便于理解,适合大的项目。

但缺点(我觉得这。

Keil C51程序设计精确延时方法

Keil C51程序设计精确延时方法

2 软件延时与时间ห้องสมุดไป่ตู้算
2.1 短暂延时
可以在C文件中通过使用带_NOP_()语句的函数实现,定义一系列不同的延时函数,如Delay10us()、Delay25us()、Delay40us()等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10μs的延时函数可编写如下:
void Delay10us() {
_NOP_();_NOP_(); _NOP_();
_NOP_();_NOP_(); _NOP_();
}
Delay10us()函数中共用了6个_NOP_()语句,每个语句执行时间为1μs。主函数调用Delay10us()时,先执行一个LCALL指令(2μs),然后执行6个_NOP_()语句(6μs),最后执行了一个RET指令(2μs),所以执行上述函数时共需要10μs。可以把这一函数当作基本延时函数,在其他函数中调用,即嵌套调用\[4\],以实现较长时间的延时;但需要注意,如在Delay40us()中直接调用4次Delay10us()函数,得到的延时时间将是42μs,而不是40μs。这是因为执行Delay40us()时,先执行了一次LCALL指令(2μs),然后开始执行第一个Delay10us(),执行完最后一个Delay10us()时,直接返回到主程序。依此类推,如果是两层嵌套调用,如在Delay80us()中两次调用Delay40us(),则也要先执行一次LCALL指令(2μs),然后执行两次Delay40us()函数(84μs),所以,实际延时时间为86μs。简言之,只有最内层的函数执行RET指令。该指令直接返回到上级函数或主函数。如在Delay80μs()中直接调用8次Delay10us(),此时的延时时间为82μs。通过修改基本延时函数和适当的组合调用,即可以实现不同时间的延时。

Keil C51程序设计中几种精确延时方法 精确延时

Keil C51程序设计中几种精确延时方法 精确延时

Keil C51程序设计中几种精确延时方法2008-04-03 08:48实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。

1 使用定时器/计数器实现精确延时单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。

第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。

本程序中假设使用频率为12 MHz的晶振。

最长的延时时间可达216=65 536 μs。

若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。

在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。

使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。

但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。

这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。

2 软件延时与时间计算在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。

下面介绍几种软件延时的方法。

2.1 短暂延时可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。

如延时10 μs 的延时函数可编写如下:void Delay10us( ) {_NOP_( );_NOP_( );_NOP_( )_NOP_( );_NOP_( );_NOP_( );}Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Keil C51精确延时程序
程序说明如下:
振荡频率:12MHz
机器周期=12/振荡频率=12/12000000=1us
#include <reg52.h>
void delay1(unsigned char i)
{ while(--i);
}
说明:delay1程序为:延时时间=(2*i+2)*机器周期。

i=1~255。

void delay2(unsigned char i)
{ while(i--);
}
说明:delay2程序为:延时时间=(6*i+2)*机器周期。

i=1~255。

void main (void)
{
unsigned char m;
delay1(10); //赋值并调延时程序delay1
说明:本句为赋值并调用Delayus1:延时时间=(1+2)*机器周期。

全部延时时间为:延时时间=(1+2+2*i+2)*机器周期。

i=1~255。

本例:延时时间=(1+2+2*10+2)*1us=25us
delay2(10); //赋值并调延时程序delay2
说明:本句为赋值并调用Delayus2:延时时间=(1+2)*机器周期。

全部延时时间为:延时时间=(1+2+6*i+2)*机器周期。

i=1~255。

本例:延时时间=(1+2+6*10+2)*1us=65us
m=10; //赋值,m=1~255
while(--m) ; //计算,延时时间=2*m*机器周期
说明:本两句为赋值并计算。

全部延时时间为:延时时间=(1+2*m)*机器周期。

m=1~255。

本例:延时时间=(1+2*10)*1us=25us
while(1);
}。

相关文档
最新文档