Antimicrob. Agents Chemother.-2014-Luo-2450-3

合集下载

外科手术预防性使用抗生素的理想时机?

外科手术预防性使用抗生素的理想时机?

114述评外科手术预防性使用抗生素的理想时机?What Is the Ideal Time for Administration of Antimicrobial Prophylaxisfor a Surgical Procedure?E. Patchen Dellinger, MD 逯宁 译 朱理玮 审校From the Department of Surgery, University of Washington, Seattle, Washington.Reprints: E. Patchen Dellinger, MD, Chief of General Surgery, Department of Sur-gery, University of Washington, Box 356410, Room BB 428, 1959 NE Pacific Street, Seattle, WA 98195-6410. E-mail: patch@.Copyright © 2008 by Lippincott Williams & Wilkins ISSN: 0003-4932/08/24706-0927DOI: 10.1097/SLA.0b013e31817586c8本期Annals of Surgery 发表了Weber 医生及其同事的一篇论文,文中展示了2年内超过3 800例手术患者的前瞻性观察数据,密切随访手术部位感染(surgical site infection ,SSI ),然后分析各种危险因素的影响,重点分析预防性抗生素给药时机的影响[1]。

作者将头孢呋辛作为预防性抗生素的标准药物,所得结论为在切开皮肤前的74~30分钟内给药,SSI 的发生率最低,并建议避免在切开皮肤前的最后30分钟内给予头孢呋辛。

进一步仔细分析他们的数据发现,当早于切开前75分钟给予抗生素时,感染率最高,奇怪的是,在切开皮肤前的15~30分钟内给予抗生素的感染率比在其前后15分钟间隔(44~30分钟或14~0分钟)内给药更高。

常见多重耐药菌的诊断与治疗

常见多重耐药菌的诊断与治疗

CTM基因型占ESBLs基因型的比例
美国 85.4%
中国 >70%
近10年中国CTX-M型ESBLs占ESBLs所有基因型的70%以上[16-18]。
CTX-M-15型ESBLs比例明显上升[18,19]。携带CTX-M-15型ESBLs的
细菌常常仅对碳青霉烯类、头孢哌酮/舒巴坦、哌拉西林/他唑巴坦等敏感 性保持在80%以上.
我国ESBLs检出率高
39.9% 39.1%
51.7%
E. coli
53.0%
K. pneumoniae
55.6%
56.5%
45.2%
42.0%
43.4%
41.4%
50.70% 38.50%
2005
2006
2007
2008
2009
2011
2005-2011 CHINET细菌耐药性监测
社区感染产ESBLs细菌的比例
EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 2013;19: 141-160.
对ESBLs实验室检测的建议
• 目前国内大肠埃希菌和肺炎克雷伯菌中流行的ESBLs基因型主要为
对 CTX-M型, 头孢噻肟和头孢曲松水解能力强,对头孢他啶和头孢
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement M100-S20. CLSI, Wayne, PA, USA, 2010.

泰能完整版

泰能完整版
可靠的疗效,成功的经验
广谱抗菌活性 交叉耐药的可能性低
良好的PK/PD和组织浓度
疗效卓越,退热快疗程短的可能 良好的安全性和耐受性
时间依赖型抗生素的PK/PD关键参数:%T>MIC
Cmax (峰浓度)


浓 度
AUC
AUC24 MIC
半衰期
%T>MIC 时间
MIC Cmin (谷浓度)
3. Schentag JJ et al. Clin Infect Dis 2001; 32 (Suppl. 1): S39-S46. 4. Craig WA. Clin Infect Dis. 1998;26(1):1-10.
22.8
20
7.5
0 0.1
0.1 0.1
4.2 1.3
3
0
11.1
3.2
4.1
3.2
亚胺培南 美罗培南 头孢哌酮- 哌拉西林- 头孢吡肟 阿米卡星 头孢他啶 环丙沙星
舒巴坦 三唑巴坦
研究设计: 中国12所教学医院组成的CHINET耐药监测网,2007年1月1日至12月31日共收集36001株临床分离株,其中革兰阳性菌12364株, 革兰阴性菌23637株。按统一方案、统一方法(Kirby-Bauer法)和判断标准(CLSI 2007版)进行细菌耐药性监测。
16 汪复,朱德妹 等。中国抗感染与化疗杂志 2008;8(5):325-333。
2007年中国CHINET 3244株肺炎克雷伯菌对常用抗菌药的耐药率
60
肺炎克雷伯菌的
ESBLs(+)(n=1463)
ESBLs检出率45.1%
ESBLs(-)(n=1781) 48.6
46.7

替加环素用药时机与方法(刘进)

替加环素用药时机与方法(刘进)
(incl. PRP)
Listeria Corynebacterium
Atypicals
- Legionella - Mycoplasma - Chlamidia - M. fortuitum
Enterobacteriaceae
(incl. ESBL, AmpC, MBL)
Acinetobacter
危重的医院获得性腹腔内感染
推荐的抗菌治疗
阿莫西林/克拉维酸,或环丙沙星+甲硝唑 厄他培南或替加环素 哌拉西林/他唑巴坦 亚胺培南或美罗培南+/-氟喹诺酮类 阿莫西林/克拉维酸,或环丙沙星+甲硝唑 替加环素 哌拉西林/他唑巴坦 亚胺培南或美罗培南+/-氟喹诺酮类 哌拉西林+替加环素+氟喹诺酮类 亚胺培南或多利培南+替考拉宁+棘白菌素 哌拉西林+替加环素+棘白菌素
40版《热病》
• 推荐替加环素治疗以下感染性疾病 – 疾病:轻中度住院治疗的憩室炎,直肠周围脓肿,腹膜炎,四肢、非糖
尿病性蜂窝组炎的起始经验性治疗
–高度耐药菌:耐药肠球菌、金黄色葡萄球菌
南非《替加环素合 理用药指南》
2011年欧洲专家对 IDSA 指南的评论 和补充
推荐替加环素治疗成人cSSSIs和cIAIs
2
A
2
A
2
A
2
A
4
B
4
B
见耐药菌推荐意见
见真菌推荐意见
Eckmann C et al. Eur J Med Res.2011;16:115-126.
腹腔内感染治疗指南
患者情况
CA, 胆道外, 稳定, 无 ESBL(+)菌感染的危险因素 CA, 胆道外, 稳定, 存在 ESBL(+)菌感染的危险因素 CA, 胆道外, 危重,无 ESBL(+)菌感染的危险因素 CA,胆道外, 危重,存在 ESBL(+)菌感染的危险因素 CA, 胆道,稳定, 无 ESBL(+)菌感染的危险因素 CA,胆道,稳定, 存在 ESBL(+)菌感染的危险因素 CA,胆道,危重, 无 ESBL(+)菌感染的危险因素 CA,胆道,危重, 存在 ESBL(+)菌感染的危险因素 稳定的医院获得性腹腔内感染

多学科会诊(MDT)病例分享1例ICU多重耐药菌腹腔感染案例

多学科会诊(MDT)病例分享1例ICU多重耐药菌腹腔感染案例

多学科会诊(MDT)病例分享----1例ICU多重耐药菌腹腔感染案例浙江大学医学院附属第一医院抗感染MDT团队抗感染MDT成员1.病例介绍病史◆患者约1月前出现右上腹不适,伴皮肤巩膜发黄,腹部CT示“胆囊增大并密度增高,胆总管及肝内胆管局部扩张,胆石症考虑。

