电压互感器二次侧为什么有的电压互感器采用B相接地

电压互感器二次侧为什么有的电压互感器采用B相接地
电压互感器二次侧为什么有的电压互感器采用B相接地

电压互感器二次侧为什么有的电压互感器采用B相接地,而有的采用零相接地?

一般电压互感器的二次接地都在配电装置端子箱内经端子排接地。对220

千伏的电压互感器二次侧一般采用中性点接(也叫零相接地);对发电机及厂用电的电压互感器,大都采用二次侧B机接地。

为什么电压互感器的二次侧有两种接地方法呢?主要原因是:

(1)习惯问题。通常有的地方(380伏低压厂用母线)为了节省电压互感器台数,选有V/V接。为了安全,二次侧总得有个接地点,这个接地点一般选在二次侧两线圈的公共点。而为了接线对称,习惯上总把一次侧的两个线圈的首端一个接在A相上,一个接在C相上,而把公共端接在B相。因此,二侧侧对应的公共点就是B 相,于是,成了B相接地。

从理论上讲,二次侧哪一相端头接地都可以,一次侧哪一相作为公共端的连接相也者可以,只要一、二次对应就行。

对于三个线圈星形连接的电压互感器有的也采用二次侧B相接地(如发电机及厂用高压母电压互感器),同样是为了接线对称的习惯问题。

有的星形连接的电压互感器,二次侧B相接地是为了与低压厂用各电压等级的电压互感器二次侧接方式相一致,因为在一个发电厂的厂用电中,总不希望同时存在几种电压互感器二次侧接地方式,不然的话,会给厂用电的二次接线造成不应有的麻烦。

(2)继电保护的特殊需要。220千伏的线路都装有距离保护,而距离保护对于电压互感器二次回路均要求零相接地,因为要接断线闭锁装置需要有零线。所以,220千伏系统的电压互感器是采用零相接地,即中性点接地而不采用B相接地。对于发电厂来说,为了满足不同要求,电压互感器二次侧既有中性点接地,又有B相接地的。当这两种接地方式的电压互感器都用于同期系统时,一般采用隔离变压器来解决因不同的接地方式引起的可能烧坏星形接线的电压互感器B相线圈的问题。

电压互感器二次侧B相接地的接地点一般放在熔断器之后。为什么B相也配置二次熔断器呢?这是为了防止当电压感器一、二次间击穿时,经B相接地点和一次侧中性点形成回路,使B相二次线圈短接以致烧坏。

凡采用B相接地的电压互感器二次侧中性点都接一个击穿保险器JB。这是考虑到在B相二次保险熔断的情况下,即使高压窜入低压,仍能击穿保险器,而使电压互感器二次有保护接地。击穿保险器动作电压约为500伏。

电压互感器开口三角形额定电压(单相):

用在大接地系统中的PT开口绕组额定电压为100V,用在小接地或不接地系统中的

附加二次绕组额定电压为100/3V

大接地系统

a

c b U U U U -=+=03 a U U =03 V U U a 10030==

小接地系统

a c

b U U U U 33000=+= a U U 330= V U U a 100330== V 即:U a 3/100=

电压互感器二次侧必须接地

复习思考题参考答案 1.什么叫电力系统和电力网? 由发电厂、电力网和电力用户组成的统一整体称为电力系统。电力系统能够提高供电的安全性、可靠性、连续性、运行的经济性,并提高设备的利用率,减少整个地区的总备用容量。 电力网是电力系统的有机组成部分,它包括变电所、配电所及各种电压等级的电力线路。它能够实现电能的经济输送和满足用电设备对供电质量的要求。 2.我国电网电压等级分几级? 目前,根据我国国民经济发展的需要,从技术经济的合理性及考虑电机电器制造工业的工艺水平等因素,国家颁布制定了我国电力网的电压等级,主要有0.22、0.38、3、6、10、35、110、220、330、550kV等10级。 3.电力负荷分几级?各级负荷对供电电源有何要求? 在电力系统中根据电力负荷对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。各级负荷对供电电源的要求如下: 一级负荷:应由两个独立电源供电,一用一备,当一个电源发生故障时,另一个电源应不致同时受到损坏。一级负荷中的特别重要负荷,除上述两个电源外,还必须增设应急电源。为保证对特别重要负荷的供电,禁止将其他负荷接入应急供电系统。 二级负荷:要求采用两个电源供电,一用一备,两个电源应做到当发生电力变压器故障或线路常见故障时不致中断供电(或中断供电后能迅速恢复)。在负荷较小或地区供电条件困难时,二级负荷可由一路6KV及以上的专用架空线供电。 三级负荷:三级负荷对供电电源无要求,一般为一路电源供电即可,但在可能的情况下,也应提高其供电的可靠性。 4.变配电所选址原则是什么? 一般来讲,变(配)电所位置选择应考虑下列条件来综合确定: (1)接近负荷中心,这样可降低电能损耗,节约输电线用量。 (2)进出线方便。 (3)接近电源侧。 (4)设备吊装、运输方便。 (5)不应设在有剧烈振动的场所。 (6)不宜设在多尘、水雾(如大型冷却塔)或有腐蚀性气体的场所,如无法远离时,不应设在污染源的下风侧。 (7)不应设在厕所、浴室或其他经常积水场所的正下方或贴邻。 (8)变(配)电所为独立建筑物时,不宜设在地势低洼和可能积水的场所。 (9)高层建筑地下层变(配)电所的位置,宜选择在通风、散热条件较好的场所。 (10)变(配)电所位于高层(或其他地下建筑)的地下室时,不宜设在最底层。当地下仅有一层时,应采取适当抬高该所地面等防水措施。并应避免洪水或积水从其他渠道淹渍变(配)电所的可能性。

