牛顿运动定律典型例题分析
牛顿运动定律 典型例题 参考答案
牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。
高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)及解析
高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8)(2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ;(3)滑块在传送带上滑行的整个过程中产生的热量.【答案】(1)7.5N (2)0.25(3)0.5J【解析】【分析】【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ,代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒,故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x=L−x相对滑动产生的热量为:Q=μmg△x代值解得:Q=0.5J【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。
高三物理牛顿运动定律典型例题解析
例题一
• 如图所示的水平面光滑,物体A的质量为3㎏、B的质 量为2㎏,AB间的动摩擦因数μ =0.4,AB间的最大静 摩擦力为12.6N。今用水平外力F=15N拉B,求A和B 的加速度。若作用于B的外力变为30N仍作用于B,再 求A和B的加速度。为确保AB相对静止且具有最大的 加速度,问:水平外力应作用于何物?AB的最大加速 度是多大?
石头对鸡蛋的作用力和鸡蛋对石头的作用力是一对作用 与反作用力,它们大小相等方向相反,但作用于不同的 物体,不能说合力为零。
作业2
• 用长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球, 在光滑水平面上做匀速圆周运动,则: [ ] C • ① 两个小球以相同的线速度运动时,长绳易断 • ② 两个小球以相同的线速度运动时,短绳易断 • ③ 两个小球以相同的角速度运动时,长绳易断 • ④ 两个小球以相同的角速度运动时,短绳易断 A、①③ B、①④ C、②③ D、②④
例题五
• 将金属块m用压缩的轻弹簧卡在一个 矩形的箱中,如图所示。在箱的上顶 板和下底板都装有压力传感器,箱可 以沿竖直轨道运动,当箱以a=2m/s2 的加速度竖直向上做匀减速运动时, 上顶板的压力传感器显示的压力为6N, 下底板的压力传感器显示出读数为 10N取g=10m/s2。 • (1)若上顶板的压力传感器的示数是下 底板的传感器的示数的一半,试判断 箱的运动情况。 • (2)使上顶板的传感器的示数恰为零, 箱沿竖直方向运动的情况可能是怎么 样的?
例题分析与解答
• • • • 运动员的运动分成三个过程: 先自由下落, 触网的过程作匀减速运动, 离网后作竖直上抛运动。
2gh1 8m / s ,
•刚触网时的速度V1=
•刚离网时的速度为V2= 2gh2 10m / s, •在网上运动过程中有 V2=V1+at a=(V2-V1)/t,
历年高考物理力学牛顿运动定律题型总结及解题方法
历年高考物理力学牛顿运动定律题型总结及解题方法单选题1、现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上方、下方通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,若运动员顺利地完成了该动作,最终仍落在滑板原来的位置上,则下列说法错误的是()A.运动员起跳时,双脚对滑板作用力的合力竖直向下B.起跳时双脚对滑板作用力的合力向下偏后C.运动员在空中最高点时处于失重状态D.运动员在空中运动时,单位时间内速度的变化相同答案:B解析:AB.运动员竖直起跳,由于本身就有水平初速度,所以运动员既参与了水平方向上的匀速直线运动,又参与了竖直上抛运动。
各分运动具有等时性,水平方向的分运动与滑板的运动情况一样,运动员最终落在滑板的原位置。
所以水平方向受力为零,则起跳时,滑板对运动员的作用力竖直向上,运动员对滑板的作用力应该是竖直向下,故A正确,不符合题意;B错误,符合题意;C.运动员在空中最高点时具有向下的加速度g,处于失重状态,故C正确,不符合题意;D.运动员在空中运动时,加速度恒定,所以单位时间内速度的变化量相等,故D正确,不符合题意。
故选B。
2、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。
若停在O点摩擦力为零,若不在O点,摩擦力和弹簧的弹力平衡,停止运动时物体所受的摩擦力不一定为μmg,CD错误。
牛顿运动定律及应用例题和知识点总结
牛顿运动定律及应用例题和知识点总结牛顿运动定律是经典力学的基础,对于理解物体的运动和受力情况具有至关重要的意义。
接下来,让我们一起深入探讨牛顿运动定律的相关知识点,并通过具体的例题来加深对其的理解和应用。
一、牛顿第一定律牛顿第一定律,也称为惯性定律,其内容为:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
惯性是物体保持原有运动状态的性质,质量是衡量物体惯性大小的唯一量度。
质量越大,惯性越大,物体的运动状态就越难改变。
例如,在一辆行驶的公交车上,当车突然刹车时,站着的乘客会向前倾。
这是因为乘客原本具有向前的运动惯性,而车的刹车力使车的运动状态改变,但乘客的身体由于惯性仍要保持向前运动的趋势。
二、牛顿第二定律牛顿第二定律的表达式为:F = ma,其中 F 表示物体所受的合力,m 表示物体的质量,a 表示物体的加速度。
这一定律表明,物体的加速度与作用在它上面的合力成正比,与物体的质量成反比。
当合力为零时,加速度为零,物体将保持匀速直线运动或静止状态。
例题:一个质量为 2kg 的物体,受到水平方向上大小为 6N 的合力作用,求物体的加速度。
解:根据牛顿第二定律 F = ma,可得 a = F/m = 6/2 = 3m/s²,所以物体的加速度为 3m/s²。
在实际应用中,需要注意合力的计算和方向的确定。
例如,一个物体在斜面上运动,需要将重力分解为沿斜面和垂直斜面的两个分力,然后计算沿斜面方向的合力。
三、牛顿第三定律牛顿第三定律指出:两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。
作用力和反作用力同时产生、同时消失,且性质相同。
比如,当你用力推墙时,墙也会对你施加一个大小相等、方向相反的反作用力。
例题:一个人在冰面上行走,他向后蹬冰面,冰面对他的反作用力使人向前运动。
如果人对冰面的作用力为 100N,那么冰面对人的反作用力也是 100N。
高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)及解析
