用C语言实现精确的延时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎么用C语言做单片机的精确延时在单片机应用中,经常会遇到需要短时间延时的情况,一般都是几十到几百μs,并且需要很高的精度(比如用单片机驱动DS18B20时,误差容许的范围在十几μs以内,不然很容易出错);而某些情况下延时时间较长,用计时器往往有点小题大做。另外在特殊情况下,计时器甚至已经全部用于其他方面的定时处理,此时就只能使用软件定时了[1]。
1C语言程序延时
Keil C51的编程语言常用的有2种:一种是汇编语言;另一种是C语言。用汇编语言写单片机程序时,精确时间延时是相对容易解决的。比如,用的是晶振频率为12MHz 的AT89C51,打算延时20μs,51单片机的指令周期是晶振频率的1/12,即一个机器周期为1μs;“MOV R0,#X”需要2个机器周期,DJNZ也需要2个机器周期,单循环延时时间t=2X+3(X为装入寄存器R0的时间常数)[2]。这样,存入R0里的数初始化为8即可,其精度可以达到1μs。用这种方法,可以非常方便地实现512μs以下时间的延时。如果需要更长时间,可以使用两层或更多层的嵌套,当然其精度误差会随着嵌套层的增加而成倍增加。
虽然汇编语言的机器代码生成效率很高,但可读性却并不强,复杂一点的程序就更难读懂;而C语言在大多数情况下,其机器代码生成效率和汇编语言相当,但可读性和可移植性却远远超过汇编语言,且C语言还可以嵌入汇编程序来解决高时效性的代码编写问题。就开发周期而言,中大型软件的编写使用C语言的开发周期通常要比汇编语言短很多,因此研究C语言程序的精确延时性能具有重要的意义。
C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
2单层循环延时精度分析
下面是进行μs级延时的while程序代码。
延时函数:
void delay1(unsigned char i){
while(i);}
主函数:
void main(){
while(1){
delay1(i);
}
}
使用Keil C51的反汇编功能,延时函数的汇编代码如下:
C:0x00E6AE07MOVR6,0x07
C:0x00E81FDECR7
C:0x00E9EEMOVA,R6
C:0x00EA70FAJNZC:00E6
C:0x00EC22RET
图1断点设置位置图
通过对i赋值为10,在主程序中图1所示的位置设置断点。经过测试,第1次执行到断点处的时间为457μs,再次执行到该处的时间为531μs,第3次执行到断点处的时间为605μs,10次while循环的时间为74μs,整个测试结果如图2所示。
图2使用i--方式测试仿真结果图
通过对汇编代码分析,时间延迟t=7X+4(其中X为i的取值)。测试表明,for循环方式虽然生成的代码与用while语句不大一样,但是这两种方法的效率几乎相同。C语言中的自减方式有两种,前面都使用的是i--的方式,能不能使用--i方式来获得不同的效果呢?将前面的主函数保持不变,delay1函数修改为下面的方式:void delay1(unsigned char i){
while(--i);}
同样进行反汇编,得到如下结果:
C:0x00E3DFFEDJNZR7,
C:00E3C:0x00E522RET
比较发现,--i的汇编代码效率明显高于i--方式。由于只有1条语句DJNZ,执行只需要2个时钟周期,1个时钟周期按1μs计算,其延时精度为2μs;另外,RET
需要2个时钟周期,能够达到汇编语言代码的效率。按前面的测试条件进行测试,第1次执行到断点处的时间为437μs,再次执行到该处的时间为465μs,第3次执行到断点处的时间为493μs,10次while循环的时间为28μs,整个测试结果如图3所示。
图3使用--i方式测试仿真结果图
调整i的取值,i取8时延时时间为24μs,i取9时延时时间为26μs。通过分析得出,10次循环为28μs是由于外层循环造成的,其精度可以达到2μs。在设计时应该考虑参数传递和RET语句执行所需要的时间周期。实验分析发现,for语句使用--i方式,同样能够达到与汇编代码相同的精度。i取不同值时延时仿真结果如图4所示。
图4i取不同值时延时仿真结果图
3多重嵌套下的C程序延时
在某些情况下,延时较长,仅使用单层循环方式是不能完成的。此时,只能使用多层循环方式,那么多重循环条件下,C程序的精度如何呢?下面是一个使用for语句实现1s延时的函数。
延时函数
void delay1s(void){
for(k=100;k>0;k--)//定时1s
for(i=20;i>0;i--)
for(j=248;j>0;j--);
}
主函数调用延时函数代码段:
while(1){
delay1s();
scond+=1;
}
为了直接衡量这段代码的效果,利用Keil C找出这段代码产生的汇编代码:
C:0x00B37002JNZ
C:00B7C:0x00B5150CDEC0x0C
C:0x00B7E50DMOVA,0x0D
C:0x00B9450CORLA,0x0C
C:0x00BB70DEJNZC:009B
C:0x00BDE50BMOVA,0x0B
C:0x00BF150BDEC0x0B
C:0x00C17002JNZC:00C5
C:0x00C3150ADEC0x0A
C:0x00C5E50BMOVA,0x0B
C:0x00C7450AORLA,0x0A
C:0x00C970CAJNZC:0095
C:0x00CB22RET
分析汇编代码,其他汇编代码使用的不是DJNZ跳转方式,而是DEC和JNZ语句来实现循环判断。1条JNZ指令要花费2个时钟周期,3条指令就需要6个机器周期,MOV指令和DEC指令各需要1小时钟周期,1个时钟周期按1μs算,其精度最多达到8μs,最后加上一条LCALL和一条RET语句,所以整个延时精度较差[4]。
利用Keil C的测试工具,在一处设置一个断点。第1次执行到中断处的时间为0.000513s,第2次执行到中断处的时间为1.000922s,时间延迟为1.000409s,测试结果如图5所示。对于上面的3种循环嵌套,循环次数为100×20×248=496000,每次循环的时间约为2μs。
图5三重嵌套循环1s实现时间测试结果
为获取与汇编语言延时的差距,同样进行1s的延时,程序代码段如下:
LCALL DELY1S
INC Second
DELY1S:MOV R5,#100