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法 变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。 但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。 变压器差动保护误动作的原因及处理方法如下: 一、差动保护电流互感器二次接线错误 (一)常用的电流互感器二次接线 图1-101 常用的电流互感器二次接线 图1-101是工程上常用的一种接线方式。图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。 对图l-101进行相量分析如下: 现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。T2流出。 在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得: I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。 由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。 在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-

电流、电压互感器安装流程

电流、电压互感器安装一、安装流程

三、施工控制要点 1.施工准备 机具及材料:吊车、单车、吊装工具(专用吊具),SF6 充气装置、SF6 气体微水测量仪、检漏仪、专用工具等准备齐全、验证合格; 技术准备:安装前技术人员查阅施工图纸、厂家资料,配合完成施工图纸交底及会审活动,编制书面技术交底; 明确技术负责人,安装负责人,安全、质量负责人及施工人员,进行技术交底; 设备放置场地应平整,根据组件编号及规格型号倒运到位,并采取防倾倒措施。 2.基础复核 基础尺寸应符合设计图纸,强度满足设备安装要求; 基础轴线偏差≤5mm; 平面外形尺寸偏差±10mm; 3.支架安装 设备支架安装后的质量要求: 标高偏差≤5mm,垂直度≤5mm,相间轴线偏差≤10mm,杆顶板平整度偏差≤5mm。 4.开箱检查 施工项目部向监理部提出开箱申请,得到监理部批准; 监理部组织业主、施工、厂家三方代表参加,总监理工程师为开箱负责人; 产品装箱单、合格证、出厂试验报告、安装说明书应齐全; 实体检查: ⑴外观完好,无损伤; ⑵紧固件应无松动,附件完整; ⑶绝缘支持物应牢固,且清洁紧密,无锈蚀; ⑷油浸式互感器油位应正常,密封良好,油位指示器、瓷套法兰连接处、放油阀等处均无渗油现象; ⑸密度继电器压力应符合厂家要求。 5.本体安装 根据设备高度及重量选择合适的吊装机具及吊装器具; 互感器极性安装方向满足施工图纸要求,根据厂家说明书的要求吊装,吊装过程中应采取防倾措施(缆绳稳定等),互感器安装垂直,整齐一致;

电压互感器应根据产品成套供应的组件编号进行安装,不得互换; 电容型绝缘的电流互感器,一次绕组末屏引出端子、铁芯引出接地端子应可靠接地; 电流互感器的二次备用绕组应短接后接地; 分级绝缘的电压互感器,其一次绕组的接地引出端子;电容式电压互感器的接地应符合产品技术文件的要求。 6.接地安装 互感器支架接地线一般采用镀锌圆钢或扁钢接地,制作时须采用冷弯制作,避免造成对镀锌层的破坏; 砼支架采用镀锌圆钢制作接地线,安装后应与砼杆服帖,焊接及防腐工艺质量满面足规范要求;钢支架采用镀锌扁钢制作接地线,安装后接地线与支架杆表面平行(接地扁钢与钢柱之间宜留间隙或加设绝缘材料,以方便接地电阻测试),焊接及防腐工艺质量满面足规范要求; 互感器外壳接地宜采用铜排制作,并采用冷弯弯制,表面采取防氧化处理,接地可靠; 互感器应保证工作接地点有两根与主接地网不同地点连接的接地引下线; 接地线安装后须涂刷接地标识漆,涂刷宽度相等(15-100mm)的黄色和绿色相间的条纹标识;7.电气试验 测量绕组的绝缘电阻; 测量35kV及以上电压等互感器的介质损耗角正切值tanδ; 局部放电试验; 交流耐压试验; 绝缘介质性能试验; 测量绕组的直流电阻; 检查接线组别和极性; 误差测量; 测量电流互感器的励磁特性曲线; 测量电磁式电压互感器的励磁特性曲线; 电容式电压互感器(CVT)的检测; 密封性能检查; 测量铁芯夹紧螺栓的绝缘电阻; 8.二次接线 互感器电缆穿管的制作应遵循以下原则:

