分数应用题的解题方法和技巧
分数应用题的解题方法
分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。
解答这类题目需要掌握一定的解题方法和技巧。
本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。
2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。
换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。
例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。
通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。
3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。
化简法是一种常见的解题方法。
化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。
例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。
通过化简法,我们可以得到最简分数,便于进行计算和比较。
4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。
分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。
具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。
例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。
五六年级分数应用题解题技巧
五六年级分数应用题解题技巧一、找准单位“1”1. 技巧一般来说,“是”“比”“占”后面的量就是单位“1”。
例如:男生人数比女生人数多公式,这里女生人数就是单位“1”。
在分数应用题中,总量通常也可看作单位“1”。
比如:一堆煤,用去了它的公式,这堆煤的总量就是单位“1”。
2. 题目解析例:果园里有苹果树和梨树共360棵,苹果树的棵数是梨树的公式,求苹果树和梨树各有多少棵?解析:这里“梨树的棵数”是单位“1”。
设梨树的棵数为公式棵,那么苹果树的棵数就是公式棵。
根据“苹果树和梨树共360棵”可列方程公式,解得公式,则梨树有200棵,苹果树有公式棵。
例:某工厂去年计划生产零件1200个,实际生产的比计划多公式,实际生产了多少个零件?解析:计划生产的零件个数是单位“1”。
实际生产的是计划的公式,所以实际生产的零件个数为公式个。
二、画线段图辅助解题1. 技巧用线段图可以直观地表示出数量关系。
先画出单位“1”的线段,再根据题目中的分数关系画出其他相关量的线段。
2. 题目解析例:学校图书馆有故事书480本,科技书比故事书少公式,科技书有多少本?解析:先画表示故事书的线段,长度表示480本。
因为科技书比故事书少公式,所以把故事书的线段平均分成6份,科技书的线段比故事书的线段少1份。
那么科技书的本数就是故事书的公式,所以科技书有公式本。
例:修一条路,已经修了全长的公式,还剩250米没修,这条路全长多少米?解析:画一条线段表示这条路的全长,将其平均分成8份,已经修的占3份,没修的占公式,这公式对应的长度是250米。
设这条路全长为公式米,可列方程公式,解得公式米。
三、根据分数的意义解题1. 技巧理解分数表示的是部分与整体的关系或者两个量之间的比例关系。
例如公式表示把一个整体平均分成5份,取其中的3份。
2. 题目解析例:一块长方形地,长是120米,宽是长的公式,这块地的面积是多少平方米?解析:根据宽是长的公式,由分数的意义可知,把长看作单位“1”,平均分成3份,宽占2份。
分数乘除法应用题解题方法总结汇总(全面完整)
分数乘除法应用题解题方法总结汇总在初中数学的学习过程中,分数乘除法是一个很重要的知识点。
而应用题更是能够帮助我们更好地掌握这个知识点。
因此,在本文中,我们将会就分数乘除法的应用题解题方法进行详细的总结和归纳,以便同学们更好地掌握和运用这一知识点。
一、分数的乘法1.1 两个分数相乘实际应用题中,两个分数相乘时,需要转化为通分后再相乘,最后再约分。
例如:有一块长方形土地,面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩。
求这块土地的长度。
解法:由于面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩,所以这块土地的长度可以表示为:$\text{长度} = \dfrac{\text{面积}}{\text{宽度}}=\dfrac{\frac{3}{4}}{\frac{3}{5}}=\dfrac{5}{4}\times\dfrac{5}{3}=\dfrac{25}{12}$ 亩。
因此,这块土地的长度为$\frac{25}{12}$ 亩。
1.2 分数与整数相乘实际应用题中,分数与整数相乘时,先将整数化为分数,然后再进行通分运算。
例如:小明拥有$\frac{3}{5}$ 米宽的布料,他要用这些布料为客户定制长为2.6 米的窗帘。
他需要多少米的布料?解法:首先,将 2.6 米化为$\frac{26}{10}$ 米,然后将$\frac{26}{10}$ 与$\frac{3}{5}$ 相乘,即$\text{所需布料}=\frac{26}{10}\times\frac{3}{5}=\frac{26\times3}{10\times5}=\frac{ 39}{25}$ 米。
因此,小明需要$\frac{39}{25}$ 米的布料。
二、分数的除法2.1 分数与整数相除在实际应用题中,分数与整数相除时,可将整数化为分数,然后将两个分数相除,最后约分。
例如:某场馆共有150 个座位,其中$\frac{2}{5}$ 的座位已售出。
六年级数学上应用题分数技巧与方法