高考物理牛顿运动定律的应用解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为:v 1=112aL =5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2 联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.3..某校物理课外小组为了研究不同物体水下运动特征, 使用质量m =0.05kg 的流线型人形模型进行模拟实验.实验时让模型从h =0.8m 高处自由下落进入水中.假设模型入水后受到大小恒为F f =0.3N 的阻力和F =1.0N 的恒定浮力,模型的位移大小远大于模型长度,忽略模型在空气中运动时的阻力,试求模型(1)落到水面时速度v 的大小; (2)在水中能到达的最大深度H ; (3)从开始下落到返回水面所需时间t . 【答案】(1)4m/s (2)0.5m (3)1.15s 【解析】 【分析】 【详解】(1)模型人入水时的速度记为v ,自由下落的阶段加速度记为a 1,则a 1=g ;v 2=2a 1h 解得v=4m/s ;(2)模型人入水后向下运动时,设向下为正,其加速度记为a 2,则:mg-F f -F=ma 2 解得a 2=-16m/s 2所以最大深度:2200.52v H m a -==(3)自由落体阶段:1t 0.4vsg== 在水中下降2200.25vt s a -== 在水中上升:F-mg-F f =ma 3 解得a 3=4.0m/s 2 所以:3320.5Ht s a == 总时间:t=t 1+t 2+t 3=1.15s4.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小; (2)计算说明滑块能否从平板车的右端滑出. 【答案】(1) ,(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得 对滑块,有 , 解得对平板车,有,解得.设经过t 时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有 解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出. 答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.5.传送带以恒定速率v=4m/s顺时针运行,传送带与水平面的夹角θ=37°.现将质量m=1 kg的小物块轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=10 N拉小物块,经过一段时间物块被拉到离地高为H=1.8m的平台上,如图所示.已知物块与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g取10m/s2,已知sin37°=0.6,cos37°=0.8.求:(1)物块在传送带上运动的时间;(2)若在物块与传送带速度相等的瞬间撤去恒力F,则物块还需多少时间才能脱离传送带?【答案】(1)1s(2)【解析】【详解】(1)物体在达到与传送带速度v=4 m/s相等前,做匀加速直线运动,有:F+μmgcos37°-mgsin37°=ma1解得a1=8 m/s2由v=a1t1得t1=0.5s位移x1=a1t12=1m物体与传送带达到共同速度后,因F-mgsinθ=4 N=μmgcos37°故物体在静摩擦力作用下随传送带一起匀速上升.位移x2=-x1=2mt2==0.5s总时间为t=t1+t2=1s(2)在物体与传送带达到同速瞬间撤去恒力F,因为μ<tan37°,故有:mgsin37°-μmgcos37°=ma2解得:a2=2m/s2假设物体能向上匀减速运动到速度为零,则通过的位移为x ==4 m >x 2故物体向上匀减速运动达到速度为零前已经滑上平台.故 x 2=vt 3-a 2t 32 解得t 3=(2-)s 或t 3=(2+)s (舍去)【点睛】本题关键是受力分析后判断物体的运动状态,再根据牛顿第二定律求解出加速度,然后根据运动学公式列式求解时间.6.如图所示,五块完全相同的长木板依次紧挨着放在水平地面上,每块木板的长度为0.5m ,质量为0.6kg .在第一块长木板的最左端放置一质量为0.98kg 的小物块已知小物块与长木板间的动摩擦因数为0.2,长木板与地面间的动摩擦因数为0.1,设最大静摩擦力与滑动摩擦力相等.一颗质量为0.02kg 的子弹以的150m/s 水平速度击中小物块并立即与小物块一起在长木板表面滑行,重力加速度g 取10m/s 2(结果保留2位有效数字)(1)分析小物块滑至哪块长木板时,长木板才开始在地面上滑动. (2)求整个运动过程中最后一块长木板运动的距离. 【答案】(1) 物块滑上第五块木板(2)0.078m x =板 【解析】 【分析】 【详解】(1)设子弹、小物块、长木板的质量分别为0,,m M m ,子弹的初速度为0v 子弹击中小物块后二者的共同速度为1v 由动量守恒定律()0001m v M m v =+ ①子弹击中小物块后物块的质量为M ',且0M M m '=+.设当物块滑至第n 块木板时,木板才开始运动12((6))M g M n m g μμ''>+- ②其中12,μμ分别表示物块与木板间、木板与地面间的动摩擦因数. 由式解得n 4.3>即物块滑上第五块木板时,木板才开始在地面上滑动. (2) 令物块滑上第五块木板上时,s v 满足:()()()22100114,1/2s s M m g L M m v v v m s μ-+⋅=+-= 之后物块继续减速,第五块木板加速直至共速后一起减速,v t -图象如图:11122231-2s381m/s41s413115m m 0.078m284464t t t v v t g x μ=⇒====⎛⎫∴=+⨯== ⎪⎝⎭共共板7.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C 、D 两端相距4.45m , B 、C 相距很近。
高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析
高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块与小车共同速度; (2)物块在车面上滑行的时间t ; (3)小车运动的位移x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少? 【答案】(1)0.8 m/s (2)0.24 s (3)0.096 m (4)5 m/s 【解析】 【详解】(1、2)根据牛顿第二定律得,物块的加速度大小为:a 2=μg =0.5×10m/s 2=5m/s 2, 小车的加速度大小为:222110.5210m/s m/s 0.33m ga m μ⨯=== 根据v =v 0-a 2t =a 1t得则速度相等需经历的时间为:0120.24v t s a a =+=; v =0.8m/s (3)小车运动的位移22111100.24m 0.096m 223x a t ==⨯⨯= (4)物块不从小车右端滑出的临界条件为物块滑到小车右端时恰好两者达到共同速度,设此速度为v ,由水平方向动量守恒得:m 2 v 0′=(m 1+m 2)v根据能量守恒得:μm 2gL =12m 2v 0′2−12(m 1+m 2)v 2 代入数据,联立解得v 0′=5m/s 。
2.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.3.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A由静止开始自由下滑,滑至坡底B处(B处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC之间的某处.如图所示,不计空气阻力,已知AB长14.8m,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2;由速度时间关系得 t 1=11v a =1s(2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22v x m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m=1kg、大小可忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g取10m/s2,(1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端?