紫外光谱法与红外光谱法

合集下载

请总结红外吸收光谱与紫外吸收光谱在原理以及应用上的共同点和区别

请总结红外吸收光谱与紫外吸收光谱在原理以及应用上的共同点和区别

红外吸收光谱和紫外吸收光谱都是用来研究物质的光谱分析方法,它们在原理和应用上既有共同点,也有明显的区别。

共同点:
都是通过测量物质对特定波长光的吸收来研究物质的性质和结构。

都可以提供关于物质分子内部结构和化学键信息。

都可以用于研究分子振动、旋转等动态性质。

都是光谱分析方法,可以用于物质的定性和定量分析。

区别:
原理不同:红外吸收光谱是利用物质分子对红外光的吸收来研究物质的结构和化学键信息,而紫外吸收光谱则是利用物质分子对紫外光的吸收来研究物质的电子结构和化学键信息。

波长范围不同:红外吸收光谱的波长范围在0.7-50微米之间,而紫外吸收光谱的波长范围在0.1-3微米之间。

应用范围不同:红外吸收光谱主要用于研究有机化合物、聚合物、无机化合物等,而紫外吸收光谱则主要用于研究有机化合物、聚合物、金属配合物等。

灵敏度不同:红外吸收光谱的灵敏度较低,需要较大的样品量才能得到明显的谱图,而紫外吸收光谱的灵敏度较高,可以检测到较小的样品量。

分辨率不同:红外吸收光谱的分辨率较高,可以区分不同的化学键和官能团,而紫外吸收光谱的分辨率较低,难以区分不同的化学键和官能团。

总之,红外吸收光谱和紫外吸收光谱都是非常重要的光谱分析方法,它们在原理和应用上既有共同点,也有明显的区别。

药物分析中红外光谱法与紫外可见光谱法的比较研究

药物分析中红外光谱法与紫外可见光谱法的比较研究

药物分析中红外光谱法与紫外可见光谱法的比较研究在药物分析领域,准确而快速地鉴定和定量分析药物成分是非常关键的。

红外光谱法和紫外可见光谱法是常用的两种分析方法。

本文将对这两种方法进行比较研究,探讨其优缺点以及适用范围。

1. 红外光谱法红外光谱法是一种基于化学物质吸收红外辐射的分析技术。

它可以用于鉴定和定量分析药物中的有机物质。

红外光谱法的优点在于:首先,红外光谱法具有高度的特异性。

不同的有机物质具有不同的红外光吸收特征,因此可以通过观察红外光谱图来准确地确定物质的组分。

其次,红外光谱法具有快速和非破坏性的特点。

只需将样品置于红外光谱仪中进行扫描,即可快速获取样品的红外光谱图,而不需要进行复杂的前处理步骤。

此外,样品在检测过程中不会受到破坏,可以保持其原有的物化性质。

然而,红外光谱法也存在一些限制。

首先,它只能用于有机物质的分析,对于无机物质以及特定的功能性基团分析并不适用。

其次,高水分样品的红外光谱可能受到水的吸收带来的干扰,需要采取适当的预处理方法。

2. 紫外可见光谱法紫外可见光谱法是一种基于物质对紫外或可见光吸收的分析方法。

它可以用于药物成分的定量分析和鉴别。

紫外可见光谱法的优点如下:首先,紫外可见光谱法具有广泛的适用范围。

它不仅适用于有机物质的分析,还适用于某些无机物质的检测。

由于许多药物成分在紫外区域具有明显的吸收峰,因此紫外可见光谱法可以用于药物成分的定量分析。

其次,紫外可见光谱法具有高灵敏度和选择性。

可以利用药物成分在紫外或可见光区域的特定波长进行定量分析,并且还可以通过建立标准曲线来确定物质的浓度。

然而,紫外可见光谱法也存在一些不足。

首先,它对样品的透明性要求较高,不能用于不透明样品的分析。

其次,在复杂的样品基质中,可能会出现干扰峰,影响分析结果的准确性。

3. 比较研究与应用红外光谱法和紫外可见光谱法在药物分析中各有优劣。

根据需要选择适合的方法进行分析可以得到更准确的结果。

红外光谱法适用于有机物质的分析,对于药物的成分鉴定非常有效。

红外吸收光谱与紫外荧光的区别

红外吸收光谱与紫外荧光的区别

μ = q·d
10.2
第22讲
红外光谱基本原理
第8页
由于偶极子具有一定的原有振动频率,
显然,只有当辐射频率与偶极子频率相
匹配时,分子才与辐射发生相互作用
(振动偶合)而增加它的振动能,使振
动加激(振幅加大),即分子由原来的
基态振动跃迁到较高振动能级。可见,
并非所有的振动能级都会产生红外吸收,
只有发生偶极矩变化的振动才能引起可
第22讲
红外光谱基本原理
第1页
第四章 红外吸收光谱法
第22讲
红外光谱基本原理
第2页
§10-1 红外吸收光谱分析概述
一、定义:
利用物质对红外辐射的吸收所产生的红外吸收 光谱,对物质的组成、结构及含量进行分析测定 的方法叫红外吸收光谱分析法。红外吸收光谱又 称为分子振动转动光谱
二、与紫外可见吸收光谱法的比较
紫外 104~105 103~104 102~103
﹤102
第22讲
红外光谱基本原理
第4页
不同点 紫外可见吸收光谱 红外吸收光谱
光源
紫外可见光
红外光
起源
电子能级跃迁
振动能级跃迁
研究 范围
不饱和有机化合物
几乎所有有机化合 物;
共轭双键、芳香族等 许多无机化合物
特色
反映发色团、助色团 反映各个基团的振
的情况
动及转动特性
第22讲
红外光谱基本原理
第5页
• 波数为波长λ的倒数,即1cm中所含波的 个数
费米共振—当倍频或组合频与某基频峰位相近时, 由于相互作用产生强吸收带或发生峰的分裂,这 种倍频峰或组合频峰与基频峰之间的偶合称为费 米共振。
第22讲

核磁共振波谱与紫外可见光谱及红外光谱的区别解读

核磁共振波谱与紫外可见光谱及红外光谱的区别解读

核磁共振波谱与紫外可见光谱及红外光谱的区别
核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点:
①照射频率不同,引起的跃迁类型也不同。

紫外可见吸收光谱是分子吸收200~700nm的电磁波,主要是引起价电子(最外层电子)能级发生跃迁。

红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,引起分子的振动-转动能级发生跃迁。

核磁共振波谱则是在外磁场下,吸收60cm~300m的电磁波,引起原子核的自旋能级发生跃迁。

②测定方法不同。

紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。

这种方法只适用于透过光强度变化较大的能级跃迁。

60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。

共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。

依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。

光谱分析方法的分类

光谱分析方法的分类

光谱分析方法的分类光谱分析是一种通过测量物质在不同波长或频率下的光的能量强度分布来获取物质组成和性质信息的分析方法。

根据测量光谱的方式和光源的特点,光谱分析方法可以分为许多不同的分类。

以下是几种常见的光谱分析方法分类。

一、根据测量方式的分类1.发射光谱分析:通过测量物质在激发状态下发射的光谱来研究物质的组成和性质。

常见的方法有火焰光谱法、原子发射光谱法和荧光光谱法等。

2.吸收光谱分析:通过测量物质在一些特定波长或频率下吸收光的能量来研究物质的组成和浓度等参数。

常见的方法有紫外-可见吸收光谱法、红外吸收光谱法和拉曼光谱法等。

3.散射光谱分析:通过测量物质对入射光的散射来研究物质的组成和粒径分布等。

常见的方法有动态光散射法、静态光散射法和拉曼散射光谱法等。

4.荧光光谱分析:通过测量物质在受激发光照射下产生的荧光光谱来研究物质的组成和性质。

常用的方法有荧光光谱法、磷光光谱法和激光诱导荧光光谱法等。

5.旋光光谱分析:通过测量物质对具有旋光性质的圆偏振入射光的旋光角度变化来研究物质的旋光性质和构型等。

常见的方法有圆二色谱法和倍频法等。

二、根据光源的特点的分类1.连续光谱分析:使用连续光源(如白炽灯、卤素灯等)产生的连续谱进行分析。

此类光源能够提供从紫外到红外的较宽波长范围的光谱信息。

2.离散光谱分析:使用离散光源(如氢灯、氘灯等)产生的离散谱进行分析。

这些光源能够提供特定波长的光,适用于特定的分析要求。

3.激光光谱分析:使用激光光源进行分析。

激光光谱具有方向性、单色性、相干性等特点,适用于高精度和高灵敏度的分析。

三、根据定性和定量分析的分类1.定性分析:通过测量物质的光谱特征来确定物质的成分和特性,但不能得到精确的浓度信息。

常用的方法有比色法、比较法和判别分析法等。

2.定量分析:通过测量物质光谱的强度和浓度之间的定量关系来获取物质浓度的信息。

常用的方法有比浊法、标准曲线法和内标法等。

总结起来,光谱分析方法根据测量方式、光源特点和定性定量分析的要求等方面进行分类。

紫外-可见吸收光谱与红外光谱.