电流电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取0.05~0.1

根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗 根据目前国内外电能表技术参数,单相电压回路的平均功耗参考值如下所示:

PT102电流型电压互感器使用方法及曾经实验数据

PT102微型精密电压互感器(测量用) 产品型号:PT102 安装方法:直接焊接在印刷电路板上 使用方法: PT102实际上是一款毫安级精密电流互感器,额定输入电流和额定输出电流均为2mA,用户可使用推荐电路,利用限流电阻R’(功率要求有2倍的余量)将输入端电压信号变换成电流信号,不论额定输入电压多大,调整图中反馈电阻R和r的值可得到所需要的电压输出。电容C1及可调电阻r’用来补偿相位,建议R取V0/0.002,r取R/10,C1取约为65/R(μF),V’取200KΩ。电容C2和C3取400至1000PF,用来去耦和滤波,两个反接的二极管可保护运算放大器,运算放大器视精度要求,使用性能较好的运算放大器,较容易达到较高的精度和较好的稳定性。运算放大器电源电压根据具体情况自定,图中电阻R和R’要求精度优于1%,温度系数优于50PPM。用户使用推荐电路,稍加改动也可构成单电源供电模式,适用于单极性A/D转换器的输入。 额定输入电流也可不加运算放大器而直接并联一个小于400Ω电阻得到最大1伏输出电压信号,线性度仍优于0.1%

PT102传感器输入侧串联110K,1W电阻,产生220V AC/(110+0.11)< 2mA AC额定电流 历史上曾经设计: LD-EM235输入时: 231V AC->R1.50K->2.19VDC(非线性) 230V AC->R1.25K->1.97VDC(非线性) 232V AC->R0.75K->1.37VDC 230V AC->R0.51K->0.92VDC R0.75K下输出是线性,选择R=0.75K 二次改进设计时: LD-EM231TC输入: 285V AC->2.6mA ->R0.02k->52mV->PLC的CPU中将产生12809个工程单位->在HMI中设置为->285V AC 230V AC->2mA ->R0.02k->44mV->PLC的CPU中将产生9608 个工程单位->在HMI中应显示->214V AC 之所以产生6V的误差是由于EM231TC的温度非线性特征造成的 使用LD-EM231TC温度模块做电压检测时的温度补偿影响分析: 由于LD-EM231TC温度传感器中占用A+,A-通道,模块中的DIP第8位必须设置为0(温度补偿使能),因 此给全部输入端都进行有补偿能力,假设PLC的整定温度在15C进行,当夏天到达30C时, EM231TC中 的B+B-,C+C-,D+D-回路将增加150个工程单位,(A+A-回因输入信号减少补偿后理论上没有变化), 在HMI中将叠加1.5C=255.5C; 相反,如果到冬天环境0C时,HMI中将减少1.5C=212.5V 准确的影响数值需要调试实际确定,所以,使用EM231TC同时检测电压的测量误差难于小于4% ET231TC输入范围: -200C...+3000C->(-2000...30000)个工程单位,断线时显示32767