六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。
在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。
2. 确定解题方法。
如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。
3. 对应解题。
根据数量关系,把具体数量与分率对应起来,列出算式并计算。
二、分数应用题的解题步骤1. 读懂题意,确定解题方法。
在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。
2. 找准量与分率的对应关系。
在分数应用题中,量与分率对应是解题的关键。
要分清每个量所占的分率,进而确定出单位“1”的量。
3. 掌握基本数量关系式。
在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。
4. 逐步解答。
在解答分数应用题时,要按照题目所给的条件,逐步解答。
一般可采用综合算式或分步计算的方法进行解答。
5. 检验答案。
在解答分数应用题时,要检验答案是否正确。
可以采用逆向思维或代入法进行检验。
三、分数应用题的练习方法1. 专项训练。
可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。
通过专项训练,可以加深对某一类型题目的理解和掌握。
2. 多做练习。
熟能生巧,多做练习是提高分数应用题解题能力的有效方法。
可以通过练习册、习题集等途径进行练习。
3. 归纳总结。
在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。
同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。
4. 注重思路。
在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。
只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。
解答分数应用题的常用方法及解决问题的策略练习
解 答 分 数 应 用 题 的 常 用 方 法一、对应法(对应量÷对应分率=单位“1”)通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。
例题:某筑路队筑一段路,第一天筑了全长的51多10米,第二天筑了全长的72,还剩62米未筑,这段路全长多少米?二、变率法(统一单位“1”)题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。
例题:学校买了一批图书,高年级分得这些书的2/5,中年级分得余下的41,低年级分得180本,这批图书共有多少本?三、常量法(找不变量作单位“1”)题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。
例题:小华读一本书,已读页数占未读页数的51,如果再读30页,已读页数就占未读页数的53,这本书共有多少页?四、联系法某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。
例题:某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的 54,四年级种树棵数是五年级种树棵数的43,五年级种数多少棵?五、转化法将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。
例题:某工厂有三个车间,第一车间人数是其余两个车间人数的21,第二车间人数占其余两个车间人数的31,第三车间500人,三个车间共有多少人?六、假设法对题目的某些数量作出假设,导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。
例题:一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?七、倒推法题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。
例题:一捆电线,第一次用去全长的61 多2米,第二次用去余下的43 少4米,还剩 16米,这捆电线有多少米?八、方程法一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。
人教版小学六年级数学上册 分数应用题解题技巧方法及练习题
分数应用题解题技巧·转化单位“1”方法一:将一个数的几分之几的几分之几转化为这个数的几分之几。
例:读了一本故事书,第一天读了全书的15 ,第二天读了余下的34 。
第二天读了全书的几分之几?全书还剩几分之几?方法二:甲数是乙数的几分之几,转化为乙数是甲数的几分之几。
例:甲数是乙数的49。
求乙数是甲数的几分之几?方法三:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。
例:四年级人数比五年级人数少14。
五年级人数比四年级人数多几分之几?方法四:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几(或乙数是甲数的几分之几)。
例:甲数的23 等于乙数的34。
甲数是乙数的几分之几?乙数是甲数的几分之几?方法五:甲数是乙数的几分之几转化为甲数是甲乙两数和的几分之几。
例:甲、乙、丙三人分一笔奖金。
甲分得的是乙丙两人所得之和的12 ,乙分得的是甲丙两人所得之和的 13。
已知丙得1000元。
甲、乙两人各得多少元?方法六:假设在解题中的妙用:有些应用题数量关系比较复杂隐蔽,按一般的方法,难以找到数量间的关系及内在联系。
但是通过假定某个条件或现象成立,往往可以找到解答的途径。
例:有两筐苹果共重220千克,从甲筐取出15 ,从乙筐取出14共重50千克。
两筐苹果原来各有多少千克?方法七:找已知量对应的分率,用已知量除以它所对应的分率就可以得到单位“1”的量。