紫外-可见吸收光谱与红外光谱.

紫外-可见吸收光谱与红外光谱基本概念紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。

红外光谱:又称为分子振动转动光谱,属分子吸收光谱。

样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。

两者都是红分了的吸收光谱图。

区别--起源不同1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。

电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。

除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。

因此,紫外吸收光谱属电子光谱。

光谱简单。

2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。

适用范围紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。

红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。

紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。

红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。

特性红外光谱的特征性比紫外光谱强。

因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。

紫外光谱与红外光谱的区别

紫外光谱与红外光谱的区别

紫外光谱与红外光谱的区别
1)定义不同、
紫外可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收曲线,即为紫外可见吸收光谱。

红外光谱:又称为分子振动转动光谱,属分子吸收光谱。

样品收到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振转能级从基态跃迁带激发态,相应于这些区域的投射光强减弱,记录百分透过率T%对波长或波数的曲线,即为红外光谱。

两者都是分子的吸收光谱图。

2)
1)
•。

核磁共振波谱与紫外可见光谱及红外光谱的区别

核磁共振波谱与紫外可见光谱及红外光谱的区别

核磁共振波谱与紫外可见光谱及红外光谱的区别核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点:①原理不同紫外可见吸收光谱是分子吸收200~700nm的电磁波,吸收紫外光能量,引起分子中电子能级的跃迁,主要是引起最外层电子能级发生跃迁。

红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁。

核磁共振波谱则是在外磁场下,吸收60cm~300m 的电磁波,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁。

②测定方法不同。

紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。

这种方法只适用于透过光强度变化较大的能级跃迁。

60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。

共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。

依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。

③谱图的表示方法不同:紫外谱图的表示方法:相对吸收光能量随吸收光波长的变化。

红外谱图的表示方法:相对透射光能量随透射光频率变化。

核磁谱图的表示方法:吸收光能量随化学位移的变化。

④提供的信息不同:紫外提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息。

红外提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。

核磁提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息。

核磁共振谱的优缺点:优点:(仪器的灵敏度和分辨率非常高,较容易解析NMR图(随着计算机技术的应用,多脉冲激发的方法的采用及由此产生的二维谱图、多维谱图等许多新技术,是许多复杂化合物的结构测定引刃而解,NMR可以说是化学研究中最有力的武器之一。

影响红外吸收光谱和紫外吸收谱光谱的主要因素解读

影响红外吸收光谱和紫外吸收谱光谱的主要因素解读

(2)中介效应(M 效应)(2)中介效应(M 效应)当含有孤对电子的原子(O、S、N 等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。

由于含有孤对电子的原子的共轭作用,使 C=O 上的电子云更移向氧原子,C=O 双键的电子云密度平均化,造成 C=O 键的力常数下降,使吸收频率向低波数位移。

对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。

当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。

2 . 氢键的影响• 2 . 氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。

游离羧酸的 C=O 键频率出现在 1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体, C=O 键频率出现在 1700 cm-1 。

分子内氢键不受浓度影响,分子间氢键受浓度影响较大。

3. 振动耦合• 3. 振动耦合当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动 ! 相互作用。

其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。

振动耦合常出现在一些二羰基化合物中,如,羧酸酐。

• 在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。

通常在极性溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。

因此,在红外光谱测定中,应尽量采用非极性的溶剂。

红外光谱和紫外光谱

红外光谱和紫外光谱
❖苯环上的C—H键 伸缩振动吸收峰在3040~3030cm-1;
面内弯曲振动吸收峰在1225~950 cm-1 ;
面外弯曲振动吸收峰在960~690cm-1之间,这一振动在 2000~1670cm-1之间有一个倍频带。它们的位置形状可以 说明苯环的取代状况。
❖甲苯的红外光谱:
1600~1450苯环骨架振动; 苯环上C—H键:伸缩振动3030,面内弯曲振动1040,1080, 面外弯曲振动730,696,倍频带2000~1667四个峰。
❖三键碳上的C—H键弯曲振动在700~600cm-1。
❖1-辛炔的红外光谱:
2120中等强度的峰为C≡C键的伸缩振动; 三键碳上的C—H键伸缩振动3320,弯曲振动638。
(4) 芳烃 ❖苯环的骨架振动在1600~1450cm-1之间有四个吸收峰, 由取代基或共轭情况不同出现的情况可能不同;
3 影响紫外光谱的因素
(1) 几个基本概念 ❖生色基:能在某一段光的波长内产生吸收的基团,称 为 这 一 段 波 长 的 生 色 团 或 生 色 基 , 如 : C=C 、 C=O 、 NO2等。
❖助色基:本身在紫外或可见光区不显吸收,当它们连 在双键或共轭体系上时,使吸收向长波方向位移,颜色 加深。如:—OH、—NH2、—Cl等。
❖正辛烷的红外光谱:
2960~2850,甲基、亚甲基C—H键伸缩振动; 1466、1380,为C—H键的面内弯曲振动; 726,长链亚甲基面外弯曲振动,(CH2)n中n≥4时出现。
(2) 烯烃 ❖C=C键的伸缩振动吸收峰1680~1600 cm-1,取代基多、 对称性强峰就减弱,共轭使峰增强但频率略降低; ❖双键碳上的C—H键伸缩振动3095~3010 cm-1 ; ❖双键碳上的C—H键弯曲振动吸收峰980~650 cm-1。 ❖可判断取代基的数目、性质及顺反异构等情况。