”◆2015.1.14于外院行“胰十二指肠切除术”,术中病理报告“十二指肠乳头组织腺癌”。

◆基本信息:患者,性别:男性 年龄:75岁 体重:56kg病史◆术后8小时患者出现发热、气急、休克、少尿因呼吸衰竭气管插管后转入ICU治疗◆入ICU后予机械通气、大量液体复苏、去甲肾上腺素、多巴胺、多巴酚丁胺维持血压,无尿、肌酐375umol/L,行CRRT◆考虑腹腔感染选择哌拉西林/他唑巴坦 3.375g q8h,入院情况◆T:38.0℃ P:108次/分 R:18次/分 BP:117/55mmHg(去甲肾上腺素微泵维持)◆正压通气,氧合指数<150mmHg◆皮肤巩膜中度黄染,腹胀,手术切口未见红肿,肠鸣音未闻及。

◆躯干和双下肢重度凹陷性水肿◆APACHEII评分32,死亡率预测85%入院第2日-检验指标◆PCT: 25.5ng/ml◆CRP:235.1mg/L◆血常规:WBC 12.9 *109/L,N% 93.1%, PLT71*109/L Hb 9.0g/dL◆肝功能:Alb 23.7g/L,ALT 59U/L,AST 72U/L,TB 154μmol/L,DB 124μmol/L;◆肾功能:无尿,Cr 296μmol/L,CRRT治疗◆BNP:>9000pg/mL入院第2日-CT检查结果腹部CT检查:•1、whipple术后改变,腹盆腔大量积液,•2、左侧腹股沟区结节灶,考虑局部静脉瘤样扩张可能•3、胸腹壁皮下水肿肺部CT(入院第2日)入科诊断•1.胆管癌 Whipple术后• 2.腹腔感染(吻合口瘘?)• 3.感染性休克?心力衰竭(高容量)?• 4.急性肾功能衰竭• 5.急性肝功能不全• 6.肺炎 呼吸衰竭入科治疗◆抗感染治疗–亚胺培南/西司他丁针 0.5g q6h –利奈唑胺针 0.6 g q12h◆其他药物治疗:护胃、化痰、退黄、降酶、营养支持等◆机械通气,控制通气◆CRRT肾脏替代治疗入科后处理◆B超引导下行小网膜囊及盆腔穿刺置管引流,引流量少,淡血性,略浑,查淀粉酶正常范围内;◆48小时CRRT液体净负10000ml,血压稳定,去甲肾上腺素逐步减量,机械通气下氧合指数上升至300mmHg。

多重耐药环境下,碳青霉烯类药物的临床定位 (1)

多重耐药环境下,碳青霉烯类药物的临床定位 (1)

• MDR (multidrug resistance,多重耐药) – 对≥3类抗生素耐药
• XDR (extensive drug resistance,广泛耐药) – 所有抗生素耐药对除1或2种(粘菌素或替 加环素)外的
• PDR (pandrug resistance,泛耐药) – 对所有抗生素耐药
多重耐药环境下, 碳青霉烯类药物的临床定位
主要内容
1 多重耐药(MDR)现状及治疗策略
2 碳青霉烯治疗MDR感染的定位及应用
产ESBL肠杆菌感染 鲍曼不动杆菌感染 铜绿假单胞菌感染 KPC感染
MDR致病菌的定义
ALL
MDR XDR PDR
Falagas ME et al. Clin Infect Dis 2008;41:848-54.
➢ 即使产ESBL肠杆菌对β-内酰胺类/ β-内酰胺酶抑制敏感,由于存在接种物效应,其临床 疗效也可能不佳
➢ 产ESBL肠杆菌对β-内酰胺类/ β-内酰胺酶抑制剂的中介或耐药率高
➢ 虽然部分小样本研究显示, β-内酰胺类/ β-内酰胺酶抑制能用于产ESBL肠杆菌感染的治 疗,但研究者认为其临床疗效还待大型研究进一步证实
敏感率
敏感率(%)
碳青霉烯类对产ESBL菌始终保持强大抗菌活性
• SMART研究显示:产ESBL大肠埃希菌对亚胺培南和厄他培南的敏感率最

亚胺培南 厄他培南 阿米卡星 哌拉西林/他唑巴坦 头孢西丁 头孢他啶 环丙沙星 头孢吡肟 头孢曲松
(年)
一项全球性大型耐药监测,入选2002-2010年的30840株来自腹腔内感染大肠埃希氏菌的临床分离株,监测厄 他培南对大肠埃希菌的体外抗菌活性
血标本来源亚胺培南敏感率99头孢哌酮舒巴坦敏感率80存在接种物效应即在高接种菌量时药物对细菌的mic值比标准接种菌量时明显升高的现象即使产esbl肠杆菌对内酰胺类内酰胺酶抑制敏感由于存在接种物效应其临床疗效也可能不佳产esbl肠杆菌对内酰胺类内酰胺酶抑制剂的中介或耐药率高虽然部分小样本研究显示内酰胺类内酰胺酶抑制能用于产esbl肠杆菌感染的治疗但研究者认为其临床疗效还待大型研究进一步证实无论经验性治疗还是靶向治疗碳青霉烯类组全因死亡率更低治疗组亚组分析碳青霉烯组死亡率合计酶抑制剂组死亡率合计权

李振军-中国疾病预防控制中心

李振军-中国疾病预防控制中心

李振军一、个人简介李振军,男,医学博士,研究员,现任中国疾病预防控制中心传染病预防控制所生物安全实验室主任、传染病预防控制国家重点实验室生物安全组PI,科教外事处处长。

从事大肠杆菌O157:H7、痢疾杆菌的疾病控制、分子生物学、分子流行病学研究,16S rDNA序列用于未知病原检测技术体系的建立和应用。

先后承担“艾滋病和病毒性肝炎等重大传染病防治”科技重大专项等多项课题,目前主持或参与“863”项目、卫生科研专项和传染病预防控制国家重点实验室等多项课题。

主要开展细菌性疾病病原学和致病机理、分子流行病学、疾病预警预测、生物安全等相关课题的研究工作,针对结核病、艾滋病等重大传染病感染过程中,诺卡氏菌的感染率呈上升的趋势,有针对性开展了我国诺卡氏菌的诊断方法建立、流行病学分析以及分子分型工作,并为阐明相关致病机理奠定了基础。

