高斯投影坐标正反算及换带计算

合集下载

高斯投影正反算

高斯投影正反算

高斯投影正反算学院:资源与环境工程工程学院专业:测绘工程 学号:X51414012:超一、高斯投影概述想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体的中心,然后用一定投影方法,将中央子午线两侧各一定经差围的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。

高斯投影由于是正形投影,故保证了投影的角度不变性,图形的相似性以及在某点各方向上长度比的同一性。

由于采用了同样法则的分带投影,这即限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行变形引起的各项改正的计算,并且带与带间的互相换算也能用相同的公式和方法进行。

高斯投影的这些优点必将使它得到广泛的推广和具有国际意义。

二、高斯投影坐标正算公式1.高斯投影必须满足以下三个条件 1)中央子午线投影后为直线 2)中央子午线投影后长度不变 3)投影具有正形性质,即正形投影条件2.高斯正算公式推导1)由第一个条件可知,由于地球椭球体是一个旋转椭球体,所以高斯投影必然有这样一个性质,即中央子午线东西两侧的投影必然对称于中央子午线。

2)由于高斯投影是换带投影,在每带经差l是不大的,lρ是一个微小量,所以可以将X=X (l,q ),Y=Y (l ,q )展开为经差为l 的幂级数,它可写成如下的形式X=m 0+m 2l 2+m 4l 4+…Y=m 1l+m 3l 2+m 5l 5+…式中m 0,m1,m2,…是待定系数,他们都是纬度B 的函数。

3)由第三个条件:∂y ∂l =∂x ∂q 和∂x ∂l =-∂y∂q ,将上式分别对l 和q 求偏导2340123423401234...........x m m l m l m l m l y n n l n l n l n l =+++++=+++++可得到下式0312123403121234111,,,, 234111,,,,234dm dm dm dm n n n n dq dq dq dq dn dn dn dn m m m m dq dq dq dq ⎧====⎪⎪⎨⎪=-=-=-=-⎪⎩经过计算可以得出232244524632235242225sin cos sin cos (594)224 sin cos (6158)720cos cos (1)6cos (5181458)120N N x X B B l B B t l NB B t t l Ny N B l B t l NB t t t l ηηηηη=+⋅+-+++-+=⋅+-++-++-三、高斯投影坐标反算公式推导1.思路:级数展开,应用高斯投影三个条件,待定系数法求解。

高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反算.

高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反算.

昆明冶金高等专科学校测绘学院 (4)计算公式
3 2 2 2 4 ( 5 3 t 9 t ) y f f f f 2M f N f 2 4M f N 3 f tf 2 4 6 (6 1 9 0t f 4 5t f ) y 7 2 0M f N 5 f 1 1 2 2 3 l y (1 2t f f ) y 3 N f co s B f 6 N f co s B f 1 2 5 (5 2 8t 2 t4 2 2 f 24 f 6 f 8 f t f )y 5 1 2 0N f co s B f B Bf tf y2 tf
式中:

2 e 2 cos2 B
t 2 tan2 B l (L L0) X为B对应子午线弧长 N为卯酉圈曲率半径 20626 5
昆明冶金高等专科学校测绘学院
2
高斯投影坐标反算公式
(1)高斯投影反算:
已知某点 x, y ,求该点 L, B ,即 x, y ( L, B) 的坐标变换。 (2)投影变换必须满足的条件
昆明冶金高等专科学校测绘学院
二、高斯投影坐标正反算得实用公式及算例
1 高斯投影坐标正算公式 (1)高斯投影正算: 已知某点的 L, B ,求该点的 x, y ,即 (2)投影变换必须满足的条件: 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点 P1 和 P2 ,它们的大地坐标 分别为 ( L1 , B1 )或(l1 , B1)及 (L2 , B2)或(l2 , B2 ) 式中 l 为椭球面上点的经 度与中央子午线 ( L0 ) 的经度差:l L L0 ,点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为P1 ( x1 , y1 ) 和 P2 ( x 2 , y 2 ) 。