电能计量装置常用的几种典型接线图电压互感器实际二次负荷的计算

姓八年、知识与技能 ①积累文言词语,增强文言语感 ②了解作者及写作背景,知人论世,便于理解作者丰富而微妙的思想感情 ③感受作者描绘的初春景象,理解作者寄情山水的意趣 、过程与方法①重视诵读,在朗读中把握文意,逐步提高学生的自学能力②理解文章的意境和作者的思想感情,体味作者个性化的写景抒情风格③体会拟人、比喻等手法的运用及其效果,引导学生把握形象生动的写景技 、情感、态度与价值观:培养学生热爱大自然的感情 、引导学生感受作品优美的意境,体会作品中流露的思想感情教、品读课文,体会本文写景的技巧,学习作者善于抓住景物特点生动传神地进行重写的方法难、积累文言词 教讨论点拨法。诵读感悟法 教教学时多媒体课件制准教学过程与步多媒体展教学内一、导(PPT本文是一篇文字清新的记游小品。满井是明、清两朝北京近郊的一个景区。文章用极精简的文字记游绘景、抒情谕理下面让我们一起随着明代文学家袁宏道的脚步到北京郊外满井去走PPT走,看一看,领略一下那时那地的春之美景(课件出示幻灯1---课题二、正课检测预习情况掌握下列词语的读音 ;nxā)节)二;z地ù)沙之;飞沙ì;;鲜妍)明 红装面ìè寸l髻hhìj)ā)j而歌者等汗ú脱笼朗读课文,疏通文意,作标记、标注,合作探讨 ①朗读课文,疏通文意、学生朗读并翻译段,注意以下词语的解释 段,注意以下词语的解释、学生朗读并翻译 段,注意以下词语的解释、学生朗读并翻译 ②、归类总结巩固,积累下列文言词语。)一词多义(这时)冰皮始:冻(经常)(开始):冰(未尝)无(才)知郊田之未(刚刚)髻鬟(突然)出于匣冷光:波(开始) (得意、满足悠然:欲出(能够 (然而)徒步则汗出浃:晶--的样子 )词类活用名词活用作动词(用泉水煮)(喝茶)者(端着酒杯)而歌者红(穿着艳装)(骑着驴)-----走)(动词的使动用法:作(-----飞))重点虚词点击超链:若脱(表修饰关系,可译为“的)按钮,局促一(表限度关系,可译为“以 髻(起舒缓语气的作用,可不译)始掠满井游记图 疑难语句交流释疑 请从原文中找出与大屏幕上画面相应的语句 PPT5--作简介及写简介作者及写作背景,辅助理解 ①简介作者背景袁宏道,字中郎,号石公,明代文学家,湖北公安人。万历年进士,官至吏部中郎,与兄宗道、弟中道并三,为文学史的创始者。其作品真率自然、清新活泼,内容则多写闲情逸致安部分篇章反映民间疾苦对当时政治现实有所批判《袁中郎全集②写作背景,袁宏道再次作官,任顺天府教授,终日又年万2159和拜谒酬答打交道了,这使他颇为苦闷;更使他苦闷的是有政见却不到申诉。好在袁宏道所担任的职务比较清闲,有空暇就游览北京《满井游记》就作于此时近的名胜古迹、整体感知阅读思第一段写出怎样的景象,抒发了作者什么样的心情,有什么作用“冻风时作答这一段描写了早春城中“余寒犹厉“飞沙走砾的景象抒发了作者“局促于一室之内,欲出不得”的郁闷心情烘托、反衬了满井的春意盎然和郊游时“若脱笼之鹄”的开阔胸襟。,又未见游踪。从全文结构来看,些内容看似信手写来,既未言“满井一段是极必要的铺垫,作者欲扬先抑,欲进先退,把那种迫切渴望出游的情暗示给读者;同时,又向读者交代了时间,作者所处的地点第二段写了哪些景色,表答了作者怎样的心情

常用电压互感器的接线

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。

V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。 图1 (正确)图2(错误) 图3 根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca线电压变为。

电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 二次侧接地 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的

电流互感器二次侧开路时二次电压的计算

电流互感器二次侧开路时二次电压的计算 电流互感器二次侧开路时,互感器成空载运行,此时,一次侧线路电流全部成为励磁电流,使铁心内的磁通密度比额定情况增加很多,一方面使二次侧感应出很高的电压,可能使绝缘击穿,同时对测量人员也很危险;另一方面,铁耗会大大增加,使铁心过热,影响电流互感器的性能,甚至烧坏互感器。下面来分析一只1200/5A的CT二次开路电压: 已知:一次额定安匝I1n N1n=1200A,N2n=240,A c=25.5cm2,L c=75.4cm,f=50Hz,铁芯是冷轧硅钢片,卷铁芯,取K=4.13×10-2,于是二次开路峰值电压:: 注:公式来自《互感器设计原理》 E KL—二次开路电压(峰值),V; N2n—额定二次匝数; A c—铁芯有效截面积,cm2; f—电源频率,Hz; L c—铁芯的平均磁路长,cm; I1n—额定一次电流,A; N1n—额定一次匝数; K—系数,与铁芯材质和铁芯型式有关,对于冷轧硅钢板卷铁芯取4.13×10-2;叠片铁芯取2.59×10-2;如上计算表明,当一次正常运行时,CT二次电流最大也就5A左右。但是在开路时,开路峰值电压能到7.1kV。这样的高压可能造成互感器纵绝缘的损坏,也可能对二次线路上的仪表等产 生威胁。 另,上述理论分析和实际情况并不完全符合。例如我们在国家高电压计量站对一台LZZBJ4-35 CT 变比为1600/5的保护绕组进行了开路电压峰值测试:对一次绕组通以额定电流1分钟,二次绕 组开路,测得开路峰值电压为1412V,比上述公式计算得到的数据小很多,当然这样的电压也足以对人身和仪表产生威胁。 因此,电流互感器在使用中必须与二次负荷确切联结,不接负荷时则应可靠短接,短接的导线必须有足够的截面,以免当一次过电流时产生的较大的二次电流将导线熔断,造成二次开路而出现高电压。

电压互感器与电流互感器的作用、原理及两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器;