参与编写国家标准3项,以第一作者或通讯作者发表论文30余篇,获得中华预防医学奖二等奖1项,任职中华预防医学会生物安全和防护装备分会副主任委员。

二、主要研究方向1、诺卡氏菌分子流行病学及致病机理研究2、生物安全污染控制及风险评估机制课题研究3、细菌性传染病监测预警技术研究三、代表性科研项目1.实验室感染性材料溯源和生物风险溯源关键技术和产品研究,863项目,2014.1-2016.122.基于多元信息的传染病实时监测预测预警体系的建立及应用,传染病重大专项,2013.1-2015.123.新时期我国实验室生物安全重要问题及其对策研究重大专项,卫生行业专项,2013.6-2016.12四、代表性论文、成果(2011年以来)1.Diversity of Pathogens Responsible for Acute Diarrheal Disease in China,Clin Infect Dis ,2013 Dec;57(12):1788-90,IF 9.374,共同第一2.Short-Term Effect of El Nin ˜o-Southern Oscillation on Pediatric Hand, Foot and Mouth Disease in Shenzhen,China,Plos One,2013 Jul ;23;8(7):e65585,IF3.730,通讯作者3.Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis,BMC Microbiol,2013 Jun 19;13:141,IF2.796,共同第一作者4.Multidrug-resistant atypical variants of Shigella flexneri in China. Emerg Infect Dis,2013 Jul;19(7):1147-50,IF6.312,共同第一作者5.Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PLoS One,2013 Jun 3;8(6),IF3.73,共同第一作者6.Occupational distribution and prevalence of influenza, china, 2008-2012. Clin Infect Dis,2013 Sep;57(5):776-8,IF9.374,共同第一作者7.Molecular typing of Brucella suis collected from 1960s to 2010s in China by mlva and pfge,Biomedical and Environmental Sciences,2013 June;26(6):504-508,IF1.154,第一作者8.Identifying high-risk areas of bacillary dysentery and associated meteorologicalfactors in Wuhan, China ,Scientific Reports,2013 Nov 21;3:3239,IF2.927,第一作者9.An outbreak of Mycoplasma pneumoniae caused by a macrolide-resistant isolate in a nursery school in China,Antimicrob Agents Chemother. 2012 Jul;56(7):3748-52,IF4.841,共同通讯作者10.A new treatment for neurogenic inflammation caused by EV71 with CR2-targeted complement inhibitor. Virol J. 2012 Nov 23;9(1):285 ,IF2.343 ,共同通讯作者。

多黏菌素E甲磺酸钠(CMS)吸入治疗肺炎的研究进展

多黏菌素E甲磺酸钠(CMS)吸入治疗肺炎的研究进展

多黏菌素E甲磺酸钠(CMS)吸入治疗肺炎的研究进展发布时间:2022-01-01T06:26:17.866Z 来源:《医师在线》2021年9月17期作者:廖国平胡建华周水艳陈艳尹新生[导读]廖国平胡建华周水艳陈艳尹新生*(湖南省常宁市中医医院;湖南常宁421500)[摘要] 研究表明多黏菌素雾化吸入治疗肺炎的靶向性好,疗效显著,肾毒性小,多个国内外指南将其作为多重耐药革兰阴性菌(MDR-GNB)所致肺炎的重要治疗方法之一。

从目前文献来看,这一治疗方式的研究数据主要来源于多黏菌素E甲磺酸钠(CMS)的临床实践。

本文CMS吸入治疗肺炎的最新临床应用指南拓展到现有研究状况,并结合临床实际应用情况进行总结,以期为临床制定合理给药方案提供参考。

[关键词] 多黏菌素E甲磺酸钠;肺炎;研究进展肺炎是全世界感染性疾病死亡的主要原因,特别是近年来随着细菌耐药形势日益严峻以及新型治疗药物研发的滞后,肺炎的治疗变得更为棘手。

鉴于此种情况,多黏菌素被重新启用,成为多重耐药革兰阴性菌(multidrug-resistant gram negetive bacteria, MDR-GRN)所致肺炎的最后一道防线。

多黏菌素是浓度依赖型抗菌药物,但是多黏菌素全身给药治疗窗窄,肺部穿透力差,往往难以达到有效的肺组织浓度[1]。

雾化吸入法则可以显著提高多黏菌素肺组织浓度的同时降低药物全身暴露水平,从而达到提高疗效、减少全身性不良反应的目的[2]。

目前多个国内外指南和共识[3,4]推荐雾化吸入多黏菌素作为MDR-GNB所致肺炎的重要治疗方法之一。

然而,这种治疗方式的临床前和临床药动学/药效学(Pharmacokinetics/Pharmacodynamics,PK/PD)研究较少,且主要来源于多黏菌素E甲磺酸钠(colistin methanesulfonate,CMS)的临床应用实践。

本文从吸入CMS治疗肺炎的最新临床应用指南拓展到现有研究状况,并结合临床实际应用情况进行总结,以期为临床制定合理给药方案提供参考。

恶唑烷酮类抗菌药的临床应用

恶唑烷酮类抗菌药的临床应用

13.4
18.3 15.8 15.8 10.3
25.1
16.4 8.6 13.4 7.5
200
104 60 94 71
腹膜透析液5
600 mg PO (1剂)
11.2
6.9
61
* 健康人药代动力学数据及药物体外抗菌活性不一定与临床疗效有关。
1. 2. 3. 4. 5. Honeybourne D, et al. J Antimicrob Chemother. 2003;51:1431-4 and [erratum] 2003;52;536. Gee T, et al. Antimicrob Agents Chemother. 2001;45:1843-6. Lovering AC, et al. J Antimicrob Chemother. 2002;50:73-7. Pfizer Inc., data on file. 5. Gendjar SR, et al. ASN/ISN WCN 2001, Abstract 2205. Gendjar SR, et al. [abstract]. Proceedings of the ASN/ISN World Congress of Nephrology. October 13-17, 2001; San Francisco, CA. Abstract 2205.
•多重耐药肺炎链球菌(MDRSP):对下列2种或更多种抗生素耐药的菌株,包括青霉素、第二代头孢菌素、大环内 酯类、四环素和SMZ/TMP。
4
1. 斯沃说明书。
三、利奈唑胺的作用机制
与敏感细菌50S核糖体亚单位结合,阻碍细菌的蛋白质合成
喹诺酮类 DNA拓扑异构酶Ⅳ/促旋酶
细胞壁合成 糖肽类 ß-内酰胺类 磷霉素类

耐药背景抗生素选择(舒普深2016)

耐药背景抗生素选择(舒普深2016)
碳青霉烯、替加环素有效后的替换
非 ESBLs 高危因素、社区非重症患者
MDR 非发酵菌

碳青霉烯耐药铜绿(CRPA)和不动(CRAB)
Mபைடு நூலகம்R 铜绿假单胞菌感染高危因素
MDR铜绿假单胞菌感染的单因素分析
Souha S. Kanj, Mayo Clin Proc. • March 2011;86(3):250-259
治疗 CRE 感染的联合方案 —2014中国 XDR 感染诊治专家共识
两药联合
1.
三药联合
替加环素+多粘菌素+碳青霉烯类
替加环素为基础的联合: 替加环素+氨基糖苷类
替加环素+碳青霉烯类
P值 < 0.001 0.001 < 0.001 < 0.001
中心静脉内插管
机械通气 既往抗菌治疗
45 (49.5)
15 (16.5) 58 (63.7)
14 (15.4)
1 (1.1) 16 (17.6)
5.38 (2.67–10.86)
17.76 (2.29–137.59)
< 0.001
< 0.001 < 0.001
Klebsiella pneumoniae( 肺炎克雷伯菌) Closridium difficile(难辩梭菌) AcinetobacterBaumannii(鲍曼不动杆菌)
Pseudomonas Aeruginosa(铜绿假单胞菌) Enterobacteriaceae (肠杆菌科细菌) Enterobacter species( 肠杆菌属)
进 入 多 重 耐 药 菌 的 时 代 抗生素后时代
ESCAPE
中 国