高斯投影正反算

高斯投影正反算

高斯投影正、反算及换带程序执行条件※数组投影选择T、换算点个数“Z=0 F≠0”、=0正算0、≠0反算※坐标系选择“54 ≠54”、=54换算为1954年北京坐标系输入54、≠54换算为1988年西安坐标系M、中央子午线经度(°′″)输入※大地坐标I、序列号B、L:大地纬度和经度(地理坐标)(°′″)※高斯平面坐标轴子午线I、序列号X、Y:高斯平面坐标(m) Z、轴子午线(°)输出※大地坐标子午收敛角N、序列号B、L:大地纬度和经度(地理坐标)(°′″) R、子午收敛角(°′″)※高斯平面坐标子午收敛角N、序列号X、Y:高斯平面坐标(m) R、子午收敛角(°′″)注:1、程序执行前必须进行数组定位。

如:Defm 10 T×2=5×2=102、Y坐标值要去掉带号及避免出现负值的500公里;4、本程序运算时,各已知数据、观测变量不会随之变化,可非常方便地进行各数据的核对;5、本程序在进行换带计算时采用的是间接换带计算法。

Prog GSXYDefm 10:TA“Z=0 F≠0”G“54 ≠54”Z:Fixm:I=0:「b」0:I=I+1◢J=2I-1:M=Z[J:L=Z[J+1:A=0=>Prog“3”:B=M:M=L+Z:Prog“3”:L=M:{BL}:M=B:Prog“2”: B=M:M=L:Prog“2”:L=M-Z:≠>X=M:Y=L:{XY}:B=X:L=Y⊿Z[J]=B:Z[J+1]=L:I<T=>Goto 0⊿G=54=>C=6399698.90178271:E=.006738525414684:≠>C=6399596.65198801:E=.006 739501819473⊿I=0:「b」0:I“N”=I+1◢J=2I-1:B=Z[J:L=Z[J+1:A≠0=>X=B:Y=L:Goto 2⊿S=sin B:G=54=>F=111134.8611B-(32 005.7799S+133.9238S∧3+.6973S∧5+.0039S∧7)cos B:≠>F=111133.0047B-(32009.857 S+133.9602S∧3+.6976S∧5+.0039S∧7)cos B⊿U=√Ecos B:V=√(1+U2:N=C÷V:W=tan B: M=cos B(Lπ÷180:X=F+NW(.5M2+1┛24(5-W2+9U2+4U∧4)M∧4+1┛720(61-58W2+W∧4)M∧6◢Y=N(M+1┛6(1-W 2+U 2)M ∧3+1┛120(5-18W 2+W ∧4+14U 2-58U 2W 2)M ∧5◢M=W ┛π(180M+60(1+3U 2+2U ∧4)M ∧3+12(2-W 2)M ∧5:Goto 3:「b 」2:W=E ﹣6X-3:G=54=>F=27.11115372595+9.024********W-.00579740442W 2-4.3532572E ﹣4W ∧3+4.857285E ﹣5W ∧4+2.15727E ﹣6W ∧5-1.9399E ﹣7W ∧6:≠>F=27.11162289465+9.024********W-.00579850656W2-4.3540029E ﹣4W ∧3+4.858357E ﹣5W ∧4+2.15769E ﹣6W ∧5-1.9404E ﹣7W ∧6⊿U=√Ecos F:V=√(1+U 2:Q=YV ÷C:W=tan F:M=F-(1+U 2)W ┛π(90Q 2-7.5(5+3W 2+U 2-9U 2W 2)Q ∧4+.25(61+90W 2+45W ∧4)Q ∧6:Prog “3”:B=M ◢M=Z+1┛(πcos F)(180Q-30(1+2W 2+U 2)Q ∧3+1.5(5+28W 2+24W ∧4)Q ∧5:Prog “3”:L=M ◢M=W ┛π(180Q-60(1+W 2-U 2)Q ∧3+12(2+5W 2+3W ∧4)Q ∧5:「b 」3:Prog “3”:R=M ◢ I<T=>Goto 1⊿“END ”概要说明:我国的经度范围西边自73°起,东边至135°,可分成6°带共11带或3°共22带。