(2)若在铁块右端施加一个从零开始连续增大的水平向右的力F假设木板足够长,在图中画出铁块受到木板的摩擦力f随拉力F大小变化而变化的图像.【答案】(1)1s;(2)见解析【解析】【分析】【详解】(1)铁块的加速度大小=4m/s2木板的加速度大小2m/s2设经过时间t铁块运动到木板的右端,则有解得:t=1s(2)6.如图所示,长L=2m,质量M=1kg的木板B静止在水平地面上,其正中央放置一质量m=2kg的小滑块A,现对B施加一水平向右的恒力F.已知A与B、B与地面间的动摩擦因数分别为120.20.4μμ==、,重力加速度210/g m s =,试求:(1)若A 、B 间相对滑动,F 的最小值;(2)当F =20N 时,若F 的作用时间为2s ,此时B 的速度大小; (3)当F =16N 时,若使A 从B 上滑下,F 的最短作用时间. 【答案】(1)min 18F N = (2)220/v m s = (3)2 1.73t s = 【解析】 【分析】 【详解】(1)A 、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,对A ,由牛顿第二定律可知,加速度212/a g m s μ==;对B ,由牛顿第二定律可知,()min 21F m M g mg Ma μμ-+-=, 解得min 18F N =(2)F=20N>18N ,二者间会相对滑动,对B ,由牛顿第二定律;()211F m M g mg Ma μμ-+-=解得214/a m s =;设A 从左端滑出的时间为1t ,则22111111222L a t gt μ=-, 解得112t s s =<,此时B 的速度1114/==v a t m s故在F 作用后的1s 内,对B ,22F Mg Ma μ-=,解得2216/a m s =此时B 的速度()2121220/v v a t m s =+-=(3)若F=16N<18N ,则二者一起加速,由牛顿第二定律可知整体加速度()2204/3F M m ga m s M mμ-+==+; 当A 刚好从B 上滑下,F 的最短时间为2t ,设刚撤去F 瞬间,整体的速度为v ,则02v a t =撤去F 后,对A ,2112/a g m s μ==,对B :()21'228/m M g mga m s Mμμ+-==经分析,B 先停止运动,A 最后恰滑至B 的最右端时速度减为零,故221222'2v v La a -=联立解得23 1.73t s s ==点睛:此题是牛顿第二定律的综合应用问题;解决本题的关键是先搞清物体运动的物理过程,根据物体的受力判断出物体的运动情况,结合牛顿第二定律和运动学公式进行求解.7.如图所示,质量,的木板()f x 静止在光滑水平地面上.木板右端与竖直墙壁之间距离为,其上表面正中央放置一个质量的小滑块A .A 与B 之间动摩擦因数为0.2μ=,现用大小为18F N =的推力水平向右推B ,两者发生相对滑动,作用1s t =后撤去推力F .通过计算可知,在B 与墙壁碰撞时.A 没有滑离B .设B 与墙壁碰撞时间极短,且无机械能损失,重力加速度210m/s g =.求:(1)A 相对B 滑动的整个过程中.A 相对B 向左滑行的最大距离; (2)A 相对B 滑动的整个过程中,A 、B 系统产生的摩擦热. 【答案】(1)(2)【解析】 【详解】(1)在施加推力F 时,方向向右24/B F mga m s Mμ-==方向向右 ls 末,F 撤去时,211112A s a t m =⋅=221122B s a t m =⋅= ∴A 相对B 向左滑动的距离撤去F 至A 、B 达到共同速度的过程中,方向向右,方向向左设A 、B 速度相等经历的时间为t 222A A B B V a t V a t '==得在此时间内B 运动的位移为∵s 2+s 3<s∴B 与墙碰前速度相等,A 、B 的共同速度A 相对B 向左滑动的距离(2)与墙壁碰后:AB AB MV mV m M V -=+共() 22311mg ()()22AB s M m V M m V μ⋅=+-+V 共∴∵∴点睛:此题物理过程较复杂,解决本题的关键理清木块和木板在整个过程中的运动规律,按照物理过程发生的顺序,结合能量守恒定律、动量守恒定律、牛顿第二定律和运动学公式综合求解.8.如图所示,质量为M =2 kg 的长木板静止在光滑水平面上,现有一质量m =1 kg 的小滑块(可视为质点)以v 0=3.6 m/s 的初速度从左端沿木板上表面冲上木板,带动木板一起向前滑动.已知滑块与木板间的动摩擦因数μ=0.1,重力加速度g 取10 m/s 2.求:(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小f 和方向; (2)滑块在木板上滑动过程中,滑块加速度大小;(3)若长木板长L 0=4.5m ,试判断滑块与长木板能达到的共同速度v ,若能,请求出共同速度大小和小滑块相对长木板上滑行的距离L ;若不能,请求出滑块滑离木板的速度和需要的时间.【答案】(1)f=1N ,方向向右;(2)a=1m/s 2;(3)能,v=1.2m/s 【解析】 【分析】 【详解】(1)木板所受摩擦力为滑动摩擦力: f=μmg=1N 方向向右;(2) 由牛顿第二定律得:μmg=ma 得出:a=μg=1m/s 2 ;(3) 以木板为研究对象,根据牛顿第二定律:μmg=Ma′ 可得出木板的加速度为:a′=0.5m/s 2设经过时间t ,滑块和长木板达到共同速度v ,则满足: 对滑块有:v=v 0-at对长木板有:v=a′t由以上两式得:滑块和长木板达到的共同速度:v=1.2m/s ,t=2.4s 在2.4s 内木板前进的位移为:1 1.2 2.4 1.4422v x t m m ==⨯= 木块前进的位移为:02 3.6 1.2 2.4 5.7622v v x t m m ++==⨯= 木板的长度最短为:L=x 2-x 1=4.32m<4.5m ,所以两者能达到共同速度.9.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度.【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.10.如图所示,t =0时一质量m =1 kg 的滑块A 在大小为10 N 、方向与水平向右方向成θ=37°的恒力F 作用下由静止开始在粗糙水平地面上做匀加速直线运动,t 1=2 s 时撤去力F ; t =0时在A 右方x 0=7 m 处有一滑块B 正以v 0=7 m/s 的初速度水平向右运动.已知A 与地面间的动摩擦因数μ1=0.5,B 与地面间的动摩擦因数μ2=0.1,取重力加速度大小g =10 m/s 2,sin37°=0.6,cos37°=0.8.两滑块均视为质点,求:(1)两滑块在运动过程中速度相等的时刻; (2)两滑块间的最小距离. 【答案】(1)3.75s (2)0.875m 【解析】 【分析】(1)根据牛顿第二定律先求解撤去外力F 前后时A 的加速度以及B 的加速度;根据撤去F 之前时速度相等和撤去F 之后时速度相等列式求解;(2)第一次共速时两物块距离最大,第二次共速时两物块距离最小;根据位移公式求解最小值. 【详解】(1)对物块A ,由牛顿第二定律:()11cos sin F mg F ma θμθ--=;对物体A 撤去外力后:11mg ma μ='; 对物体B :22a g μ=A 撤去外力之前两物体速度相等时:102a t v a t =-,得t =1 sA 撤去外力之后两物体速度相等时:()111102a t a t t v a t --=-''',得t ′=3.75 s (2)第一次共速时两物块距离最大,第二次共速时两物块距离最小,则:△x =x 0+x 2-x 1;220212x v t a t =-'' ()()22111111111122x a t a t t t a t t '''=+--- 得△x =0.875 m。
牛顿第一定律典型例题[整理版]