光谱中红外,紫外,可见光的光谱范围

光谱中红外,紫外,可见光的光谱范围

可见光指能引起视觉的电磁波。

可见光的波长范围在0.77~0.39微米之间。

波长不同的电磁波,引起人眼的颜色感觉不同。

0.77~0.622微米,感觉为红色;0.622~0.597微米,橙色;0.597~0.577微米,黄色;0.577~0.492微米,绿色;0.492~0.455微米,蓝靛色;0.455~0.39微米,紫色。

可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400到700纳米之间,但还有一些人能够感知到波长大约在380到780纳米之间的电磁波。

正常视力的人眼对波长约为555纳米的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域人眼可以看见的光的范围受大气层影响。

大气层对于大部分的电磁波辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。

不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。

红外光谱红外光谱(infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。

按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。

对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。

每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。

分子的红外吸收光谱属于带状光谱。

原子也有红外发射和吸收光谱,但都是线状光谱。

量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。

若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。

紫外-可见吸收光谱与红外光谱

紫外-可见吸收光谱与红外光谱

紫外-可见吸收光谱与红外光谱基本概念紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。

红外光谱:又称为分子振动转动光谱,属分子吸收光谱。

样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。

两者都是红分了的吸收光谱图。

区别--起源不同1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。

电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。

除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。

因此,紫外吸收光谱属电子光谱。

光谱简单。

2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。

适用范围紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。

红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。

紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。

红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。

特性红外光谱的特征性比紫外光谱强。

因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。

光谱分析方法

光谱分析方法

光谱分析方法光谱分析是一种通过分析物质吸收、发射或散射光的波长和强度来确定物质成分和结构的方法。

它是一种非常重要的分析技术,广泛应用于化学、生物、环境和材料等领域。

在光谱分析中,常用的方法包括紫外可见光谱、红外光谱、拉曼光谱、质谱等。

下面将分别介绍这些光谱分析方法的原理和应用。

紫外可见光谱是通过测量样品对紫外可见光的吸收来确定样品的成分和浓度。

紫外可见光谱广泛应用于有机化合物、药物、食品和环境监测等领域。

其原理是物质分子在吸收光能后,电子从基态跃迁到激发态,从而产生吸收峰。

根据吸收峰的位置和强度,可以确定物质的结构和浓度。