高斯投影坐标计算

高斯投影坐标计算

B
d B dq
2

dX dq dq

c
(
cos B dV V dB
2
dB dq

sin B dB V dq
2
)
2
d B dq
2
cos B c ( tan B V
2 2
3
V
sin B cos B
)
N sin B cos B
同理得
d X dq
3

N cos B ( 1
3
3


2

0
l

L

L
0

高斯投影坐标正算的函数式:
x y
l 是以弧度为单位的经度差。
F B , l F B , l
1 2

一 高斯投影坐标正算公式计算

如图,椭球面上一点投影 到平面后为d点,椭球面上 该点的平行圈(B或q为一 常数)与中央子午线的交 点为e点,若将上式中的展 开点z0设为e处,则很据高 斯投影条件,中央子午线 的长度比m=1,且纵坐标x 等于从赤道起到该平行圈 间的子午线弧长X。此时 可以写出下列方程:
4 2
二、高斯投影坐标反算公式

最后得到坐标反算的公式为:
B B
f
2M
f
t
f
y N
f
2

t 24 M
2 f
f
f
f
N
4 f
3 f
5 3 t
6
2 f

2 f
9 f t
2
2 f
y
4

t

高斯投影正反算公式

高斯投影正反算公式

高斯投影坐标正反算一、基本思想:高斯投影正算公式就是由大地坐标(L ,B )求解高斯平面坐标(x ,y ),而高斯投影反算公式则是由高斯平面坐标(x ,y )求解大地坐标(L ,B )。

二、计算模型:基本椭球参数:椭球长半轴a椭球扁率f椭球短半轴:(1)b a f =-椭球第一偏心率:e a= 椭球第二偏心率:e b'=高斯投影正算公式:此公式换算的精度为0.001m6425644223422)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+''++-''+''⋅''+=ρηηρρ 5222425532233)5814185(cos 120)1(cos 6cos l t t t B N l t B N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ其中:角度都为弧度B 为点的纬度,0l L L ''=-,L 为点的经度,0L 为中央子午线经度; N 为子午圈曲率半径,1222(1sin )N a e B -=-;tan t B =; 222cos e B η'=1803600ρπ''=*其中X 为子午线弧长:2402464661616sin cos ()(2)sin sin 33X a B B B a a a a a B a B ⎡⎤=--++-+⎢⎥⎣⎦02468,,,,a a a a a 为基本常量,按如下公式计算:200468242684468686883535281612815722321637816323216128m a m m m m m m a m m m a m m m m a m a ⎧=++++⎪⎪⎪=+++⎪⎪⎪=++⎨⎪⎪=+⎪⎪⎪=⎪⎩02468,,,,m m m m m 为基本常量,按如下公式计算:22222020426486379(1);;5;;268m a e m e m m e m m e m m e m =-====;高斯投影反算公式:此公式换算的精度为0.0001’’.()()()()2222243246532235242225053922461904572012cos 6cos 5282468120cos f f f f f f f f f f f f f f f f f f f f f ff f f f f f ft t B B y t t yM N M N t y t t yM N y y l t N B N B y t t t N B L l L ηηηηη=-+++--++=-+++++++=+其中: 0L 为中央子午线经度。

高斯投影坐标正反算公式[1]

高斯投影坐标正反算公式[1]

§8.3高斯投影坐标正反算公式任何一种投影①坐标对应关系是最主要的;②如果是正形投影,除了满足正形投影的条件外(C-R 偏微分方程),还有它本身的特殊条件。

8.3.1高斯投影坐标正算公式: B,l ⇒ x,y高斯投影必须满足以下三个条件:①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。

由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即(8-10)式中,x 为l 的偶函数,y 为l 的奇函数;0330'≤l ,即20/1/≈''''ρl ,如展开为l 的级数,收敛。