希舒美阿奇霉素用法用量

希舒美阿奇霉素用法用量

希舒美治疗儿童急性细菌性中耳炎 —患者入选标准*
❖ 年龄6个月-12岁1,2 ❖ 2周内未给予抗生素治疗1 ❖ 无慢性中耳炎或化脓性中耳炎1 ❖ 耳镜检查至少有下列征之一:鼓膜出现红斑、肿胀或膨出;
运动受损、可视标志区消失2
❖ 下列症状之一:耳痛、发热、嗜睡、易激惹、鼓室测压法发现 有中耳液2
❖ 对本研究所用药物无过敏史1 ❖ 无影响治疗反应的严重疾病(免疫缺陷、肝肾功能不全) 1
希舒美治疗成人慢性支气管炎急性发作 —患者入选标准*
❖ 40–75岁有慢性支气管炎病史(咳嗽、咳痰或伴喘息, 每年连续发病3个月,连续2年或以上)
❖ 基线 FEV1 >35%,心电图正常 ❖ 临床AECB的诊断至少符合下列2项:
▪ 呼吸困难加重 ▪ 与加重前相比,脓性痰且痰量增加 ▪ 适合口服抗生素的门诊治疗
希舒美治疗呼吸道感染的用法用量
人群/疾病 成人: 急性细菌性鼻窦炎 慢性支气管炎急性发作 门诊CAP 住院CAP
希舒美用法用量
500mg qd po x 3天1 500mg qd po x 3天2 500mg qd po x 3天 3 500mg iv qd×2-5天,继以500mg po qd,总疗 程7-10天4-5
1 Henry DC, et al. Randomized double-blind study comparing 3- and 6-day regimens of azithromycin with a 10-day amoxicillin-clavulanate regimen for treatment of acute bacterial sinusitis. Antimicrob Agents Chemother. 2003;47(9):2770-4 2 Zervos M, et al. Efficacy and safety of 3-day azithromycin versus 5-day moxifloxacin for the treatment of acute bacterial exacerbations of chronic bronchitis. Int J Antimicrob Agents. 2007;29(1):56-61 3 Rahav G, et al. Azithromycin versus comparative therapy for the treatment of community acquired pneumonia. Int J Antimicrob Agents. 2004;24(2):181-4 4Plouffe J, et al. Clinical efficacy of intravenous followed by oral azithromycin monotherapy in hospitalized patients with community-acquired pneumonia. The Azithromycin Intravenous Clinical Trials Group. Antimicrob Agents Chemother. 2000;44(7):1796-802. 5 黄海辉,吴菊芳,张婴元等.阿奇霉素序贯疗法治疗社区获得性肺炎138例临床评价.中国抗感染化疗杂志 2004;4(5):257-262

泰能完整版

泰能完整版

泰能®(亚胺培南/西司他丁)抗菌谱实际上包括了 大多数临床意义的病原菌,包括了革兰氏阴性需 氧菌,革兰氏阳性需氧菌、厌氧菌。
不包括1: – 嗜麦芽寡养单胞菌 – 一些洋葱伯克霍尔德菌 – 屎肠球菌 – 甲氧西林耐药的金葡菌 (MRSA)
MRSA: methicillin-resistant Staphylococcus aureus
铜绿假单胞菌的耐药机制二:外排泵
外排泵 排出通道 (OprM)
外膜
美罗培南被 外排泵排出, 而亚胺培南
未被排出
外周胞质
内层脂蛋白 (Mex A)
细胞质膜
外排泵 (Mex B) Adapted with permission from Livermore DM. Clin Infect Dis 2002;34:634-640.
*引起医院内血行性感染的指标病原菌株中排除肠球菌
Maglio D et al. Clin Therapeut 2005; 27: 1032
泰能® (亚胺培南/西司他丁):
可靠的疗效,成功的经验
广谱抗菌活性
交叉耐药的可能性低
良好的PK/PD和组织浓度 疗效卓越,退热快疗程短的可能 良好的安全性和耐受性
铜绿假单胞菌的耐药机制一:膜孔蛋白
亚胺培南 和
美罗培南 在此进入
外膜
外周胞质
细胞质膜
膜孔蛋白
Adapted with permission from Livermore DM. Clin Infect Dis 2002;34:634-640.
35.3 33
28.8
27
15.3
16
7.2
3
0.8 0.4
0.3 0.5

《碳青霉烯类抗菌药物临床应用专家共识》解读

《碳青霉烯类抗菌药物临床应用专家共识》解读

15
临床应用存在的问题
原因分析
碳青霉烯类抗菌药物使用量增加的主要原因:
多重耐药菌感染患者增多。 免疫缺陷/免疫抑制治疗患者增多。 部分医务人员临床应用不合理。
16
临床应用存在的问题
不同细菌对美罗培南的耐药率
中国细菌耐药监测网
17
临床应用存在的问题
不同细菌对亚胺培南的耐药率
全中国细菌耐药监网测网
临床应用的专家建议
碳青霉烯耐药肠杆科细菌
35
MIC≤8,可以 通过增加剂量 和延长输注时 间有效
Simulated concentration–time profiles of three different dosing regimens of meropenem. TI, traditional 30-min infusion; PI, prolonged 3-h infusion.
MDR感染治疗原则:
• 针对可能的致病菌,能单药的就单药;不能单药的,选择有协同作用的药 物联合治疗
中国医学论坛报.2012年10月11日.A12-A13
31
临床应用的专家建议
产ESBLs肠杆科细菌
2010年在Drugs发表的一篇关于产 ESBL肠杆菌感染治疗综述指出:
肺炎、菌血症 腹腔感染、复杂尿路感染
11
碳青霉烯类抗菌药物
药动学和不良反应
药品名称
亚胺培南 帕尼培南 美罗培南 比阿培南 厄他培南
配伍
西司他丁 倍他米隆