牛顿第一定律典型例题【例1】火车在长直水平轨道上匀速行驶,门窗紧闭的的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随同火车一起向前运动.B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动.C.人跳起后,车在继续向前运动,所以人落下后必是偏后一些,只是由于时间很短,偏后距离太小,不明显而已.D.人跳起后直到落地,在水平方向上人和车始终有相同的速度.【分析】人从跳起到落地的过程中,水平方向不受外力作用,保持着原来所具有的速度作匀速直线运动,所以仍落回车上原处.【答】D.【说明】如果人跳起的瞬间,车厢沿水平直轨以加速度a作匀加速运动或匀减速运动,那么人将不会落回车上原处,落地点在原处后方处(火车加速时)或在原处前方处(火车减速时),式中t就是人从起跳到落地的时间【例2】有人设想,乘坐气球飘在高空,由于地球的自转,一昼夜就能周游世界.请你评价一下,这个设想可行吗?【分析】因为地球上的一切物体(包括地球周围的大气)都随着地球一起在自转.气球升空后,由于惯性,它仍保持原来的自转速度.当忽略其他与地球有相对运动(如风)的作用产生的影响时,升空的气球与它下方的地面处于相对静止的状态,不可能使它相对地球绕行一周的.这个设想不符合物理原理,不可行.【说明】1632年,伽利略观察了一个关闭的船舱内发生的现象后,写道:“在这里(只要船的运动是匀速的),你在一切现象中观察不出丝毫的改变,你也不能够根据任何现象来判断船究竟是在运动还是停止着:当你在地板上跳跃的时候,你所通过的距离和你在一静止的船上跳跃时所通过的距离完全相同,也就是说,你向船尾跳时并不比你向船头跳时——由于船的迅速运动——跳得更快些,虽然当你跳在空中时,在你下面的地板是在向着和你跳跃的相反的方向奔驰着;当你抛一东西给你的朋友时,如果你的朋友在船头而你在船尾,你所费的力并不比你们两个站在相反的位置时所费的力更大.从挂在天花板下的装着水的酒杯里滴下的水滴,将垂直地落到地板上,没有任何一滴水滴落向船尾方向,虽然当水滴尚在空中时,船在向前走.苍蝇将继续自己的飞行,在各方面都是一样,毫不发生苍蝇(好像它很疲倦地跟在疾驶着的船后)集聚在船尾方面的情形.”伽利略的这段精采的描述,给设想乘坐飘空气球周游世界的人是一个很好的劝说.来于生活中的直觉印象而产生与亚里士多德相同的看法是非常根深蒂固的.不少同学常常还保留着力是运动的原因的潜意识,如在分析力学问题时,看到物体在运动,就认为它一定受到力的作用;若物体向东运动就认为物体受的力向东;物体以较大的速度运动就认为它受到的力一定大;物体受力为零时,就认为它的速度也应为零;…….因此,必须深刻认识力不是物体运动的原因,而是改变物体运动的原因。
牛顿运动定律典型例题分析
牛顿运动定律典型例题分析基础知识回顾1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
公式F=ma.对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x,F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2.3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
高中物理牛顿运动定律试题经典及解析
t1)
L
包裹 A 在传送带上加速度的大小为 a1,v0=a1t1
包裹 A 的质量为 mA,与传输带间的动摩檫因数为 μ1,由牛顿运动定律有:μ1mAg=mAa1
解得:μ1=0.5
(2)包裹 A 离开传送带时速度为 v0,设第一次碰后包裹 A 与包裹 B 速度分别为 vA 和 vB,
由动量守恒定律有:mAv0=mAvA+mBvB
1 2
mv共2
,
解得: s ' 0.7m ,
车的最小长度:故 L s相对 s ' 6.7m ;
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:
(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
解得: a1 g sin 370 1g cos 370 4m / s2
对薄平板 M ,由牛顿第二定律有: Mg sin 370 f1 f2 Ma2
(完整版)高一物理牛顿第二定律典型例题答案及讲解
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。
牛顿第二定律典型例题
牛顿运动定律典型问题一、共点力平衡及动态平衡【例1】如图(甲)质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小。
【例2】如图所示,用竖直档板将小球夹在档板和光滑斜面之间,若缓慢转动挡板,使其由竖直转至水平的过程中,分析球对挡板的压力和对斜面的压力如何变化.【例3】如图所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。
若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?【练习】1.如图所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?2.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。
3.如图所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。
当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?4.如图,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。
A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。
5.如图所示,用两根绳子系住一重物,绳OA与天花板夹角θ不变,且θ>45°,当用手拉住绳OB,使绳OB由水平慢慢转向OB′过程中,OB绳所受拉力将()A.始终减少B.始终增大C.先增大后减少D.先减少后增大6.如图所示,一重球用细线悬于O点,一光滑斜面将重球支持于A点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力T及斜面对重球的支持力N的变化情况是:()A.T逐渐增大,N逐渐减小;B.T逐渐减小,N逐渐增大;C.T先变小后变大,N逐渐减小;D.T逐渐增大,N先变大后变小。
高中物理牛顿运动定律解题技巧分析及练习题(含答案)及解析
高中物理牛顿运动定律解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
牛顿运动定律的10种典型案例
牛顿运动定律典型案例案例1: 牛顿第二定律的矢量性牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
例1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?案例2: 牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
例2、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
(l )下面是某同学对该题的一种解法:分析与解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有T 1cos θ=mg , T 1sin θ=T 2, T 2=mgtan θ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。
因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