+++=++++=553316644220l m l m l m y l m l m l m m x (8-33)式中 ,,10m m 是待定系数,它们都是纬度B 的函数。

由第三个条件知:qyl x l y q x ∂∂-=∂∂∂∂=∂∂, (8-33)式分别对l 和q 求偏导数并代入上式----=++++++=+++5533156342442204523164253l dqdm l dq dm l dq dm l m l m l m l dqdm l dq dm dq dm l m l m m (8-34) 上两式两边相等,其必要充分条件是同次幂l 前的系数应相等,即dq dm m dqdm m dqdm m 2312013121⋅=⋅-==(8-35)(8-35)是一种递推公式,只要确定了0m 就可依次确定其余各系数。

由第二条件知:位于中央子午线上的点,投影后的纵坐标x 应等于投影前从赤道量至该点的子午线弧长X ,即(8-33)式第一式中,当0=l时有:0m X x == (8-36) 顾及(对于中央子午线)B V Mr M B N dq dB M dBdXcos cos 2==== 得:B V cB N r dq dB dB dX dq dX dq dm m cos cos 01===⋅===(8-37,38)B B Ndq dB dB dm dq dm m cos sin 22121112=⋅-=⋅-= (8-39)依次求得6543,,,m m m m 并代入(8-33)式,得到高斯投影正算公式6425644223422)5861(cos sin 720)495(cos 24cos sin 2lt t B B N lt B simB N l B B N X x ''+-''+''++-''+''⋅''+=ρηηρρ5222425532233)5814185(cos 120)1(cos 6cos l t t t B N lt B N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ (8-42) 8.3.2高斯投影坐标反算公式x,y ⇒B,l投影方程:),(),(21y x l y x B ϕϕ== (8-43)满足以下三个条件:①x 坐标轴投影后为中央子午线是投影的对称轴;② x 坐标轴投影后长度不变;③投影具有正形性质,即正形投影条件。

第16次课 高斯投影正反算与邻带换算

第16次课 高斯投影正反算与邻带换算

预习内容
6.4 高斯投影正反算与邻带换算
6.4 高斯投影正反算与邻带换算
一、高斯投影正算
Direct solution of the Gauss projection
1、公式推导 (Formula derivation)
投影方程
x(中央子午线 L0 )
l L L0
x F1 ( B, L) y F2 ( B, L)
n4
n5
1 dm3 4 dq
1 dm4 5 dq
m4
1 dn3 4 dq
m5
1 dn4 5 dq
一、高斯投影正算
引入高斯投影条件二:中央子午线投影为纵坐标轴
l 0, y 0
n0 m1 n2 m3 n4 m5 ...... m0 n1 m2 n3 m4 n5 ......
(二)、方法:
1 、直接法 2 、间接法
三、高斯坐标的邻带换算
(二)、方法:
1 、直接法: 利用相邻两带坐标之间关系式进行坐标互换(多种公式) 2 、间接法: 通过大地坐标进行高斯正反算互相换算(目前使用多)
东带:1 , y1 ) 反解 L, B) (x ( 对西带中央子午线经差 l ( L L0 ) (西带) (l , B) 正解 西带:(x2,y2)
n0 ?
m0 ?
dm0 n1 dq
1 dm1 n2 2 dq 1 dm2 n3 3 dq
m1
dn0 dq
m2
m3
1 dn1 2 dq
1 dn2 3 dq
n0 m1 n2 m3 n4 m5 ...... m0 n1 m2 n3 m4 n5 ......