半衰期(h)
~1
~1
~1
~1
~4
剂量(mg)
250~1000 500~1000 500~2000 300~600

铜霉素的功能主治

铜霉素的功能主治

铜霉素的功能主治1. 编写目的本文档旨在介绍铜霉素的功能主治,以帮助读者了解铜霉素的用途和适应症。

2. 功能主治铜霉素是一种抗生素,具有广谱抗菌作用,常用于治疗各种感染性疾病。

其功能主治包括但不限于以下几个方面:•治疗呼吸系统感染:铜霉素可用于治疗包括肺炎、支气管炎等呼吸系统感染。

它通过抑制细菌的蛋白质合成,破坏其生长和繁殖,从而有效地杀灭或抑制病原体。

•治疗泌尿系统感染:铜霉素可用于治疗包括尿路感染、膀胱炎等泌尿系统感染。

它能够穿过细菌细胞膜,靶向细菌的核糖体,抑制细菌蛋白质的合成,从而起到杀菌效果。

•治疗消化系统感染:铜霉素可用于治疗消化系统感染,如胃炎、肠炎等疾病。

它通过对细菌的蛋白质合成产生干扰,抑制细菌的生长和繁殖,从而达到治疗感染的效果。

•治疗皮肤感染:铜霉素也可用于治疗皮肤感染,如脓皮病、疖肿等。

它通过干扰细菌的蛋白质合成,抑制细菌的生长和繁殖,有效消除细菌感染,促进伤口的愈合。

•治疗眼部感染:铜霉素还可用于治疗眼部感染,如结膜炎、角膜炎等。

它通过抑制细菌的蛋白质合成,减少感染病原体的数量,从而达到治疗的效果。

•治疗性传播疾病:除了上述常见感染疾病外,铜霉素还可用于治疗性传播疾病,如淋病、非淋病性尿道炎等。

它通过抑制细菌的蛋白质合成,杀灭或抑制病原体,达到治疗的效果。

3. 注意事项•铜霉素属于处方药,严禁自行使用。

在使用铜霉素前,应咨询医生的建议并按照医生的指导使用。

•对于对铜霉素过敏者、肝功能受损者、孕妇和哺乳期妇女,以及存在其他禁忌疾病的患者,应避免使用铜霉素。

•在使用铜霉素期间,应遵循医生的用药建议和剂量,不可随意增减剂量或中断治疗。

•铜霉素可能对某些人产生副作用,如过敏反应、胃肠不适、肝功能损伤等。

出现不适症状时,应立即停止使用并就医。

•同时使用其他药物时,应先咨询医生,以避免药物相互作用的发生。

4. 总结铜霉素是一种常用的抗生素,其具有广谱抗菌作用,适用于多种感染性疾病,如呼吸系统感染、泌尿系统感染、消化系统感染、皮肤感染、眼部感染、以及性传播疾病等。

利奈唑胺在肺炎患者中的血药稳态浓度和肺组织中的浓度比较

利奈唑胺在肺炎患者中的血药稳态浓度和肺组织中的浓度比较
Roberts JA,Abdul-Aziz MH,Lipman J,et al. Challenges and Potential Solutions – Individualised Antibiotic Dosing at the Bedside for Critically Ill Patients: a structured ncet Infect Dis. 2014; 14(6): 498–509.
剩余BAL2以400×g离心5 分钟。分离上清液和细 胞,-70℃冷冻直到测定。 分离一份上清液,冷冻 用于尿素测定
BAL2中取4ml等分 试样,立即送到实 验室进行细胞计数 和分类
镜检结束前、结束时和结 束后30~60min记录血压, 心率,呼吸频率和脉搏
三、研究方法
3. 血样采集
支气管镜检查术前, 每位病人外周静脉抽取2 mL 抗凝血, 分离血 浆, 保存于-70 ℃冰箱, 以备之后测定血浆药物浓度。
4. 标本处理 5. 利奈唑胺的测量和分析
高效液相色谱
三、研究方法
6. 药物代谢动力学
使用WinNonlin药代动力学软件。 使用线性梯形法计算从0到最后观察时间(AUC0-t)的浓度 - 时间曲 线下面积。 得出利奈唑胺的其余PK参数。 7. 统计分析
三、研究方法
8. 预期结果
样品 血浆浓度 组别 3h 6h 12h
ELF浓度
渗透率
利奈唑胺在肺组织中的渗透率较高,能有效治疗由MRSA引起的医 院获得性肺炎。
谢谢观看!
排除标准
研究方案经伦理委员会审批,使每位受试者知情同意。
三、研究方法
1. 研究设计和受试者
36名受试者,随机分成3组——3h,6h和12h组,每组12人。 每名受试者接受600mg利奈唑胺,静脉输注,q12h。

多重耐药环境下,碳青霉烯类药物的临床定位 (1)

多重耐药环境下,碳青霉烯类药物的临床定位 (1)

主要内容
1
多重耐药(MDR)现状及治疗策略 碳青霉烯治疗MDR感染的定位及应用
产ESBL肠杆菌感染 鲍曼不动杆菌感染
2
铜绿假单胞菌感染 KPC感染
产ESBL细菌感染专家共识推荐首选碳青霉烯治疗
• 2010年在Drugs发表的一篇关于产ESBL肠杆菌感染治疗综述指出:院内 产ESBL肠杆菌感染的肺炎、菌血症、腹腔感染及复杂尿路感染,推荐 碳青霉烯为首选药物
死亡风险因素(RR)
一项对纳入16项相关的研究,对产ESBLs肠杆菌科细菌感染 的菌血症患者的死亡率和延迟治疗方案对临床治疗结果的影 响的荟萃分析
Байду номын сангаас
1. Schwaber MJ, et al.J Antimicrob Chemother. 2007;60(5):913-20. 2. A. Vasudevan et al.Journal of Global Antimicrobial Resistance.2013(1)123–130.
Hawser SP et al.Int J Antimicrob Agents.2013;41(3):224-8
碳青霉烯类显著降低患者病死率
• 采用碳青霉烯类治疗,产ESBL肠杆菌感 染患者14天病死率下降83%1