(2)若将图2(a)中的细线L 1改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l )完全相同,即 a =g tan θ,你认为这个结果正确吗?请说明理由。
案例3: 牛顿第二定律的独立性当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
牛顿运动定律经典例题(含解析)
牛顿运动定律经典例题(含解析)7.14作业一 牛顿第一定律、牛顿第三定律看书 :《大一轮》 第一讲基础热身1.2012·厦门模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示, 下列说法正确的是( )B .F 2的反作用力是F 3C .F 3的施力物体是地球D .F 4的反作用力是F 12.2011·芜湖模拟关于惯性,下列说法中正确的是( )A .在月球上物体的重力只有在地面上的16,但是惯性没有变化 B .卫星内的仪器由于完全失重,惯性消失了C .铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远D .磁悬浮列车能高速行驶是因为列车浮起后惯性小了3.2011·金华模拟跳高运动员蹬地后上跳,在起跳过程中( )A .运动员蹬地的作用力大小大于地面对他的支持力大小B .运动员蹬地的作用力大小等于地面对他的支持力大小C .运动员所受的支持力和重力相平衡D .运动员所受的支持力小于重力4.2011·海淀模拟物体同时受到F 1、F 2、F 3三个力的作用而保持平衡状态,则以下说法正确的是( )A .F 1与F 2的合力一定与F 3大小相等,方向相反B .F 1、F 2、F 3在某一方向的分量之和可能不为零C .F 1、F 2、F 3中的任何一个力变大,则物体必然做加速运动D .若突然撤去F 3,则物体一定沿着F 3的反方向做匀变速直线运动技能强化5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( )A .采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性B .射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了C .货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性D .摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的6.2011·台州模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( )图K12-2 A .作用力大时,反作用力小B .作用力和反作用力的方向总是相反的C .作用力和反作用力是作用在同一个物体上的D .牛顿第三定律在物体处于非平衡状态时不再适用7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因为()A.系好安全带可以减小惯性B.是否系好安全带对人和车的惯性没有影响C.系好安全带可以防止因车的惯性而造成的伤害D.系好安全带可以防止因人的惯性而造成的伤害8.2011·廉江模拟关于物体运动状态的变化,下列说法中正确的是()A.运动物体的加速度不变,则其运动状态一定不变B.物体的位置在不断变化,则其运动状态一定在不断变化C.做直线运动的物体,其运动状态可能不变D.做曲线运动的物体,其运动状态也可能不变9.如图K12-3所示,在一辆足够长的小车上,用相同材料做成的质量分别为m1、m2的两个滑块(m1>m2)原来随车一起运动,当车突然停止后,如不考虑其他阻力影响,则两个滑块()A.一定相碰B.一定不相碰C.若车原先向右运动,则可能相碰D.若车原先向左运动,则可能相碰10.一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图K12-4所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为f,则此时箱对地面的压力大小为()A. Mg+fB. Mg-fC. Mg+mgD. Mg-mg11.如图K12-5所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A 正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态,弹簧的长度为L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间的相互作用,则地面对B的支持力F N为多大?12. 如图K12-6所示,质量均为m的甲、乙两同学分别静止于水平地面的台秤P、Q上,他们用手分别竖直牵拉一只弹簧测力计的两端,稳定后弹簧测力计的示数为F,若弹簧测力计的质量不计,求:(1)台秤P的读数;(2)两台秤的读数之和为多少?图K12-6挑战自我13.如图K12-7所示,在台秤上放半杯水,台秤示数为G′=50 N,另用挂在支架上的弹簧测力计悬挂一边长a=10 cm的金属块,金属块的密度ρ=3×103 kg/m3,当把弹簧测力计下的金属块平稳地浸入水中深b=4 cm处时,弹簧测力计和台秤示数分别为多少?(水的密度是ρ水=103 kg/m3,g取10 m/s2)图K12-77.15 作业二牛顿第二定律看书:《大一轮》第二节基础热身1.2011·黄冈联考如图K13-1所示绘出了轮胎与地面间的动摩擦因数分别为μ1和μ2时,紧急刹车时的刹车痕(即刹车距离s)与刹车前车速v的关系曲线,则μ1和μ2的大小关系为() A.μ1<μ2B.μ1=μ2C.μ1>μ2D.条件不足,不能比较图K13-1图K13-22.2011·泸州二模用一水平力F拉静止在水平面上的物体,在F从零开始逐渐增大的过程中,加速度a随外力F变化的图象如图K13-2所示,取g=10 m/s2,水平面各处粗糙程度相同,则由此不能计算出()A.物体与水平面间的滑动摩擦力B.物体与水平面间的动摩擦因数C.外力F为12 N时物体的速度D.物体的质量3.2011·济南模拟质量分别为m和2m的物块A、B用轻弹簧相连,设两物块与接触面间的动摩擦因数都相同.当用水平力F作用于B上使两物块在粗糙的水平面上共同向右加速运动时,弹簧的伸长量为x1,如图K13-3甲所示;当用同样大小的力F竖直提升B使两物块共同加速时,弹簧的伸长量为x2,如图乙所示;当用同样大小的力F沿固定斜面向上拉B使两物块共同加速运动时,弹簧的伸长量为x3,如图丙所示,则x1∶x2∶x3等于()甲乙丙A.1∶1∶1B.1∶2∶3C.1∶2∶1 D.无法确定4.如图K13-4所示,弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则()A.物体从A到O加速运动,从O到B减速运动B.物体从A到O速度越来越小,从O到B加速度不变C.物体从A到O先加速运动后减速运动,从O到B一直减速运动D.物体运动到O点时所受合力为零技能强化5.2012·荆州质检如图K13-5所示,小车上有一直立木板,木板上方有一槽,槽内固定一定滑轮,跨过定滑轮的轻绳一端系一重球,另一端系在轻质弹簧测力计上,弹簧测力计固定在小车上.开始时小车处于静止状态,轻绳竖直且重球恰好紧挨直立木板.假设重球和小车始终保持相对静止,则下列说法正确的是()A.若小车匀加速向右运动,弹簧测力计读数及小车对地面压力均不变B.若小车匀加速向左运动,弹簧测力计读数及小车对地面压力均不变C.若小车匀加速向右运动,弹簧测力计读数变大,小车对地面压力变小D.若小车匀加速向左运动,弹簧测力计读数变大,小车对地面压力不变图K13-5图K13-6 6.2011·济南一模如图K13-6所示,物块A、B叠放在水平桌面上,装沙的小桶C通过细线牵引A、B一起在水平桌面上向右加速运动,设A、B间的摩擦力为f1,B与桌面间的摩擦力为f2.