高斯正反算及换带计算matlab源代码_附截图

高斯正反算及换带计算matlab源代码_附截图

高斯投影坐标正、反算及相邻带的坐标换算MATLAB源代码
L0=input('输入所用中央子午线 L0='); disp('1:克拉索夫斯基椭球 T=0; while (T<1||T>2) T=input('请根据上列选择椭球模型 T='); switch T case 1 a=6378245.0000000000; b=6356863.0187730473; B=x/6367558.4969; B=B+(50221746+(293622+(2350+22*(cos(B))^2)*(cos(B))^2)*(cos(B))^2)*10^(-10)*sin(B)*cos(B); case 2 a=6378140.0000000000; b=6356755.2881575287; B=x/6367452.1328; B=B+(50228976+(293697+(2383+22*(cos(B))^2)*(cos(B))^2)*(cos(B))^2)*10^(-10)*sin(B)*cos(B); otherwise disp('T 值无效 end end e=(sqrt(a^2-b^2))/a; e1=(sqrt(a^2-b^2))/b; V=sqrt(1+(e1^2)*(cos(B))^2); c=(a^2)/b; M=c/(V^3); N=c/V; t=tan(B); n=sqrt((e1^2)*(cos(B))^2); lp1=y/(N*cos(B)); lp2=(1+2*t^2+n^2)*(y^3)/(6*cos(B)*N^3); lp3=(5+28*t^2+24*t^4+6*n^2+8*(n^2)*(t^2))*(y^5)/(120*cos(B)*N^5); l=lp1-lp2+lp3; Bp1=B; Bp2=(t*y^2)/(2*M*N); Bp3=(t/(24*M*N^3))*(5+3*t^2+n^2-9*(n^2)*(t^2))*y^4; Bp4=(t/(720*M*N^5))*(61+90*t^2+45*(t^4))*y^6; B=Bp1-Bp2+Bp3-Bp4; r1=l*sin(B); r2=(1/3)*sin(B)*(cos(B))^2*(l^3)*(1+3*n^2+2*n^4); r3=(1/15)*sin(B)*(cos(B))^2*(l^5)*(2-t^2); r=r1+r2+r3; format long g L=HHD(l)+L0 B=HHD(B) (1-2)'); 2:1975 年国际椭球 3:WGS-84 椭球');

高斯投影及换带计算

高斯投影及换带计算

测绘学院《大地测量学基础》课件
10
6.2 高斯投影概述(重点)
1、控制测量对地图投影的要求
1)等角投影(又称正形投影)
2)长度和面积变形不大,并能用简单公式计算由变形而引起 的改正数。
3)能很方便地按分带进行,并能按高精度的、简单的、同样 的计算公式和用表把各带联成整体 。
测绘学院《大地测量学基础》课件
8
• 3、中国各种地图投影:
1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方 位投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割 圆锥投影。
• 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正 轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投 影(宽带)。
• 3)中国大比例尺地图的投影:多面体投影(北洋军阀时 期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯克吕格投影(解放以后)。
x F1(L, B) y F2 (L, B)
椭球面是一个凸起的、不可展平的曲面,若将这个曲面上 的元素(比如一段距离、一个角度、一个图形)投影到平 面上,就会和原来的距离、角度、图形呈现差异,这一差 异称作投影的变形
测绘学院《大地测量学基础》课件
4
长度比:
投影面上的边长与原面上的相应长度之比,称为长度比。
(1)该点位于6˚ 带的第几带?
(第19带)
(2)该带中央子午线经度是多少?
(L。=6º×19-3º=111˚)
(3)该点在中央子午线的哪一侧?
(先去掉带号,原来横坐标y=367622.380—500000=-132377.620m,在西侧)
(4)该点距中央子午线和赤道的距离为多少?
(距中央子午线132377.620m,距赤道3102467.280m)