使用碳青霉烯类治疗的产ESBL肺炎克雷 伯菌菌血症患者病死率最低,仅为3.7%
83%
产ESBL肠杆菌对β-内酰胺类/ β-内酰胺酶抑制剂 中介或耐药率高
抗菌药物
哌拉西林/他唑巴坦
中介或耐药率(%)
0-53
接种物效应
存在
阿莫西林/克拉维酸
37->80
存在
• 接种物效应即在高接种菌量时药物对细菌的MIC值比标准接种菌量时明显升高的现象 即使产ESBL肠杆菌对β-内酰胺类/ β-内酰胺酶抑制敏感,由于存在接种物效应,其临床 疗效也可能不佳 产ESBL肠杆菌对β-内酰胺类/ β-内酰胺酶抑制剂的中介或耐药率高 虽然部分小样本研究显示, β-内酰胺类/ β-内酰胺酶抑制能用于产ESBL肠杆菌感染的治 疗,但研究者认为其临床疗效还待大型研究进一步证实
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Isavuconazole Therapy Protects Immunosuppressed Mice from MucormycosisGuanpingsheng Luo,a Teclegiorgis Gebremariam,a Hongkyu Lee,a John E.Edwards,Jr.,a,b Laura Kovanda,c Ashraf S.Ibrahim a,bThe Division of Infectious Diseases,Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center,and St.John’s Cardiovascular Research Center,Torrance,California,USA a;David Geffen School of Medicine at University of California Los Angeles,Los Angeles,California,USA b;Astellas Pharma Global Development,Inc.,Northbrook,Illinois,USA cWe studied the in vitro and in vivo efficacies of the investigational drug isavuconazole against mucormycosis due to Rhizopus delemar.Isavuconazole was effective,with MIC and minimal fungicidal concentration(MFC)values ranging between0.125and 1.00␮g/ml.A high dose of isavuconazole prolonged the survival time and lowered the tissue fungal burden of cyclophospha-mide/cortisone acetate-treated mice infected with R.delemar and was as effective as a high-dose liposomal amphotericin B treat-ment.These results support the further development of this azole against mucormycosis.M ucormycoses are among the most common infections af-flicting immunocompromised hosts and are occurring at an increasing frequency(1–3).The risk factors for mucormycosis include compromised immune status due to hematologic malig-nancies,neutropenia,steroid treatment,hyperglycemia,ketoaci-dosis and other forms of acidosis,deferoxamine therapy,and trauma(4–6).Despite disfiguring surgical debridement and ad-junctive antifungal therapy,the overall mortality rate of mucor-mycosis remains approximately50%and can approach100%in hematogenously disseminated and central nervous system disease and in patients with prolonged neutropenia(2,7–11).Clearly, new strategies for preventing and treating mucormycosis are ur-gently needed.The new investigational drug isavuconazole(BAL4815)(ISA) is the active compound of the water-soluble prodrug isavucona-zonium sulfate(BAL8557).Following administration,the prod-rug isavuconazonium sulfate is rapidly converted by esterases in plasma to isavuconazole(isavuconazole is the term used here to describe the medicinal product).ISA shows broad-spectrum ac-tivity against fungi and is currently in late-stage clinical develop-ment for invasive fungal diseases,including invasive mucormyco-sis and invasive aspergillosis.For example,ISA has activity against Aspergillus spp.(12–15)(including those resistant to itraconazole, caspofungin,and amphotericin B[13]),Candida spp.(16,17) (including isolates resistant tofluconazole[18]),and Cryptococcus spp.(19,20).Recent studies demonstrated promising in vitro ac-tivity of ISA against Mucorales(12,21,22)fungi that cause mu-cormycosis.Therefore,the activity of ISA was compared to that of liposomal amphotericin B(LAmB)in a murine model of mucor-mycosis.Since Rhizopus species are the most common Mucorales isolates obtained from patients with mucormycosis(8,23,24), these studies focused on Rhizopus delemar.The MIC100(defined as the lowest concentration that causes 100%growth inhibition relative to the drug-free growth control) values of ISA(Astellas Pharma Global Development,Inc.,North-brook,IL)were determined against four clinical isolates of R.dele-mar(fumaric-malic acid producers)or four clinical isolates of Rhizopus oryzae(lactic acid producers)(25)using the Clinical Laboratory and Standards Institute(CLSI)M38-A2method(26). The minimal fungicidal concentrations(MFCs)were also deter-mined by spotting samples from all of the96-well plates on potato dextrose agar(PDA)plates supplemented with0.1%Triton X-100 and incubating them at37°C for2days.The MFC was defined as the lowest concentration of the drug at which the organism failed to grow on the PDA plate.Against R.delemar isolates,ISA had median MIC100and MFC values of0.188␮g/ml(25th and75th quartiles,0.0625and0.0625␮g/ml).All tested R.oryzae isolates had ISA MIC100and MFC values of0.125␮g/ml.These studies showed that isavuconazole is fungicidal,since the MFC values were equivalent to the MIC values.Next,the efficacy of the prodrug isavuconazonium sulfate was evaluated in a neutropenic mouse model of intratracheal infection (27)caused by R.delemar99-880(a brain isolate with ISA MIC100 and MFC values of0.25␮g/ml).Male ICR mice(23to25g;Tac-onic Farms,Germantown,NY)were used in this study.They were given irradiated feed and sterile water containing50␮g/ml Baytril(enrofloxacin;Bayer)ad libitum(to control for bacterial infection).Neutropenia was induced by cyclophosphamide(200 mg/kg of body weight intraperitoneally[i.p.])and cortisone ace-tate(500mg/kg subcutaneously)on daysϪ2and3relative to infection.This treatment regimen results inϳ10days of leukope-nia with a total white blood cell count dropping fromϳ13,0000/ cm3to almost no detectable leukocytes as determined by the Uno-pette system(Becton-Dickinson and Co.,Franklin Lakes,NJ). After sedation with ketamine and xylazine,the mice were intra-tracheally infected with2.5ϫ105spores of R.delemar99-880(27). Treatment with the prodrug isavuconazonium sulfate(80,110, and215mg/kg,prepared fresh daily in irrigation water and given orally three times daily[t.i.d.])started8h postinfection and con-tinued through day4.The higher dose of215mg/kg t.i.d.of isa-vuconazonium sulfate demonstrated enhanced efficacy over that of placebo treatment of mice(70%survival in the isavuconazo-Received23October2013Returned for modification7January2014Accepted26January2014Published ahead of print3February2014Address correspondence to Ashraf S.Ibrahim,ibrahim@.Copyright©2014,American Society for Microbiology.All Rights Reserved.doi:10.1128/AAC.02301-13 Antimicrobial Agents and Chemotherapy p.2450–2453April2014Volume58Number4 on February 9, 2015 by guest / Downloaded fromnium sulfate-treated mice versus 10%survival for placebo mice [treated orally with irrigation water]after 21days)(Fig.1).Since a high dose of ISA (215mg/kg t.i.d.)demonstrated effi-cacy against R.delemar infection,the efficacy of this dose was compared against that of a high dose of LAmB (AmBisome;Gilead Sciences Inc.,Forest City,CA)in treating mucormycosis,which is considered the standard therapy for mucormycosis in this model (28).LAmB was dissolved initially in sterile irrigation water and diluted in 5%dextrose water (D5W)according to the manufac-turer’s instructions.Neutropenic mice were infected intratrache-ally as described above.Eight hours later,treatment with isavu-conazonium sulfate (215mg/kg t.i.d.,given orally)or LAmB (15mg/kg,given once daily through tail vein injection)started and continued through day 4.Neutropenic mice infected intratrache-ally and administered a comparable volume of vehicle (i.e.,D5W)served as placebo controls.The primary endpoint for efficacy was the time to moribundity of infected mice.ISA was as effective as LAmB in treating neutropenic mice for mucormycosis.The twenty-one-day survival rates for the prodrug isavuconazonium sulfate-,LAmB-,and placebo-treated mice were 65%,40%,and 15%,respec-tively (Fig.2A ).Because ISA increased the survival rate of neutropenic mice infected with R.delemar ,the effect of drug treatment on the tissue fungal burden in target organs was determined.The mice were infected as described above and treated until day 3relative to infection when the mice were sacrificed and their lungs and brains harvested and tested for tissue fungal burden (representing pri-mary and secondary target organs [27])by quantitative PCR (qPCR)(29).Treatment of the mice with the prodrug resulted in an approximately 1-log decrease in lung and brain fungal burdens compared to those of placebo-treated controls.This reduction in tissue fungal burden was comparable to that elicited by LAmB treatment (Fig.2B ).A recent study demonstrated that oral-gastric doses of the pro-drug isavuconazonium sulfate at 10,40,160,and 640mg/kg pro-duced serum peak levels of 0.51to 25.4␮g/ml ISA and an elimi-nation half-life of 1to 5h (30).The short half-life of this drug is in contrast to the long half-life of Ͼ50h seen in humans following a single-dose administration (31).Therefore,the prodrug was ad-ministered three times daily over a series of doses that would pro-vide a range of exposures,some of which should result in serum peak levels of ISA above the registered MIC and MFC values of 0.125to 1.0␮g/ml.Indeed,the higher dose of 215mg/kg (prodrug isavuconazonium sulfate)given three times daily,which would have resulted in serum peak levels of Ͼ12.5␮g/ml ISA and a half-life of Ͼ3.1h (30),demonstrated enhanced protection of mice from mucormycosis.This protection was equivalent to the efficacy demonstrated by a high dose of LAmB.In addition to the activity in the cyclophosphamide/cortisone acetate-treated mice,ISA activity has been demonstrated in ani-mal models of other fungal infections,including invasive aspergil-losis and disseminated candidiasis (14,32,33).Finally,the avail-ability of ISA in oral and intravenous formulations provides a clear advantage for this azole for use in different medical scenar-ios.However,given the frequency of this infection in patients with diabetes,future studies of ISA efficacy should also be carried out in a diabetic murine mucormycosis model (8,9).In summary,given0%20%40%60%80%100%071421Days post infection% S u r v i v a lFIG 1Isavuconazole enhanced survival of neutropenic mice with mucormy-cosis pneumonia.Mice (n ϭ10per arm)were infected intratracheally with 2.5ϫ105spores of R.delemar 99-880(inhaled inoculum was 4.1ϫ103spores).Isavuconazonium sulfate treatment started 8h postinfection and con-tinued three times daily at 80,110,or 215mg/kg by oral gavage through day 4postinfection.Placebo mice were infected and treated with sterile irrigation water.*,P Ͻ0.05compared to placebo-treated mice by log rank test.1.01.52.02.53.03.54.04.55.05.5Placebo LAmB ISAL o g 10 s p o r e s e q u /g t is s u e0%20%40%60%80%100%071421Days post Infection% S u r v i v alABFIG 2Isavuconazole is as effective as high-dose LAmB in improving survival (A)and reducing fungal burden (B)of neutropenic mice from mucormycosis.Mice(n ϭ10per arms for both A and B)were infected intratracheally with 2.5ϫ105spores of R.delemar 99-880(average inhaled inoculum was 1.3ϫ103cells).Isavuconazonium sulfate (215mg/kg t.i.d.,by oral gavage)or LAmB (15mg/kg every day by i.v.injection)treatment started 8h postinfection and continued through day 4postinfection (A)and day 3postinfection (B).Placebo mice were infected and treated with 5%dextrose water.(A)Survival of mice through day 21.*,P ϭ0.025or 0.004for LAmB or ISA compared to placebo by log rank test,respectively.(B)Fungal burden was measured by qPCR with a conidial standard curve (29,34).All qPCR results are expressed as log 10spore equivalents per gram of tissue.*,P Ͻ0.05compared to placebo by Wilcoxon rank sum test.Isavuconazole for MucormycosisApril 2014Volume 58Number 2451on February 9, 2015 by guest/Downloaded fromthe in vitro and in vivo evidence of the activity of ISA against Rhizopus,these results warrant further development of this azole for the treatment of mucormycosis. ACKNOWLEDGMENTSThis work was supported by Public Health Service grant R01AI063503 and a research and educational grant from Astellas Pharma US to A.S.I.The research described in this article was conducted at the research facilities of the Los Angeles Biomedical Research Institute at Harbor-Uni-versity of California Los Angeles Medical Center.REFERENCES1.Chakrabarti A,Chatterjee SS,Das A,Panda N,Shivaprakash MR,KaurA,Varma SC,Singhi S,Bhansali A,Sakhuja V.2009.Invasive zygomy-cosis in India:experience in a tertiary care hospital.Postgrad.Med.J.85:573–581./10.1136/pgmj.2008.076463.2.Marr KA,Carter RA,Crippa F,Wald A,Corey L.2002.Epidemiologyand outcome of mould infections in hematopoietic stem cell transplant recipients.Clin.Infect.Dis.34:909–917./10.1086/339 202.3.Rammaert B,Lanternier F,Zahar JR,Dannaoui E,Bougnoux ME,Lecuit M,Lortholary O.2012.Healthcare-associated mucormycosis.Clin.Infect.Dis.54(Suppl1):S44–S54./10.1093/cid /cir867.4.Petrikkos G,Skiada A,Lortholary O,Roilides E,Walsh TJ,Kontoyi-annis DP.2012.Epidemiology and clinical manifestations of mucormy-cosis.Clin.Infect.Dis.54(Suppl1):S23–S34./10.1093 /cid/cir866.5.Neblett Fanfair R,Benedict K,Bos J,Bennett SD,Lo YC,Adebanjo T,Etienne K,Deak E,Derado G,Shieh WJ,Drew C,Zaki S,Sugerman D, Gade L,Thompson EH,Sutton DA,Engelthaler DM,Schupp JM, Brandt ME,Harris JR,Lockhart SR,Turabelidze G,Park BJ.2012.Necrotizing cutaneous mucormycosis after a tornado in Joplin,Missouri, in2011.N.Engl.J.Med.367:2214–2225./10.1056 /NEJMoa1204781.6.Warkentien T,Rodriguez C,Lloyd B,Wells J,Weintrob A,Dunne JR,Ganesan A,Li P,Bradley W,Gaskins LJ,Seillier-Moiseiwitsch F,Mur-ray CK,Millar EV,Keenan B,Paolino K,Fleming M,Hospenthal DR, Wortmann GW,Landrum ML,Kortepeter MG,Tribble DR.2012.Invasive mold infections following combat-related injuries.Clin.Infect.Dis.55:1441–1449./10.1093/cid/cis749.7.Gleissner B,Schilling A,Anagnostopolous I,Siehl I,Thiel E.2004.Improved outcome of zygomycosis in patients with hematological dis-eases?Leuk.Lymphoma45:1351–1360./10.1080/104281 90310001653691.8.Ibrahim AS,Edwards JE,Jr,Filler SG,Spellberg B.2011.Mucormycosisand entomophthoromycosis(zygomycosis),p265–280.In Kauffman CA, Pappas PG,Sobel JD,Dismukes WE(ed),Essentials of clinical mycology, 2nd ed.Springer,New York,NY.9.Kauffman CA.2004.Zygomycosis:reemergence