浅析多绕组电压互感器二次负荷配置原则

浅析多绕组电压互感器二次负荷配置原则 发表时间:2018-04-19T16:20:05.657Z 来源:《电力设备》2017年第33期作者:燕刚 [导读] 摘要:本文对保护绕组二次负荷额定值以及计量误差现象和影响的机理进行分析,提出有效原则。 (国网山东省电力公司东阿县供电公司 252200) 摘要:本文对保护绕组二次负荷额定值以及计量误差现象和影响的机理进行分析,提出有效原则。 关键词:多绕组;电压互感器;二次负荷;配置原则 0引言 随着电子式电能表、智能电能表的逐渐普及,电压互感器计量绕组二次回路负荷普遍变轻,与此同时,采用现代微机型保护装置替代传统电磁式继电保护装置后,保护绕组二次回路负荷同样大大降低,而更换上述新型二次装置时,一般不会同时更换电压互感器,这就造成电压互感器的运行轻载现象严重,甚至出现计量二次实际负荷远小于1/4额定负荷的极端情况。在计量误差方面表现为电压互感器出厂合格,但在实际运行时误差正偏严重,甚至超差。电压互感器多个二次绕组负荷变化对计量误差影响的模型研究已经较为成熟,但在2017年XX电网关口计量装置改造项目开始之前,尚没有机构开展电压互感器二次负荷配置原则的研究。设计部门一般以大于4倍实际运行二次负荷的原则进行互感器额定容量选型,裕度过大。基于多绕组电压互感器的电磁模型,本文揭示计量和保护绕组二次负荷额定值与实际值对计量误差的影响机理,根据理论和试验结果制定了多绕组二次负荷的配置原则,并将其应用于电网电厂上网关口计量装置改造工程中。工程检测结果表明,电压互感器的误差正向偏移现象得到了明显改善,互感器设计的最佳误差特性点得到了应用。提出的二次负荷优化配置理论以及工程实践经验可在其他公司推广应用。 1.计算模型. 高压多绕组电压互感器最常见的配置是一次绕组加2个基本二次绕组和1个剩余电压绕组,基本二次绕组1个用于计量、另1个用于保护和测控。稳态运行时,剩余绕组上不流过电流(不产生磁场),不会对计量绕组误差产生影响。而一次绕组、计量绕组和保护绕组3者的磁场通过铁芯和空气磁路紧密耦合在一起,当任意1个绕组二次负荷发生改变时,都会对计量绕组的误差产生影响。 为分析二次负荷配置对计量准确性的影响,首先需建立多绕组电压互感器的电磁模型。单相三绕组电压互感器的电磁结构如图1所示。图中,一次绕组、计量绕组和保护绕组分别编号为1、2、3号绕组,匝数分别是N1、N2、N3;Φm是交链3个绕组的铁芯磁通;E1、E2、E3是铁芯磁通的感应电势,其中下标表示绕组编号;Φ12、Φ13、Φ23是交链2个绕组的互漏磁通;Φ1σ、Φ2σ、Φ3σ表示绕组的自漏磁通;U1、U2、U3和I1、I2、I3表示绕组端口电压和电流,参考方向按照电磁学惯例选取;Y2和Y3代表二次负荷。 按照全电流定律、各绕组的电压平衡方程,并采用三绕组变压器的建模方法将所有物理量归算到一次侧可得: 式中:Im代表励磁电流;上标′表示归算到一次侧的物理量;R1、R2′、R3′和1X、2X′、3X′分别为3个绕组的电阻和自漏抗; X12′=X21′、X13′=X31′、X23′=X32′为2个绕组间的互漏抗。 根据式(1)?式(4)可以做出三绕组电压互感器的等效电路如图2所示。归算到一次侧后,由主磁通Φm感应出的3个绕组电势相等,即 。 整理式可得:

电压互感器二次回路短路故障的处理

电压互感器二次回路短路故障的处理 作者:丁义 来源:《沿海企业与科技》2011年第09期 [摘要]电力系统在运行过程中常会遇到电压不稳定的状况,电压、电流过高或过低均会给系统性能造成很大的破坏。为了防止系统的电压值、电流值超出线路承受的标准范围,常常用互感器作为调控装置,对两者按照标准要求调控处理后才能正常运行系统。电压互感器在使用期间会受到故障的影响,导致互感器调控电压的性能减弱。针对这一问题,文章主要分析导致互感器回路故障发生的具体原因,并提出处理故障的有效策略。 [关键词]电压互感器;二次回路;短路;故障处理 [作者简介]丁义,广东省输变电工程公司工程师,研究方向:电力工程,广东广州,510160 [中图分类号] TM451 [文献标识码] A [文章编号] 1007-7723(2011)09-0087-0003 电力系统在运行过程中常会遇到电压不稳定的状况,互感器作为调控装置对电压稳定具有调节作用。电压互感器是按照系统运行的标准要求,将大电压转变成低电压,以满足设备实际运行的承载能力。同时,电压互感器也可用于电力系统的测量保护,及时检测发现电压值的异常以判断故障,从而降低了系统受损的程度。从目前电力行业的使用情况看,电压互感器在使用期间会受到故障的影响,导致互感器调控电压的性能减弱,电压互感器最多的故障则是二次回路短路,若不及时采取有效措施处理则会导致系统运行中断,给设备造成较大的损坏。 一、引起回路故障的常见原因 为了满足社会广大用户的用电需求,电力网络规划时在具体位置安装了电压互感器,从而保证了原始电压得到有效的转换。二次回路在电力系统中属于低压回路,如:测量回路、继电保护回路、开关控制回路、操作电源回路等等,主要负责对一次回路中的参数、元件进行控制、保护、调节、测量、监视,以维持设备及系统的高效率运行。短路是电压互感器二次回路的多发故障,导致该故障发生的原因是多方面的。 1.电缆因素。当前,二次回路中连接了各种电力装置,包括:测量仪表、继电器、控制和信号元件,将这些结构安装具体的要求连接起来即可构成二次回路。连接电缆在装置或元件连接中有着重要作用,可以协调线路电压、电流的运行。当连接电缆发生短路后,会立刻造成电压互感器二次回路出现短路故障。 2.质量因素。导线自身的质量好坏也是影响二次回路故障的一大因素。导线作为电压互感器传递电压、电流的介质,其性能强弱会对二次回路造成直接性的影响。如果二次回路中所用

电压互感器二次回路压降测试作业指导书

电压互感器二次回路压降测试 作业指导书

目录 1.概述………………………………………………………….() 2.应用范围…………………………………………………….() 3.引用标准、规程、规范…………………………………….() 4.使用仪器、仪表及准确度等级……………………….() 5.试验条件…………………………………………………….() 6.试验项目……………………………………………………() 7.试验方法……………………………………………………() 8.试验结果的处理…………………………………………….() 9.安全技术措施……………………………………………….()附录A.试验记录格式……………………………………….()

1 概述 本作业指导书针对的测试对象是发电厂和变电站计量用电压互感器二次回路导线所引起的电压降。试验目的是检验用于电能计量中电压互感器二次回路压降的误差。电能计量装置综合误是由电流互感器的误差、电压互感器的误差、电能表的误差及电压互感器二次导线压所引起计量综合误差所组成。因此电能计量综合误差的计算与修正,需要准确地检测出电压互感器二次回路压降的误差。现行规程规定压降的检测周期为2年。 2.应用范围 本作业指导书适用于对新装及运行中高供高计的电力用户和发、供电企业间用于电量交易的电能计量装置电压互感器二次回路压降的测试工作。 3.引用标准、规程、规范 (1)DL/T448-2000 《电能计量装置技术管理规程》 (2)JJG169-1993 《互感器校验仪检定规程》 (3)JJG1027-1991 《测量误差及数据处理》 (4)国家电网安监字[2005]83号《国家电网公司电力安全工作规程》4.使用仪器、仪表及准确度等级 表1电压互感器二次回路压降测试用标准仪器 5.试验条件 5.1压降测试仪: 5.1.1等级不应低于2级;基本误差应包含测试引线所带来的附加误差。

110kv系统电压互感器二次电压异常处理

110kV系统电压互感器二次电压异常处理 110kV系统电压互感器二次电压异常处理 摘要:本文作者结合自己多年的实际工作经验,对110kV变电站电压互感器二次电压异常相关问题进行分析探讨,同时提出了自己的看法和意见,仅供参考。 关键词:110kV系统;电压互感器;变电站 中图分类号:TM714.2 文献标识码:A 文章编号: 随着社会的进步和发展,人们对电能的需求越来越大,用电量也越来越高。在对用电大大增加的同时,能否保证电力系统的稳定运行显得非常重要。110kV 配电系统是我国中低压配电的主要系统,系统是否正常运行关系到中低压配电系统的供电可靠性。在变电站实际运行的过程中,110kV 系统时常会发生电压回路异常,而这些异常现象原因很多,包括电压互感器高压保险熔断、二次系统接地等,快速、正确地判定出异常故障的种类和原因,从而排除异常现象是非常必要的。 1 电压互感器 1.1 电压互感器的概念 电压互感器用来变换线路上的电压,是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1 时,在铁心中就产生一个磁通Φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。 1.2 电压互感器的作用 电压互感器是把高电压按比例关系变换成低等级的标准二次电压,供保护、计量、仪表装置使用。同时,使用电压互感器可以将高电压与电气工作人员隔离。电压互感器虽然也是按照电磁感应原理工作的设备,但它的电磁结构关系与电流互感器相比正好相反。电压互