高斯投影及换带计算

高斯投影及换带计算
01
02
1.投影与变形
6.1 地图投影概述
投影面上的边长与原面上的相应长度之比,称为长度比。 长度比:
2、地图投影的分类
1)按变形性质分类 (1)等角投影 又称为正形投影。投影面上某点的任意两方向线夹角与椭球面上相应两线段夹角相等,即角度变形为零。等角投影在一点上任意方向的长度比都相等,但在不同地点长度比是不同的。 (2)等积投影 在投影平面上任意一块面积与椭球面上相应的面积相等,即面积变形等于零。 (3)等距投影 定义为沿某一特定方向的距离,投影前后保持不变,即沿着该特定方向长度比为1。在这种投影图上并不是不存在长度变形,它只是在特定方向上没有长度变形。
若已知某点的经度为L,则该点的6º带的带号N由下式计算:
1
若已知某点的经度为L,则该点所在3º带的带号按下式计算:
2
(四舍五入)
3
高斯平面直角坐标系的建立:
x轴 — 中央子午线的投影 y轴 — 赤道的投影 原点O — 两轴的交点
O
x
y
P
(X,Y)
高斯自然坐标
注:X轴向北为正, y轴向东为正。
4、常用的几种地图投影
从世界范围看,各国大中比例尺地形图所使用的投影很不统一,据不完全统计有十几种之多,最常用的有横轴等角椭圆柱投影等。中华人民共和国成立后,我国大中比例尺地形图一律规定采用以克拉索夫斯基椭球体元素计算的高斯-克吕格投影。我国新编1:100万地形图,采用的则是边纬与中纬变形绝对值相等的正轴等角圆锥投影。
赤道
中央子午线
平行圈
子午线
O
x
y
(4) 除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。 (5)经线与纬线投影后仍然保持正交。 (6) 所有长度变形的线段,其长度变形比均大于l。 (7)离中央子午线愈远,长度变形愈大。

高斯投影及换带计算

高斯投影及换带计算

测绘学院《大地测量学基础》课件
24
高斯平面直角坐标系与数学上的笛卡尔平面直角 坐标系的异同点 :
不同点: 1、 x,y轴互异。 2、 坐标象限不同。 3、表示直线方向的方位角
定义不同。 相同点:
数学计算公式相同。
测绘学院《大地测量学基础》课件
Ⅳx
o

α Ⅰp
D
y

x=Dcosα
y=Dsinα
高斯平面直角坐标系
y3
6N
3 f
cos
Bf
1
2t
2 f
2 f
y5
120N
5 f
cos
Bf
5
28t
2 f
24t
4 f
6
2 f
8
2 f
t
2 f
测绘学院《大地测量学基础》课件
30
3、高斯投影坐 标正反算公式的
几何解释 :
①当B=0时x=X=0,y则随l的变化而变化,这就是说,赤道投影为一直线且 为y轴。当l=0时,则y=0,x=X,这就是说,中央子午线投影亦为直线,且为x轴, 其长度与中央子午线长度相等。两轴的交点为坐标原点。
B B f
tf 2M f N f
y2
tf
24M
f
N
3 f
5
3t
2 f
2 f
9
2 f
t
2 f
y4
过所求点P作中央子午线的垂线,
tf
720M
f
N
5 f
y
61

90t
2 f
45t
4 f
y6
该垂线与中央子午线的交点的纬 度,称垂足纬度。其值由子午线 弧长计算公式反算求得。

高斯投影坐标计算

高斯投影坐标计算
高斯投影坐标计算
本节要点提要
1、高斯投影坐标正算公式 2、高斯投影坐标反算公式 3、高斯投影坐标正算的数值公式 4、高斯投影坐标反算的迭代计算公式
地图投影的分类
• 按投影变形性质分类: 等角投影 等距投影 等积投影
a=b
• 按投影面分类 : 圆锥面 正轴投影 切投影
a=1 or b=1
圆柱(椭圆柱) 面 横轴投影 割投影
(1)中央子午线投影后为直线; (2)中央子午线投影后长度不变; (3)投影具有正形性质,即正形投影 条件。
高斯投影坐标正算
l =3/ρ=0.052
1) 由第一个条件(中央子午线投影后为直线) 可知,由于地球椭球体是一个旋转椭球体,即 中央子午线东西两侧的投影必然对称于中央子 午线。 x 为 l 的偶函数,而y 则为 l 的奇函数。
由恒等式两边对应系数相等,建立求解待定系数的递推公式
d m d m d m 1 1 0 1 m m m = 2 1 2 3 d q 2 d q 3 d q
m0=?
3) 由第二条件(中央子午线投影后长度不变)可 知,位于中央子午线上的点,投影后的纵坐标 x 应 该等于投影前从赤道量至该点的子午弧长。
Байду номын сангаас
a· b=1
平面投影 斜轴投影
• 按投影的中心轴线: • 按椭球面与投影面的切割情况分:
高斯投影特性(三个): – 中央子午线投影后为一直线,且长度不变; 其它经线为凹向中央子午线的曲线,且长 度改变。 – 投影后,赤道为一直线,但长度改变,其 它纬线呈凸向赤道的曲线。 – 投影后,中央子午线与赤道线正交,经线 与纬度也互相垂直,即高斯投影为等角投 影。
将各系数代入,略去高次项,得高斯投影 坐标正算公式精度为0.001m