of an old pathogen.Clin.Infect.Dis.39:588–590./10.1086/422729.10.Kontoyiannis DP,Wessel VC,Bodey GP,Rolston KV.2000.Zygomy-cosis in the1990s in a tertiary-care cancer center.Clin.Infect.Dis.30:851–856./10.1086/313803.11.Husain S,Alexander BD,Munoz P,Avery RK,Houston S,Pruett T,Jacobs R,Dominguez EA,Tollemar JG,Baumgarten K,Yu CM, Wagener MM,Linden P,Kusne S,Singh N.2003.Opportunistic myce-lial fungal infections in organ transplant recipients:emerging importance of non-Aspergillus mycelial fungi.Clin.Infect.Dis.37:221–229.http://dx /10.1086/375822.12.Perkhofer S,Lechner V,Lass-Florl C.2009.In vitro activity of isavucona-zole against Aspergillus species and zygomycetes according to the method-ology of the European Committee on Antimicrobial Susceptibility Test-ing.Antimicrob.Agents Chemother.53:1645–1647./10 .1128/AAC.01530-08.13.Warn PA,Sharp A,Denning DW.2006.In vitro activity of a new triazoleBAL4815,the active component of BAL8557(the water-soluble prodrug), against Aspergillus spp.J.Antimicrob.Chemother.57:135–138.http://dx /10.1093/jac/dki399.14.Warn PA,Sharp A,Mosquera J,Spickermann J,Schmitt-Hoffmann A,Heep M,Denning parative in vivo activity of BAL4815,the active component of the prodrug BAL8557,in a neutropenic murine model of disseminated Aspergillusflavus.J.Antimicrob.Chemother.58: 1198–11207./10.1093/jac/dkl396.15.Rudramurthy SM,Chakrabarti A,Geertsen E,Mouton JW,Meis JF.2011.In vitro activity of isavuconazole against208Aspergillusflavus iso-lates in comparison with7other antifungal agents:assessment according to the methodology of the European Committee on Antimicrobial Sus-ceptibility Testing.Diagn.Microbiol.Infect.Dis.71:370–377.http://dx /10.1016/j.diagmicrobio.2011.08.006.16.Seifert H,Aurbach U,Stefanik D,Cornely O.2007.In vitro activities ofisavuconazole and other antifungal agents against Candida bloodstream isolates.Antimicrob.Agents Chemother.51:1818–1821. /10.1128/AAC.01217-06.17.Guinea J,Pelaez T,Recio S,Torres-Narbona M,Bouza E.2008.In vitroantifungal activities of isavuconazole(BAL4815),voriconazole,andflu-conazole against1,007isolates of zygomycete,Candida,Aspergillus,Fus-arium,and Scedosporium species.Antimicrob.Agents Chemother.52: 1396–1400./10.1128/AAC.01512-07.18.Yamazaki T,Inagaki Y,Fujii T,Ohwada J,Tsukazaki M,Umeda I,Kobayashi K,Shimma N,Page MG,Arisawa M.2010.In vitro activity of isavuconazole against140reference fungal strains and165clinically iso-lated yeasts from Japan.Int.J.Antimicrob.Agents36:324–331.http://dx /10.1016/j.ijantimicag.2010.06.003.19.Thompson GR,III,Wiederhold NP,Fothergill AW,Vallor AC,Wickes BL,Patterson TF.2009.Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans.Antimicrob.Agents Che-mother.53:309–311./10.1128/AAC.01216-08.20.Illnait-Zaragozi MT,Martinez GF,Curfs-Breuker I,Fernandez CM,Boekhout T,Meis JF.2008.In vitro activity of the new azole isavucona-zole(BAL4815)compared with six other antifungal agents against162 Cryptococcus neoformans isolates from Cuba.Antimicrob.Agents Che-mother.52:1580–1582./10.1128/AAC.01384-07.21.Chakrabarti A,Shivaprakash MR,Curfs-Breuker I,Baghela A,KlaassenCH,Meis JF.2010.Apophysomyces elegans:epidemiology,amplified frag-ment length polymorphism typing,and in vitro antifungal susceptibility pattern.J.Clin.Microbiol.48:4580–4585./10.1128/JCM .01420-10.22.Verweij PE,Gonzalez GM,Wiedrhold NP,Lass-Florl C,Warn P,HeepM,Ghannoum MA,Guinea J.2009.In vitro antifungal activity of isavu-conazole against345Mucorales isolates collected at study centers in eight countries.J.Chemother.21:272–281./10.1179/joc.2009 .21.3.272.23.Ribes JA,Vanover-Sams CL,Baker DJ.2000.Zygomycetes in humandisease.Clin.Microbiol.Rev.13:236–301./10.1128 /CMR.13.2.236-301.2000.24.Roden MM,Zaoutis TE,Buchanan WL,Knudsen TA,Sarkisova TA,Schaufele RL,Sein M,Sein T,Chiou CC,Chu JH,Kontoyiannis DP, Walsh TJ.2005.Epidemiology and outcome of zygomycosis:a review of 929reported cases.Clin.Infect.Dis.41:634–653./10 .1086/432579.25.Abe A,Oda Y,Asano K,Sone T.2007.Rhizopus delemar is the propername for Rhizopus oryzae fumaric-malic acid producers.Mycologia99: 714–722./10.3852/mycologia.99.5.714.26.CLSI.2008.Reference method for broth dilution antifungal susceptibilitytesting offilamentous fungi.Document M38-A2.CLSI,Wayne,PA. 27.Luo G,Gebremariam T,Lee H,French SW,Wiederhold NP,PattersonTF,Filler SG,Ibrahim AS.2013.Efficacy of liposomal amphotericin B and posaconazole in intratracheal models of murine mucormycosis.An-timicrob.Agents Chemother.57:3340–3347./10.1128 /AAC.00313-13.28.Ibrahim AS,Avanessian V,Spellberg B,Edwards JE,Jr.2003.Liposomalamphotericin B,and not amphotericin B deoxycholate,improves survival of diabetic mice infected with Rhizopus oryzae.Antimicrob.Agents Che-mother.47:3343–3344./10.1128/AAC.47.10.3343-3344 .2003.29.Ibrahim AS,Bowman JC,Avanessian V,Brown K,Spellberg B,EdwardsJE,Jr,Douglas CM.2005.Caspofungin inhibits Rhizopus oryzae1,3-beta-D-glucan synthase,lowers burden in brain measured by quantitative PCR,and improves survival at a low but not a high dose during murine dissem-inated zygomycosis.Antimicrob.Agents Chemother.49:721–727.http: ///10.1128/AAC.49.2.721-727.2005.Luo et al. Antimicrobial Agents and Chemotherapy on February 9, 2015 by guest / Downloaded from30.Lepak AJ,Marchillo K,Vanhecker J,Diekema D,Andes DR.2013.Isavu-conazole pharmacodynamic target determination for Candida species in an in vivo murine disseminated candidiasis model.Antimicrob.Agents Che-mother.57:5642–5648./10.1128/AAC.01354-13.31.Schmitt-Hoffmann A,Roos B,Heep M,Schleimer M,Weidekamm E,Brown T,Roehrle M,Beglinger C.2006.Single-ascending-dose phar-macokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815after intravenous infusions(50,100,and200milligrams)and oral administrations(100,200,and400milligrams)of its prodrug, BAL8557,in healthy volunteers.Antimicrob.Agents Chemother.50:279–285./10.1128/AAC.50.1.279-285.2006.32.Majithiya J,Sharp A,Parmar A,Denning DW,Warn PA.2009.Efficacyof isavuconazole,voriconazole andfluconazole in temporarily neutro-penic murine models of disseminated Candida tropicalis and Candida kru-sei.J.Antimicrob.Chemother.63:161–166./10.1093/jac /dkn431.33.Warn PA,Sharp A,Parmar A,Majithiya J,Denning DW,Hope WW.2009.Pharmacokinetics and pharmacodynamics of a novel triazole,isa-vuconazole:mathematical modeling,importance of tissue concentra-tions,and impact of immune status on antifungal effect.Antimicrob.Agents Chemother.53:3453–34561./10.1128/AAC .01601-08.34.Bowman JC,Abruzzo GK,Anderson JW,Flattery AM,Gill CJ,PikounisVB,Schmatz DM,Liberator PA,Douglas CM.2001.Quantitative PCR assay to measure Aspergillus fumigatus burden in a murine model of dis-seminated aspergillosis:demonstration of efficacy of caspofungin acetate.Antimicrob.Agents Chemother.45:3474–3481./10 .1128/AAC.45.12.3474-3481.2001.Isavuconazole for Mucormycosis2453 on February 9, 2015 by guest / Downloaded from。

相关文档
最新文档