若增大C桶内沙的质量,而A、B仍一起向右运动,则摩擦力f1和f2的变化情况是()A.f1不变,f2变大B.f1变大,f2不变C.f1、f2都变大D.f1、f2都不变7.2011·济南质检在工厂里经常能看到利用汽车通过钢绳移动物体的情景.如图K13-7所示,假设钢绳的质量可忽略不计,物体的质量为m,物体与水平地面间的动摩擦因数为μ,汽车的质量为m0,汽车运动中受到的阻力跟它对地面的压力成正比,比例系数为k,且k>μ.要使汽车匀速运动时的牵引力最小,α角应为()A.0°B.30°C.45°D.60°8.一个物体在多个力的作用下处于静止状态,如果仅使其中一个力大小逐渐减小到零,然后又从零逐渐恢复到原来的大小(此力的方向始终未变),在此过程中其余各力均不变.那么,图K13-8中能正确描述该过程中物体速度变化情况的是()A B C D9.如图K13-9所示,车内绳AB与绳BC拴住一小球,BC水平,车由原来的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则()A.AB绳、BC绳拉力都变大B.AB绳拉力变大,BC绳拉力变小C.AB绳拉力变大,BC绳拉力不变D.AB绳拉力不变,BC绳拉力变大10.如图K13-10所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ.现给环一个向右的初速度v0,同时对环施加一个竖直向上的作用力F,并使F的大小随v的大小变化,两者的关系为F=k v,其中k为常数,则环运动过程中的v-t图象不可能是图K13-11中的()A B C D11.2012·济南模拟如图K13-12甲所示,质量为m=1 kg的物体置于倾角θ=37°的固定且足够长的斜面上,对物体施以平行于斜面向上的拉力F,t1=1 s时撤去拉力,物体运动的部分v-t图象如图乙所示.试求:(1)拉力F的大小.(2)t=4 s时物体的速度v的大小.12.2011·广东调研有一种大型游戏机叫“跳楼机”(如图K13-13所示),参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40 m高处,然后由静止释放.可以认为座椅沿轨道做自由落体运动2 s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4 m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.取g=10 m/s2,求:(1)座椅在自由下落结束时刻的速度是多大?(2)座椅在匀减速阶段的时间是多少?(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?挑战自我13.2012·荆州质检如图K13-14所示,水平面上放有质量均为m=1 kg的物块A和B(均视为质点),A、B与地面的动摩擦因数分别为μ1=0.4和μ2=0.1,相距L=0.75 m.现给物块A一初速度v0使之向物块B运动,与此同时给物块B一个水平向右F=3 N的力使其由静止开始运动,取g=10 m/s2.求:(1)物块B运动的加速度大小;(2)若要使A能追上B,v0应满足什么条件?图K13-147.16 作业三牛顿运动定律的应用看书:《大一轮》专题三基础热身1.2011·眉山二诊某同学站在电梯底板上,利用速度传感器和计算机研究一观光电梯升降过程中的情况,如图K14-1所示的v-t图象是计算机显示的观光电梯在某一段时间内速度变化的情况(竖直向上为正方向).根据图象提供的信息,可以判断下列说法中正确的是()A.在5 s~10 s内,该同学对电梯底板的压力等于他所受的重力B.在0~5 s内,观光电梯在加速上升,该同学处于失重状态C.在10 s~20 s内,该同学所受的支持力在减小,该同学的机械能在减小D.在20 s~25 s内,观光电梯在加速下降,该同学处于超重状态图K14-1图K14-2 2.2011·深圳模拟如图K14-2所示,轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小铁球,在电梯运行时,乘客发现弹簧的伸长量比电梯静止时的伸长量小,这一现象表明() A.电梯一定是在下降B.电梯一定是在上升C.电梯的加速度方向一定是向上D.乘客一定处在失重状态3.如图K14-3所示,一个箱子中放有一物体,已知静止时物体对下底面的压力等于物体的重力,且物体与箱子上表面刚好接触.现将箱子以初速度v0竖直向上抛出,已知箱子所受空气阻力与箱子运动的速率成正比,且箱子运动过程中始终保持图示姿态,则下列说法正确的是()A.上升过程中,物体对箱子的下底面有压力,且压力越来越小B.上升过程中,物体对箱子的上底面有压力,且压力越来越大C.下降过程中,物体对箱子的下底面有压力,且压力可能越来越大D.下降过程中,物体对箱子的上底面有压力,且压力可能越来越小图K14-3图K14-4 4.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图K14-4所示,在物体始终相对于斜面静止的条件下,下列说法正确的是()A.当θ一定时,a越大,斜面对物体的正压力越小B.当θ一定时,a越大,斜面对物体的摩擦力越小C.当a一定时,θ越大,斜面对物体的正压力越小D.当a一定时,θ越大,斜面对物体的摩擦力越小技能强化5.2011·黄冈模拟如图K14-5甲所示,静止在水平面C上的长木板B左端放着小物块A.某时刻,A 受到水平向右的外力F作用,F随时间t的变化规律如图K14-5乙所示.设A、B和B、C之间的滑动摩擦力大小分别为F 1和F 2,各物体之间的滑动摩擦力大小等于最大静摩擦力,且F 1大于F 2,则在A 、B 没有分离的过程中,图K14-6中可以定性地描述长木板B 运动的v -t 图象是( )图K14-5A B图K14-6C D6.2011·武汉模拟在上海世博会上,拉脱维亚馆的风洞飞行表演令参观者大开眼界.若风洞内总的向上的风速风量保持不变,让质量为m 的表演者通过调整身姿,可改变所受的向上的风力大小,以获得不同的运动效果.假设人体受风力大小与正对面积成正比,已知水平横躺时受风力面积最大,且人体站立时受风力面积为水平横躺时受风力面积的18,风洞内人体可上下移动的空间总高度为H .开始时,若人体与竖直方向成一定角度倾斜时,受风力有效面积是最大值的一半,恰好可以静止或匀速漂移;后来,人从最高点A 由静止开始,先以向下的最大加速度匀加速下落,经过某处B 后,再以向上的最大加速度匀减速下落,刚好能在最低点C 处减速为零,则下列说法错误的是( )A .表演者向上的最大加速度是gB .表演者向下的最大加速度是g 4C .B 、C 间的高度是37H D .由A 至C 全过程表演者克服风力做的功为mgH图K14-87.2011·台州调研如图K14-8所示,运动员“10 m 跳板跳水”运动的过程可简化为:运动员走上跳板,将跳板从水平位置B 压到最低点C ,跳板又将运动员竖直向上弹到最高点A ,然后运动员做自由落体运动,竖直落入水中.跳板自身重力忽略不计,则下列说法正确的是( )A .运动员向下运动(B →C )的过程中,先失重后超重,对板的压力先减小后增大B .运动员向下运动(B →C )的过程中,先失重后超重,对板的压力先增大后减小C .运动员向上运动(C →B )的过程中,先超重后失重,对板的压力先增大后减小D .运动员向上运动(C →B )的过程中,先超重后失重,对板的压力一直减小8.如图K14-9所示,小车的质量为M ,人的质量为m ,人用恒力F 拉绳,若人与车保持相对静止,且地面为光滑的,又不计滑轮与绳的质量,则车对人的摩擦力不可能是( )A .0 B.m -M m +MF ,方向向右 C.m -M m +M F ,方向向左 D.M -m m +MF ,方向向右图K14-9 图K14-109.