红外光谱是通过测量样品对红外光的吸收来确定样品的成分和结构。

红外光谱广泛应用于有机化合物、聚合物、药物和生物分子等领域。

其原理是物质分子在吸收红外光后,分子振动和转动产生特定的吸收峰。

根据吸收峰的位置和强度,可以确定物质的结构和功能基团。

拉曼光谱是通过测量样品对激光光的散射来确定样品的成分和结构。

拉曼光谱广泛应用于无机化合物、材料和生物分子等领域。

其原理是激光光与样品发生相互作用后,产生拉曼散射光,其频率和强度与样品的分子振动和转动有关。

根据拉曼光谱的特征峰,可以确定物质的结构和晶体形态。

质谱是通过测量样品离子的质量和丰度来确定样品的成分和结构。

质谱广泛应用于有机化合物、生物分子和环境样品等领域。

其原理是样品分子经过电离后,产生离子,经过质谱仪的分析,可以得到样品分子的质量和丰度信息。

根据质谱图谱的特征峰,可以确定物质的分子量和结构。

综上所述,光谱分析方法是一种非常重要的分析技术,它可以通过测量样品对光的吸收、发射或散射来确定样品的成分和结构。

不同的光谱分析方法具有不同的原理和应用领域,可以相互补充和验证,为科学研究和工程应用提供了重要的手段。

希望本文对光谱分析方法有所帮助,谢谢阅读!。

紫外吸收光谱法与红外吸收光谱法

紫外吸收光谱法与红外吸收光谱法
常用的检测器:光电池、光电管、光电倍增管(灵敏度高,应用最多)
高真空热电偶
热释电检测器
碲镉汞检测器
记录系统
显示和记录系统
计算机控制,谱图记录处理显示等
三、分析目的
紫外光谱(UV)
红外光谱法(IR)
让不同波长的光通过待测物,经待测物吸收后,测量其对不同波 长光的吸收程度,以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的 吸收光谱或吸收曲线,即为紫外光谱。
紫外光谱法与红外光谱法
一、原理不同
紫外光谱(UV)
红外光谱法(IR)
分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。紫外光谱是由于分子中价电子的跃迁而产生的。
紫外吸收光谱的波长范围是100-400nm(纳米),其中100-200nm为远紫外区,200-400nm为近紫外区,一般的紫外光谱是指近紫外区。
分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。
红外光区的波长范围是0.76—500μm,近红外0.76—2.5μm,中红2.5—25μm,远红外波长25—500μm。
2、仪器对比
紫外吸收光谱仪
红外吸收光谱仪
仪器名称
单光束分光光度计
双光束分光光度计
色散型红外吸收光谱仪
傅立叶变换红外吸收光谱仪(FTIR)(没有色散元件)
光源
紫外部分—氘灯、氢灯
能斯特灯、硅碳棒
单色器
早期—棱镜
现代—光栅
多采用光栅
样品室
石英比色皿—适用于紫外强度变化成电信号

紫外分光光度法

紫外分光光度法

紫外和红外光谱法及光度法的比较摘要我们已经学过了紫外分光光度法和紫外光谱法以及红外分光光度法和紫外光谱法,我们通过基本原理、仪器设备、分析目的三方面对紫外分光光度法和紫外光谱法以及红外分光光度法和紫外光谱法进行了比较。

关键词紫外分光光度法紫外光谱法红外分光光度法紫外光谱法一、紫外分光光度法和红外分光度计的比较1、基本原理紫外-可见分光光度法是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。

操作简单、准确度高、重现性好。

波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。

分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。

红外分光光度法一种是光栅扫描的红外光谱仪,目前使用相对少了。

它是利用红外分光镜将检测光(红外光)分成两束,一束作为参考光,一束作为探测光照射样品,再利用光栅和单色仪将红外光的波长分开,并扫描检测逐个波长的强度,最后整合成一张谱图。

仪器设备紫外-可见分光光度计由5个部件组成:①辐射源。

必须具有稳定的、有足够输出功率的、能提供仪器使用波段的连续光谱,如钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。

②单色器[1] 。

它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)组成,是用以产生高纯度单色光束的装置,其功能包括将光源产生的复合光分解为单色光和分出所需的单色光束。