高斯投影坐标计算

高斯投影坐标计算

d m d m d m 2 4 0 2 2 4 4 m 3 m l 5 m l l l 3 5 1 d q d q d q d m d m d m 3 5 3 3 1 2 m l 4 m l l l 5l 2 4 d q d q d q
(3)距中央子午线愈远的子午线,投影后弯曲愈 厉害,长度变形也愈大。
谢谢!
由恒等式两边对应系数相等,建立求解待定系数的递推公式
d m d m d m 1 1 0 1 m m m = 2 1 2 3 d q 2 d q 3 d q
m0=?
3) 由第二条件(中央子午线投影后长度不变)可 知,位于中央子午线上的点,投影后的纵坐标 x 应 该等于投影前从赤道量至该点的子午弧长。
B,l 的单位为弧度。
Bf为x值对应的底点纬度, tf ηf Mf Nf 均为底点纬度 的函数。
当l<3.5°时,
上式换算精度达0.0001″
高斯投影反算公式的几何解释
2 4 B B ( ny ny f 2 4
)
=B B f
Bf
P″(0,Bf)
3、高斯投影坐标正算的数值公式 将75国际椭球参数代入前面推导的高斯计算公式, 经过一些简单变化,可得高斯投影正算公式。 高斯投影正算公式:
y N N cosB f f 2 cos Bf )sinBf cosBf b2 (0.50.00336975 2 2 b 0 . 333333 ( 0 . 1666667 0 . 001123 cos B ) cos Bf 3 f 2 2 b 0.25(0.161612 0 . 005617 cos B ) cos Bf 4 f 2 2 b 0 . 2 ( 0 . 16667 0 . 00878 cos B ) cos Bf 5 f

高斯投影正反算

高斯投影正反算

高斯投影正反算学院:资源与环境工程工程学院专业:测绘工程 学号:X51414012 姓名:孙超一、高斯投影概述想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体的中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。

高斯投影由于是正形投影,故保证了投影的角度不变性,图形的相似性以及在某点各方向上长度比的同一性。

由于采用了同样法则的分带投影,这即限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行变形引起的各项改正的计算,并且带与带间的互相换算也能用相同的公式和方法进行。

高斯投影的这些优点必将使它得到广泛的推广和具有国际意义。

二、高斯投影坐标正算公式1.高斯投影必须满足以下三个条件 1)中央子午线投影后为直线 2)中央子午线投影后长度不变 3)投影具有正形性质,即正形投影条件2.高斯正算公式推导1)由第一个条件可知,由于地球椭球体是一个旋转椭球体,所以高斯投影必然有这样一个性质,即中央子午线东西两侧的投影必然对称于中央子午线。

2)由于高斯投影是换带投影,在每带内经差l是不大的,lρ是一个微小量,所以可以将X=X (l,q ),Y=Y (l ,q )展开为经差为l 的幂级数,它可写成如下的形式X=m 0+m 2l 2+m 4l 4+…Y=m 1l+m 3l 2+m 5l 5+…式中m 0,m1,m2,…是待定系数,他们都是纬度B 的函数。