如图K14-10所示,一固定光滑杆与水平方向夹角为θ,将一质量为m 1的小环套在杆上,通过轻绳悬挂一个质量为m 2的小球,静止释放后,小环与小球保持相对静止以相同的加速度a 一起下滑,此时绳子与竖直方向夹角为β,则下列说法正确的是( )A .杆对小环的作用力大于m 1g +m 2gB .若m 1不变,则m 2越大,β越小C .θ=β,与m 1、m 2无关D .若杆不光滑,则β可能大于θ10.2012·丹东模拟如图K14-11所示,木箱内有一竖直放置的弹簧,弹簧上方有一物块;木箱静止时弹簧处于压缩状态且物块压在箱顶上.若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为( )A .加速下降B .匀速上升C .减速上升D .减速下降11.2012·武汉调研如图K14-12所示,水平面上有一固定着轻质定滑轮O 的木块A ,它的上表面与水平面平行,它的右侧是一个倾角θ=37°的斜面.放置在A 上的物体B 和物体C 通过一轻质细绳相连,细绳的一部分与水平面平行,另一部分与斜面平行.现对A 施加一水平向右的恒力F ,使A 、B 、C 恰好保持相对静止.已知A 、B 、C 的质量均为m ,重力加速度为g ,不计一切摩擦,求恒力F 的大小.(sin37°=0.6,cos37°=0.8)挑战自我12.2011·四川一模如图K14-13所示,在水平地面上有A 、B 两个小物体,质量分别为m A =3.00 kg 、m B =2.00 kg ,它们与地面间的动摩擦因数均为μ=0.1.A 、B 之间由一原长为L =15.0 cm 、劲度系数为k =500 N/m 的轻质弹簧连接.分别用方向相反的两个水平恒力F 1、F 2同时作用在A 、B 两物体上.当运动达到稳定时,A 、B 两物体以共同加速度a =1.00 m/s 2做匀加速运动.已知F 1=20.0 N ,g 取10 m/s 2.求:运动稳定时A 、B 之间的距离.7.17 作业四 验证牛顿第二定律看书 :《大一轮》 第三讲基础热身1.在“验证牛顿第二定律”的实验中,以下做法正确的是( )A .平衡摩擦力时,应将小盘用细绳通过定滑轮系在小车上B .每次改变小车的质量时,不需要重新平衡摩擦力C .实验时,先放开小车,再接通打点计时器的电源D .求小车运动的加速度时,可用天平测出小盘和砝码的质量(M ′和m ′)以及小车质量M ,直接用公式a =M ′+m ′Mg 求出 2.关于验证牛顿第二定律的实验,下列说法中正确的是( )A .通过同时改变小车的质量及受到的拉力的研究,能归纳出加速度、力、质量三者之间的关系B .通过保持小车质量不变,只改变小车的拉力的研究,就可以归纳出加速度、力、质量三者之间的关系C .通过保持小车受力不变,只改变小车质量的研究,就可以得出加速度、力、质量三者之间的关系D .先不改变小车质量,研究加速度与力的关系;再不改变力,研究加速度与质量的关系,最后归纳出加速度、力、质量三者之间的关系3.如图K15-1所示,在研究牛顿第二定律的演示实验中,若两个相同的小车1、2所受拉力分别为F 1、F 2,车中所放砝码的质量分别为m 1、m 2,打开夹子后经过相同的时间两车的位移分别为x 1、x 2,则在实验误差允许的范围内,有( )A .当m 1=m 2、F 1=2F 2时,x 1=2x 2B .当m 1=m 2、F 1=2F 2时,x 2=2x 1C .当m 1=2m 2、F 1=F 2时,x 1=2x 2D .当m 1=2m 2、F 1=F 2时,x 2=2x 14.2011·福州模拟某实验小组设计了如图K15-2甲所示的实验装置,通过改变重物的质量来探究滑块运动的加速度a 和所受拉力F 的关系.他们在轨道水平和倾斜的两种情况下分别做了实验,得到了两条a -F 图线,如图乙所示.甲 乙(1)图线①是轨道处于________(选填“水平”或“倾斜”)情况下得到的实验结果;(2)图线①②的倾斜程度(斜率)一样,说明的问题是________(填选项前的字母).A .滑块和位移传感器发射部分的总质量在两种情况下是一样的B .滑块和位移传感器发射部分的总质量在两种情况下是不一样的C .滑块和位移传感器发射部分的总质量在两种情况下是否一样不能确定技能强化5.2011·唐山二模某实验小组设计了如图K15-3甲所示的实验装置,通过改变重物的质量,利用计算机可得滑块运动的加速度a 和所受拉力F 的关系图象.他们在轨道水平和倾斜的两种情况下分别做了实验,得到了两条a -F 图线,如图乙所示.滑块和位移传感器发射部分的总质量m =________kg ;滑块和轨道间的动摩擦因数μ=________.(重力加速度g 取10 m/s 2)甲 乙6.做“验证牛顿第二定律”实验时,按实验要求安装好器材后,应按一定的步骤进行实验,下列给出供选择的操作步骤:A .保持小盘和其中砝码的质量不变,在小车里加砝码,测出加速度,重复几次B .保持小车质量不变,改变小盘里砝码的质量,测出加速度,重复几次C .用天平测出小车和小盘的质量D .在长木板没有定滑轮的一端垫上厚度合适的垫木,平衡摩擦力E .根据测出的数据,分别画出a -F 和a -1M图象 F .用秒表测出小车运动的时间G .将装有砝码的小盘用细线通过定滑轮系到小车上,接通电源,释放小车,在纸带上打出一系列的点以上步骤中,不必要的步骤是________,正确步骤的合理顺序是________.(填写代表字母)7.2011·浙江联考某实验小组利用如图K15-4甲所示的气垫导轨实验装置来探究合力一定时,物体的加速度与质量之间的关系.(1)做实验时,将滑块从图甲所示位置由静止释放,由数字计时器(图中未画出)可读出遮光条通过光电门1、2的时间分别为Δt 1、Δt 2;用刻度尺测得两个光电门中心之间的距离x ,用游标卡尺测得遮光条宽度d .则滑块经过光电门1时的速度表达式v 1=____;滑块加速度的表达式a =______.(以上表达式均用已知字母表示)如图乙所示,若用20分度的游标卡尺测量遮光条的宽度,其读数为 ________mm.(2)为了保持滑块所受的合力不变,可改变滑块质量M和气垫导轨右端高度h(如图甲所示).关于“改变滑块质量M和气垫导轨右端的高度h”的正确操作方法是________.A.M增大时,h增大,以保持二者乘积增大B.M增大时,h减小,以保持二者乘积不变C.M减小时,h增大,以保持二者乘积不变D.M减小时,h减小,以保持二者乘积减小8.“探究加速度与物体质量、物体受力的关系”的实验装置如图甲K15-5所示.甲乙(1)在平衡小车与桌面之间摩擦力的过程中,打出了一条纸带如图乙所示.计时器打点的时间间隔为0.02 s.从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离.该小车的加速度a=________m/s2.(结果保留两位有效数字)(2)平衡摩擦力后,将5个相同的砝码都放在小车上.挂上砝码盘,然后每次从小车上取一个砝码添加到砝码盘中,测量小车的加速度.小车的加速度a与砝码盘中砝码总重力F的实验数据如下表:砝码盘中砝码总重力F/N0.1960.3920.5880.7840.980加速度a/(m·s-2)0.69 1.18 1.66 2.18 2.70(3)根据提供的实验数据作出的a-F图线不通过原点,请说明主要原因.挑战自我9.2011·绍兴模拟某实验小组利用如图K15-7所示的实验装置来探究当合外力一定时,物体运动的加速度与其质量之间的关系.(1)由图中刻度尺读出两个光电门中心之间的距离s=24 cm,由图K15-8中游标卡尺测得遮光条的宽度d=________cm.该实验小组在做实验时,将滑块从图示位置由静止释放,由数字计时器可以读出遮光条通过光电门1的时间Δt1和遮光条通过光电门2的时间Δt2,则滑块经过光电门1时的瞬时速度的表达式v1=________,滑块经过光电门2时的瞬时速度的表达式v2=________,则滑块的加速度的表达式a=________.(以上表达式均用字母表示)图K15-8图K15-9(2)在本次实验中,实验小组通过改变滑块质量总共做了6组实验,得到下表所示的实验数据.通过分析表中数据后,你得出的结论是________________________________________________________________________________________________________________________________________________.m/g250300350400500800a/(m·s-2) 2.02 1.65 1.33 1.25 1.000.63(3)应图象.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律典型例题分析基础知识回顾1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