③试样容器,又称吸收池。

供盛放试液进行吸光度测量之用,分为石英池和玻璃池两种,前者适用于紫外到可见区,后者只适用于可见区。

容器的光程一般为0.5~10厘米。

④检测器,又称光电转换器。

常用的有光电管或光电倍增管,后者较前者更灵敏,特别适用于检测较弱的辐射。

近年来还使用光导摄像管或光电二极管矩阵作检测器,具有快速扫描的特点。

⑤显示装置。

这部分装置发展较快。

较高级的光度计,常备有微处理机、荧光屏显示和记录仪等,可将图谱、数据和操作条件都显示出来。

第十三章红外与紫外光谱

第十三章红外与紫外光谱
频率表示每秒振动的次数,用赫(Hertz,Hz) 为单位,因为数值较大,为方便在红外中常用波数 (wave number,υ)来代替频率,它的单位是cm_1。
电磁波具有能量,体现了粒子性。电磁波的辐 射能是通过一种粒子(光子)来传播的。光子的能 量与电磁波的频率成正比,与波长成反比,见式 (13-3)。
第十三章红外与紫外光谱
13.1 分子运动与电磁福射 一、电磁波
电磁波具有波粒二象性,可用波的参量如频率 (υ)和波长(λ)等来描述。它的传播不需要媒介, 在真空中传播速度为C =3 xIO¹ºcm/s。不同的电磁 波具有不同的波长,可由传播速度与频率求出[式 (13-l)]。
波长单位根据不同的辐射频率区而改变,在紫 外和可见区常采用纳米(nanometer,nm),在红外 区常用微米(micrometer,μm )作单位。
图13-8为异丙苯的红外谱图在3050cm-1( C-H伸 缩)、1600cm-1、1500cm-1( C=C骨架振动)的吸收 说明芳环的存在,而760cm-1和700cm-1 ( C—H面外 弯曲)的吸收表明一取代苯的特征。图中1380cm-1 的两重峰为异丙基的特征吸收。比较它的异构体对 乙基甲苯红外谱图(图13-9),在指纹8OOcm-1打一强 吸收峰,这是对二取代苯的特怔。
(3)减弱键的强度的共轭效应能使吸收向低频方 向移动。由于羰基与α,β不饱和双键共轭削弱了 碳氧双键,使羰基伸缩振动吸收频率减小。
(4)成键碳原子的杂化也可影响化学键力常数。 一般组成化学键的原子轨道s成分越多,化学键力 常数k越大,吸收频率越大。
(5)从式(13-5)可知,组成化学键的相对原 子质量越小,红外吸收频率越大。这在不同原子组 成的相同键型红外吸收得到证实。
(6)以上讨论的是影响伸缩振动吸收的因素。 弯曲振动与伸缩振动相比,需要的能级跃迁能量要 小得多,所以弯曲振动吸收频率较伸缩振动吸收频 率也低得多。如C—H伸缩振动吸收为3 000cm -1, 而它的弯曲振动吸收为1 340cm-1 。

仪器分析_红外光谱法

仪器分析_红外光谱法

C
C
C
C
C
C
2220 cm-1
1667 cm-1
1430 cm-1
2 原子的折合质量 反映了基团质量特性,折合
质量越小,则基频峰波数越大。
39
C
C
C
N
C
O
1430 cm-1
1330 cm-1
1280 cm-1
利用实验得到的化学键力常数和计算式,可以 估算各种类型基团的基频吸收峰的波数。
由于各种有机化合物的结构不同。它 们的原子质量和化学健力常数各不相同, 红外吸收频率也不相同,因此,不同有 机化合物的红外光谱具有高度特征性。
(转动自由度)
29
2、振动自由度
设分子原子数目为 N 个,在空间确定一个原子的 位置,需要3个坐标( x, y, z ),所以,N 个原子需要 3N个坐标或自由度,分子中N 个原子自由度总数:
3 N = 平动自由度 + 振动自由度 + 转动自由度
振动自由度数目: 振动自由度 = 3 N — 平动自由度— 转动自由度 显然,分子整体可以分别沿 x, y, z 三个方向移动, 所以,分子平动自由度为 3;
27
二、分子的振动自由度与红外吸收的理论峰数
理论上讲,分子的每一种振动形式都会产生一 个基频吸收峰,即对于一个多原子分子:
基频吸收峰的数目 = 分子所有的振动形式的数目
(振动自由度)
28
1、分子的运动形式
A 分子中各原子在其平衡位置附近的振动(振动自由度)
B 分子作整体的平动 (平动自由度)
C 分子围绕 x, y, z 轴的转动
第十章 红外吸收光谱分析 (红外吸收光谱法)
Infrared Spectrometry (IR)

紫外可见分光光度和红外光谱法习题及参考答案

紫外可见分光光度和红外光谱法习题及参考答案

紫外可见分光光度和红外光谱法习题及参考答案第三章紫外可见吸收光谱法⼀、选择题1、⼈眼能感觉到的可见光的波长范围就是()。

A、400nm~760nmB、200nm~400nmC、200nm~600nmD、360nm~800nm2、在分光光度法中,透射光强度(I)与⼊射光强度(I0)之⽐I/I0称为( )。

A、吸光度B、吸光系数C、透光度D、百分透光度3、符合朗伯-⽐尔定律的有⾊溶液在被适当稀释时,其最⼤吸收峰的波长位置( )。

A、向长波⽅向移动B、向短波⽅向移动C、不移动D、移动⽅向不确定4、对于符合朗伯-⽐尔定律的有⾊溶液,其浓度为c0时的透光度为T0;如果其浓度增⼤1倍,则此溶液透光度的对数为( )。

A、T0/2B、2T0C、2lgT0D、0、5lgT05、在光度分析中,某有⾊物质在某浓度下测得其透光度为T;若浓度增⼤1倍,则透光度为( )。

A、T2B、T/2C、2TD、T1/26、某物质的摩尔吸光系数很⼤,则表明( )。

A、该物质溶液的浓度很⼤B、光通过该物质溶液的光程长C、该物质对某波长的光的吸收能⼒很强D、⽤紫外-可见光分光光度法测定该物质时其检出下限很低7、在⽤分光光度法测定某有⾊物质的浓度时,下列操作中错误的就是( )。