感器二次回路是高阻抗回路,二次电流的大小由回路的阻抗决定。当二次负载阻抗减小时,二次电流增大,使得一次电流自动增大一个分量来满足一、二次侧之间的电磁平衡关系。可以说,电压互感器是一个被限定结构和使用形式的特殊变压器。简单的说就是“检测元件”。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 2 电压互感器二次电压异 在变电站实际运行过程中,110kV系统二次电压异常可能有多种因素造成,例如:系统单相接地、电压互感器高压保险熔断、低压保险熔断、一次系统接地、二次系统接地等等。 2.1 系统单相接地故障 2.1.1 单相接地故障的特征 (1)中央信号:警铃响,“某千伏某段母线接地”光字牌亮,中性点经消弧线圈接地系统,还有“消弧线圈动作”光字牌亮;(2)绝缘监察电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针无摆动,若电压表不停地摆动,则为间歇性接地;(3)中性点经消弧线圈接地系统,装有中性点位移电压表时,可看到有一定指示(不完全接地)或指示为相电压值(完全接地时)消弧线圈的接地报警灯亮;(4)发生弧光接地时,产生过电压,非故障相电压很高,电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。 2.1.2 发生单相接地故障的原因 发生单相接地故障的原因有很多,例如:(1)导线断线落地或搭在横担上;(2)导线在绝缘子中绑扎或固定不牢,脱落到横担或地上;(3)导线因风力过大,与建筑物距离过近;(4)配电变压器高压绕组单相绝缘击穿或接地;(5)线路上的分支熔断器绝缘击穿等等。 总体的来说,这些都是由于负载不平衡造成的,具体来看,导致

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取~ 根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点

接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗

电流互感器及电压互感器型含义大全完整版

电流互感器及电压互感 器型含义大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电流互感器及电压互感器型号含义说明 PT型号含义说明 第1位:J—PT 第2位:D—单相;S—三相;C—串级;W—五铁芯柱 第3位:G—干式;J—油浸;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相 第4位:W—五铁芯柱;B—带补偿角差绕组; 连字符号后面:GH—高海拔;TH—湿热区 CT型号含义说明 第1位:L—CT 第2或3位:A—穿墙式;M—母线型;B—支柱式;C—瓷绝缘;S—塑料注射绝缘;D—单匝贯穿式;W—户外式;F—复匝式;G—改进型;Y—低压式;Z—浇注绝缘 式支柱式;Q—母线型;K—塑料外壳;J—浇注绝缘或加大容量 第4或5位:B—保护级;C—差动保护;D—D级;J—加大容量;Q—加强型 例: LZZBJ9-10A3G L 电流互感器 Current transformer

Z 支柱式 Post type Z 浇注式 Casting type B 带保护级 Wity protective class J 加强型 Reinforced type 9 设计序号 Design Number 10 额定电压(kV) Highest voltage for equipment(kV) A3G 结构代号 Structure code LFZ-10Q L 电流互感器 Current transformer F 复匝式 Z 浇注式 Casting type 10 额定电压(kV) Highest voltage for equipment(kV) Q 结构代号 Structure code

电压互感器二次侧为什么有的电压互感器采用B相接地

电压互感器二次侧为什么有的电压互感器采用B相接地,而有的采用零相接地? 一般电压互感器的二次接地都在配电装置端子箱内经端子排接地。对220 千伏的电压互感器二次侧一般采用中性点接(也叫零相接地);对发电机及厂用电的电压互感器,大都采用二次侧B机接地。 为什么电压互感器的二次侧有两种接地方法呢?主要原因是: (1)习惯问题。通常有的地方(380伏低压厂用母线)为了节省电压互感器台数,选有V/V接。为了安全,二次侧总得有个接地点,这个接地点一般选在二次侧两线圈的公共点。而为了接线对称,习惯上总把一次侧的两个线圈的首端一个接在A相上,一个接在C相上,而把公共端接在B相。因此,二侧侧对应的公共点就是B 相,于是,成了B相接地。 从理论上讲,二次侧哪一相端头接地都可以,一次侧哪一相作为公共端的连接相也者可以,只要一、二次对应就行。 对于三个线圈星形连接的电压互感器有的也采用二次侧B相接地(如发电机及厂用高压母电压互感器),同样是为了接线对称的习惯问题。 有的星形连接的电压互感器,二次侧B相接地是为了与低压厂用各电压等级的电压互感器二次侧接方式相一致,因为在一个发电厂的厂用电中,总不希望同时存在几种电压互感器二次侧接地方式,不然的话,会给厂用电的二次接线造成不应有的麻烦。 (2)继电保护的特殊需要。220千伏的线路都装有距离保护,而距离保护对于电压互感器二次回路均要求零相接地,因为要接断线闭锁装置需要有零线。所以,220千伏系统的电压互感器是采用零相接地,即中性点接地而不采用B相接地。对于发电厂来说,为了满足不同要求,电压互感器二次侧既有中性点接地,又有B相接地的。当这两种接地方式的电压互感器都用于同期系统时,一般采用隔离变压器来解决因不同的接地方式引起的可能烧坏星形接线的电压互感器B相线圈的问题。 电压互感器二次侧B相接地的接地点一般放在熔断器之后。为什么B相也配置二次熔断器呢?这是为了防止当电压感器一、二次间击穿时,经B相接地点和一次侧中性点形成回路,使B相二次线圈短接以致烧坏。 凡采用B相接地的电压互感器二次侧中性点都接一个击穿保险器JB。这是考虑到在B相二次保险熔断的情况下,即使高压窜入低压,仍能击穿保险器,而使电压互感器二次有保护接地。击穿保险器动作电压约为500伏。 电压互感器开口三角形额定电压(单相): 用在大接地系统中的PT开口绕组额定电压为100V,用在小接地或不接地系统中的