公式F=ma.对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x,F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2.3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。
4.物体受力分析的基本程序: (1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。
5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。
处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。
处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。
6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系; (2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题; (3)只适用于宏观物体,一般不适用微观粒子。
二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。
牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300因为56=mg F N ,解得53=mg F f .练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1-15所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小问题2:必须弄清牛顿第二定律的瞬时性。
1、物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变).2、中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等.B .软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳子且背离受力物体的方向.C .不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变.3、中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A .轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等.B .弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力,不能承受压力.图图C .由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失.4、做变加速度运动的物体,加速度时刻在变化(大小变化或方向变化或大小、方向都变化),某时刻的加速度叫瞬时加速度,由牛顿第二定律知,瞬时力决定瞬时加速度,确定瞬时加速度的关键是正确确定瞬时作用力.练习4、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
(l )下面是某同学对该题的一种解法:分析与解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有T 1cos θ=mg , T 1sin θ=T 2, T 2=mgtan θ。
剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。
因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
(2)若将图2(a)中的细线L 1改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l )完全相同,即 a =g tan θ,你认为这个结果正确吗?请说明理由。
分析与解:(1)错。
因为L 2被剪断的瞬间,L 1上的张力大小发生了变化。
剪断瞬时物体的加速度a=gsin θ.(2)对。
因为L 2被剪断的瞬间,弹簧L 1的长度来不及发生变化,其大小和方向都不变。
练习5.如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直线的夹角都是600,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度.练习6.一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则( )A .物体始终向西运动B .物体先向西运动后向东运动C .物体的加速度先增大后减小D .物体的速度先增大后减小L 1 L 2θ图2(b) LLθ图2(a)图3-1-2练习7.如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大?练习8.如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a ,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b ,则在撤去弹簧后的瞬间,小球加速度的大小可能为( )A .7.5米/秒2,方向竖直向下 B .7.5米/秒2,方向竖直向上 C .12.5米/秒2,方向竖直向下 D .12.5米/秒2,方向竖直向上练习9.(2010·全国卷Ⅰ·15)如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a 。
重力加速度大小为g 。
则有 A .1a g =,2a g = B .10a =,2a g =C .10a =,2m M a g M +=D .1a g =,2m Ma g M+=【答案】C 【解析】在抽出木板的瞬时,弹簧对1的支持力和对2的压力并未改变。
对1物体受重力和支持力,mg=F,a 1=0. 对2物体受重力和压力,根据牛顿第二定律g MmM M Mg F a +=+=图图问题3:必须弄清牛顿第二定律的独立性。
当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。
那个方向的力就产生那个方向的加速度。
练习10、如图3所示,一个劈形物体M 放在固定的斜面上,上表面水平,在水平面上放有光滑小球m ,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是: A .沿斜面向下的直线 B .抛物线 C .竖直向下的直线 D.无规则的曲线。
分析与解:因小球在水平方向不受外力作用,水平方向的加速度为零,且初速度为零,故小球将沿竖直向下的直线运动,即C 选项正确。