A、⽐⾊⽫外壁有⽔珠B、待测溶液注到⽐⾊⽫的2/3⾼度处C、光度计没有调零D、将⽐⾊⽫透光⾯置于光路中8、下列说法正确的就是( )。

A、透光率与浓度成正⽐B、吸光度与浓度成正⽐C、摩尔吸光系数随波长⽽改变D、玻璃棱镜适⽤于紫外光区9、在分光光度分析中,常出现⼯作曲线不过原点的情况。

与这⼀现象⽆关的情况有( )。

A、试液与参⽐溶液所⽤吸收池不匹配B、参⽐溶液选择不当C、显⾊反应的灵敏度太低D、被测物质摩尔吸光系数太⼤10、质量相等的A、B两物质,其摩尔质量M A>M B。

经相同⽅式发⾊后,在某⼀波长下测得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系就是( )。

A、εA>εBB、εA<εBC、εA=εBD、2εA>εB11、影响吸光物质摩尔吸光系数的因素就是( )。

光谱中红外,紫外,可见光的光谱范围

光谱中红外,紫外,可见光的光谱范围

可见光指能引起视觉的电磁波。

可见光的波长范围在0.77~0.39微米之间。

波长不同的电磁波,引起人眼的颜色感觉不同。

0.77~0.622微米,感觉为红色;0.622~0.597微米,橙色;0.597~0.577微米,黄色;0.577~0.492微米,绿色;0.492~0.455微米,蓝靛色;0.455~0.39微米,紫色。

可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400到700纳米之间,但还有一些人能够感知到波长大约在380到780纳米之间的电磁波。

正常视力的人眼对波长约为555纳米的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域人眼可以看见的光的范围受大气层影响。

大气层对于大部分的电磁波辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。

不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。

红外光谱红外光谱(infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。

按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。

对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。

每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。

分子的红外吸收光谱属于带状光谱。

原子也有红外发射和吸收光谱,但都是线状光谱。

量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。

若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

部分一紫外光谱法与红外光谱法摘要:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法,紫外光谱法(UV),红外光谱法(IR)都是属于光谱法。

一、原理不同1、紫外光谱(UV)分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。

紫外光谱是由于分子中价电子的跃迁而产生的。

紫外吸收光谱的波长范围是100-400nm(纳米), 其中100-200nm 为远紫外区,200-400nm为近紫外区, 一般的紫外光谱是指近紫外区。

2、红外光谱法(IR)分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。

利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。

红外光区的波长范围是0.76—500 μm,近红外0.76—2.5μm中红外2.5—25μm远红外波长25—500μm 。

二、仪器对比三、分析目的1、紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。

电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。

除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。

因此,紫外吸收光谱属电子光谱。

光谱简单。

2、中红外吸收光谱由振—转能级跃迁引起,红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。

3、紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。

红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究4、红外光谱的特征性比紫外光谱强。

因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。

因此,多数紫外光谱比较简单,特征性差。

UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定许多化合物,尤其是有机化合物的重要定性工具之一。

红外光谱主要用于化合物鉴定及分子结构表征,亦可用于定量分析。

5、紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。

红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。

部分二:红外分光光度法与紫外分光光度法摘要:分光光度法是通过测定被测物质,在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。

一、红外分光光度法1、红外分光光度法(infrared,peetropho- tometry)利用物质对红外光的选择吸收特性来进行结构分析、定性鉴定和定量测定的一种仪器分析方法(也叫红外吸收光谱法)。

原理红外光谱分析法以红外吸收光谱为基础。

红外光谱亦称振转光谱,因为它主要来源于分子振动,同时也因分子转动而产生。

在分子中有伸缩振动和变形振动两种基本振动。

键的振动频率不仅与键本身有关,也受到全分子的影响。

一定颇率的红外线经过分子时,如果分子中某一个键的振动频率和它一样,这个键就吸收红外线而增加能振动就会加强;如果分子没有同样频率的键,红外线就不会被吸收。

因此,用红外线照射样品时,若连续改变红外线的频率,则通过样品吸收池的红外线,有些区域较弱,有些区域较强,这就产生了红外吸收光谱。

由于每个有机化合物的结构不同,它的原子质t和化学键力各不相同,就会出现不同的吸收颇率,因此各有其独特的红外吸收光谱,借此可以进行定性、定量分析和结构剖析。

主要仪器为红外分光光度计.它的作用是测定被物质吸收后透过的各个波长的红外光的透过率,并给出该物质的红外吸收光谱。

2、紫外分光光度法物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。

由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。

分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。

即物质在一定波长的吸光度与它的吸收介质的厚度和吸光物质的浓度呈正比。

二、仪器组成1、红外分光光度计仪器部分组成:流程:光源->吸收池->单色器->检测器->记录装置分为色散型(已淘汰)和干涉型。

光源:一般常见的为硅碳棒,特殊线圈,能斯特灯(已淘汰)。

检测器:真空热电偶及Golay池吸收池:液体池和气体池(具有岩盐窗片)检测器:多用热电性硫酸三甘肽(TGS)或光电导性检测器2、紫外分光光度计部件组成辐射源:钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。