35KV变电所 PT二次电压不平衡现象分析

科技成果报告 新建35/6KV变电所初次充电 PT三相电压不平衡原因分析 及解决方案

窑街煤电集团天祝煤业公司 二〇一一年十一月 目录 1立项背景 (3) 2变电所基本概况介绍 (3) 3 理论分析 (4) 4 PT发生铁磁谐振的危害 (8) 5 防止铁磁谐振,消除PT二次三相电压不平衡现 象的措施 (8)

6 产生的效益 (11) 7 创新点 (12)

新建35/6KV变电所初次充电PT三相电压不平衡 原因分析及解决方案 (窑街煤电天祝煤业公司甘肃天祝733211) 刘建荣温天和徐杜民多斌学 1、立项背景 2010年12月2日,天祝煤业公司在投用新建的35/6KV变电所时,当第一段母线充电时,用万用表测量发现二次侧的电压值不平衡,分别为76V、112V、101V,且开口三角端也出现高电压,电压值达102V左右,而且瞬间B相电压为零,有虚幻接地现象,停电对母线及PT进行检查没有发问题,对PT一次熔断器进行检测,发现B相熔断器熔断,更换一只熔断器后,再次送电,发现二次三相电压仍然不平衡,开口三角端电压偏高,根据经验,在PT的开口三角端处加装一只白炽灯泡,目的是为了消除开口电压,投用后,白炽灯瞬间很亮然后又熄灭了,用万用表测量二次三相电压还是不平衡,且有一相PT熔断器熔断了,在变电所投用后,又陆续发生了母排瓷套管炸裂和PT烧毁的事故,为了彻查原因,确保变电所的正常投用和正常运行,对上述问题进行系统分析,并采取合理的方案予以解决。 2、变电所基本概况 天祝煤业公司新建的35/6KV变电所供电系统为中性点绝缘(即中性点不接地)系统,属于小电流接地系统,其优点是在发生单相接

电流互感器和电压互感器型号含义

电流互感器及电压互感器型号含义说明 PT型号含义说明 第1位:J—PT 第2位:D—单相;S—三相;C—串级;W—五铁芯柱 第3位:G—干式;J—油浸;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相第4位:W—五铁芯柱;B—带补偿角差绕组; 连字符号后面:GH—高海拔;TH—湿热区 CT型号含义说明 第1位:L—CT 第2或3位:A—穿墙式;M—母线型;B—支柱式;C—瓷绝缘;S—塑料注射绝缘; D—单匝贯穿式;W—户外式;F—复匝式;G—改进型;Y—低压式;Z—浇注绝缘式支柱式;Q—母线型;K—塑料外壳;J—浇注绝缘或加大容量 第4或5位:B—保护级;C—差动保护;D—D级;J—加大容量;Q—加强型例: LZZBJ9-10A3G L 电流互感器 Current transformer Z 支柱式 Post type Z 浇注式 Casting type B 带保护级 Wity protective class J 加强型 Reinforced type 9 设计序号 Design Number

A3G 结构代号 Structure code LFZ-10Q L 电流互感器 Current transformer F 复匝式 Z 浇注式 Casting type 10 额定电压(kV) Highest voltage for equipment(kV) Q 结构代号 Structure code LZZ-10 L 电流互感器 Current transformer Z 支柱式 Post type Z 浇注式 Casting type 10 额定电压(kV) Highest voltage for equipment(kV) LMZB7-10GYW1 L 电流互感器 Current transformer M 母线式 Busbar type Z 浇注式 Casting type B 带保护级 Wity protective class 7 设计序号 Design Number

相关文档
最新文档