3)由第三个条件:∂y ∂l =∂x ∂q 和∂x ∂l =-∂y∂q ,将上式分别对l 和q 求偏导2340123423401234...........x m m l m l m l m l y n n l n l n l n l =+++++=+++++可得到下式0312123403121234111,,,, 234111,,,,234dm dm dm dm n n n n dq dq dq dq dn dn dn dn m m m m dq dq dq dq ⎧====⎪⎪⎨⎪=-=-=-=-⎪⎩经过计算可以得出232244524632235242225sin cos sin cos (594)224 sin cos (6158)720cos cos (1)6cos (5181458)120N N x X B B l B B t l NB B t t l Ny N B l B t l NB t t t l ηηηηη=+⋅+-+++-+=⋅+-++-++-三、高斯投影坐标反算公式推导1.思路:级数展开,应用高斯投影三个条件,待定系数法求解。

第四章 7高斯投影坐标正反算

第四章 7高斯投影坐标正反算

2
x y , q l
x y l q
柯西-黎曼条件(公式)是
椭球面与平面之间的正形投影的一般条件
考虑到F=0,E=G,长度比公式简化为
x y q q E m2 2 = r r2
2
2 2
x y l l G m2 2 = r r2
x m0 m 2 l 2 m 4 l 4 y m1l m3 l 3 m5 l 5
分别对l 和q 求偏导数
2) 由第三个条件正形投影条件
y x x y 和 l q l q
dm0 dm2 2 dm4 4 2 4 m1 3m3 l 5m5 l dq dq l dq l 2m l 4m l 3 dm1 l dm3 l 3 dm5 l 5 2 4 dq dq dq
§4.9.2 正形投影的一般条件
一、长度比的通用公式推导
dS 2 ( MdB)2 ( N cos Bdl )2
M dB
ds 2 dx 2 dy 2
N cos B d l
长度比平方为:
dx 2 dy 2 ds 2 m 2 2 dS ( MdB) ( N cos Bdl )

上式为与方向有关的长度比的通用公式。 上式在什么条件下与方向无关?
F 0
E G
柯西.黎曼条件(续)
正形条件:m与A无关,即满足: F 0
E G
2 2 2
x x y y 0 q l q l
y y x q l x l q
x y x y q q l l

高斯投影及换带计算分解课件

高斯投影及换带计算分解课件
高斯投影及换带计算软件 实现
软件需求分析
01
02
03
04
用户需求
提供高斯投影和换带计算的功 能,满足用户对地理信息数据
的处理需求。
功能需求
软件应具备数据导入、高斯投 影转换、换带计算、结果导出
等功能。
性能需求
界面需求
软件应具备高效的数据处理能 力,能够处理大规模的地理信
息数据。
软件界面应简洁明了,操作简 便,提供友好的用户交互体验。
高斯投影及换带计 算分解课件
目 录
• 高斯投影基本概念 • 高斯投影计算方法 • 换带计算分解 • 高斯投影精度分析 • 高斯投影及换带计算软件实现 • 高斯投影及换带计算案例分析
01
高斯投影基本概念
高斯投影的定 义
01
高斯投影是一种将椭球面上的经 纬度坐标转换为平面直角坐标的 数学方法。
02
大地坐标系
以地球椭球体表面某一点的大地 经纬度为基准,建立的坐标系, 通常用于地理空间定位。
高斯投影坐标系
以高斯投影算法为基础,将大地 坐标系中的点投影到平面上的直 角坐标系,用于地图制作和地理 信息系统的数据表示。
坐标转换公式
大地坐标转高斯投影坐标
通过高斯投影的正反解公式,将大地经纬度转换为高斯投影平面直角坐标。
精度检验
对投影变换后的数据进行精度 检验,确保满足地图制作的要求。
03
换带计算分解
换带原因及原则
原因
高斯投影在某些区域可能会产生较大 的变形,为了满足地图制作的精度要 求,需要将投影带进行转换。
原则
选择适当的投影带,使得地图投影变 形最小,同时保持地图的完整性和连 续性。
换带计算公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档