单色器:它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)。

试样容器:又称吸收池。

石英池检测器:又称光电转换器。

常用的有光电管或光电倍增管,显示装置:常备有微处理机、荧光屏显示和记录仪等。

三、分析目的(一)红外分光光度法1、红外分光光度法化合物中各原子团组合排列情况,是同红外光谱中出现的特征官能团来确定的。

(1) 溴化四氯化对位甲酚的结构,过去实验认为它有三种可能的结构,但未能鉴别确定,现经过红外光谱证实只有一种结构。

(2) 二分子醛缩合醇酮,应为(I)式。

若(I)式R换成吡啶基,则化学性质和(I)却不相同了,它具有烯二醇式的反应如(II)式。

可是在极烯的溶液中,也看不到自由羟基的3700cm(-1)-谱带,却在2750cm(-1)有缔全氢键出现。

可知它已形成了分子内氢键。

(I)羟酮式(II)烯二醇式2、异构体的测定——可鉴定立体异构体和同分异构体(1) 顺反异体的测定——顺反异构体原子团排列顺序因无对称中心,故C=C 双键在1630cm(-1),724cm(-1),而反式的C=C在较高频率。

(2) 同分异构体的鉴定——红外光谱900~660cm(-1)区内可看到苯环取代位置不同的同分体。

如二甲苯三个异构体的吸收谱带很不相同。

邻位在742cm(-1),间位在770cm(-1),对位在800cm(-1),且因对二甲苯对称性强,它的C=C双键(苯骨架)在1500cm(-1)变小,并且600cm(-1)谱带消失。

又如正丙基、异丙基、叔丁基由红外光谱中的甲基弯曲振动可以看出。

在1375cm(-1)只出现一个吸收带,则表示为正丙基;若在1375cm(-1)出现相等强度的双峰,则为异丙基;若在`1390cm(-1)及1365cm(-1)出现一强一弱谱带,则为叔丁基。

乙醇和甲醚的分子式完全相同C2H6O,乙醇有羟基吸收带在3500cm(-1),C-0伸缩振动在1050~1250cm(-1),羟基弯曲振动在950cm(-1)。

甲醚在3500cm(-1)无羟基吸收。

它的第一强1150~1250cm(-1),这两个同分异构体很容易区别。

3、化学反应的检查——一个化学反应是否已进行完全,可用红外光谱检查,这是因原料和预期的产品都有其特征吸收带。

例如氧化仲醇为酮时,原料仲醇的羟基吸收应消失,酮的羰基171cm(-1)应在产物中出现才反应进行完全。

4、未知物剖析——可先将未知物分离提纯,作元素分析,写出分子式,计算不饱和度。

从红外光谱可得到此未知物主要官能团的信息,确定它是属于哪种化合物。

结合紫外、核磁等可鉴定此化合物的结构。

(二)紫外分光光度法1 检定物质根据吸收光谱图上的一些特征吸收,特别是最大吸收波长虽ax和摩尔吸收系数是检定物质的常用物理参数。

这在药物分析上就有着很广泛的应用。

在国内外的药典中,已将众多的药物紫外吸收光谱的最大吸收波长和吸收系数载入其中,为药物分析提供了很好的手段。

2 与标准物及标准图谱对照将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。

若两者是同一物质,则两者的光谱图应完全一致。

如果没有标样,也可以和现成的标准谱图对照进行比较。

这种方法要求仪器准确,精密度高,且测定条件要相同。

3 比较最大吸收波长吸收系数的一致性4 纯度检验5 推测化合物的分子结构6 氢键强度的测定实验证明,不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂7 络合物组成及稳定常数的测定8 反应动力学研究9 在有机分析中的应用参考文献【1】袁洪福,徐广通,强冬梅,现代近红外光谱分析技术,中国石油,宗志敏.秦志宏等.分于煤化学的构想及其发展前景见:中国【2】杨频,生物无机化学导论1 西安:西安交通大学出版社,1991【3】董庆年.煤结构研究中的付里叶变换红外光谱[A].见: 吴瑾光主编.近代付里叶变换红外光谱技术及应用下册第二章[M].北京:科学技术文献出版社, 1994. 63~ 8。

相关文档
最新文档