例:“一批煤用去了23 ,正好是24吨。
这批煤共有多少吨?”在这个问题中,“23 ”与 “24吨”表示的同一个数量,都是用去的煤的数量。
一个是具体的量,一个是分数量,这们把“23 ”叫做“24吨”所对应的分率,解题时用“24÷23”得到的就是单位“1”的量,在本题中也就是煤的总量。
工程问题:基本数量关系式:工作总量是单位“1”;工作效率=工作总量÷工作时间;工作量÷工作效率=工作时间例:修一条路甲队单独完成需要10天,乙队单独完成需要15.如果两队合作同时工作,几天可以完成?在这里“工作量”是整件工作,也就是单位“1”,“工作效率”是两人的工作效率和,故可以这样计算:1÷(110 +115)。
五年级分数应用题解题技巧
五年级分数应用题解题技巧一、分数应用题解题技巧及例题解析。
1. 确定单位“1”- 技巧:一般来说,“是”“比”“占”后面的量就是单位“1”。
- 例1:五年级一班男生人数占全班人数的(3)/(5),全班有50人,男生有多少人?- 解析:这里全班人数是单位“1”,已知全班人数为50人,求男生人数,就是求50的(3)/(5)是多少,用乘法计算,50×(3)/(5)=30(人)。
2. 已知单位“1”,求部分量。
- 技巧:用单位“1”的量乘以部分量对应的分率。
- 例2:果园里有苹果树200棵,梨树的棵数是苹果树的(3)/(4),梨树有多少棵?- 解析:苹果树的棵数是单位“1”,已知为200棵,梨树棵数是苹果树的(3)/(4),那么梨树的棵数为200×(3)/(4)=150棵。
3. 求单位“1”- 技巧:已知部分量和它对应的分率,用部分量除以分率得到单位“1”的量。
- 例3:五年级二班女生人数是18人,占全班人数的(3)/(7),全班有多少人?- 解析:这里全班人数是单位“1”,女生人数18人对应的分率是(3)/(7),所以全班人数为18÷(3)/(7)=18×(7)/(3)=42人。
4. 分数的加、减法应用题。
- 技巧:先确定各个量对应的分率,再根据题意进行加、减运算。
- 例4:一根绳子,第一次用去全长的(1)/(4),第二次用去全长的(1)/(3),两次一共用去全长的几分之几?- 解析:把绳子的全长看作单位“1”,第一次用去的分率是(1)/(4),第二次用去的分率是(1)/(3),两次一共用去的分率为(1)/(4)+(1)/(3)=(3 + 4)/(12)=(7)/(12)。
5. 比较两个量的分率关系。
- 技巧:先求出两个量分别对应的分率,然后进行比较。
- 例5:甲仓库有货物120吨,乙仓库有货物150吨,甲仓库货物是乙仓库货物的几分之几?乙仓库货物比甲仓库货物多几分之几?- 解析:- 甲仓库货物是乙仓库货物的:120÷150=(120)/(150)=(4)/(5)。
人教版小学六年级数学上册分数应用题解题技巧方法及练习题
人教版小学六年级数学上册分数应用题解题技巧方法及练习题分数应用题解题技巧:转化单位方法一:将一个数的几分之几的几分之几转化为这个数的几分之几。
例如,读了一本故事书,第一天读了全书的五分之一,第二天读了余下的四分之一。
第二天读了全书的十三分之五,全书还剩十三分之十。
方法二:甲数是乙数的几分之几,转化为乙数是甲数的几分之几。
例如,甲数是乙数的四分之九。
求乙数是甲数的九分之四。
方法三:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。
例如,四年级人数比五年级人数少四分之一。
五年级人数比四年级人数多四分之三。
方法四:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几(或乙数是甲数的几分之几)。
例如,甲数的二十三分之三十四等于乙数的二十三分之三十四。
甲数是乙数的三十四分之二十三,乙数是甲数的二十三分之三十四。
方法五:甲数是乙数的几分之几转化为甲数是甲乙两数和的几分之几。
例如,甲、乙、丙三人分一笔奖金。
甲分得的是乙丙两人所得之和的四分之一,乙分得的是甲丙两人所得之和的二分之一。
已知丙得1000元。
甲、乙两人各得多少元?方法六:假设在解题中的妙用。
有些应用题数量关系比较复杂隐蔽,按一般的方法,难以找到数量间的关系及内在联系。
但是通过假定某个条件或现象成立,往往可以找到解答的途径。
例如,有两筐苹果共重220千克,从甲筐取出,从乙筐取出共重50千克。
两筐苹果原来各有多少千克?方法七:找已知量对应的分率,用已知量除以它所对应的分率就可以得到单位“1”的量。
例如,“一批煤用去了,正好是24吨。
这批煤共有多少吨?”在这个问题中,“24吨”与“”表示的同一个数量,都是用去的煤的数量。
一个是具体的量,一个是分数量,这里把“”叫做“24吨”所对应的分率,解题时用“24÷”得到的就是单位“1”的量,在本题中也就是煤的总量。
工程问题:基本数量关系式:工作总量是单位“1”;工作效率=工作总量÷工作时间;工作量÷工作效率=工作时间。
分数应用题解题技巧
分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。
1.一抓:抓住关键句----含有分率的句子(不带单位的分数)2.二找:找准单位1的量:单位1一般都是在“的”前面,或是在“比、是、占、相当于”的后面。
看分率是谁的几分之几,谁就是单位1的量。
3.三确定:确定单位1是已知还是未知,单位1已知用乘法计算,单位1未知用除法或方程计算。
4.四对应:找出相对于的数量与分率。
乘法:单位1×对应分率=对应数量除法:对应数量÷对应分率=单位1二、解题方法:借助线段图帮助我们来分析数量关系,画图时先画单位1的量。
第一类:乘法一条公路:男生:女生:第二类:除法一条公路:男生:女生:三、分数应用题主要讨论的是以下三者之间的关系。
1.分率:表示一个数是另一个数的几分之几。
2.标准量:我们把单位1的量称为标准量。
3.比较量:我们把同标准量比较的量称之为比较量,也叫分率对应的数量。
四、分数应用题的分类。
第一类:已知两个数量,比较它们之间的倍数关系,应该用除法计算。
A求分率即就是求一个数是另一个数的几分之几。
(五下)基本关系式:比较量÷标准量=分率(几分之几)学校的果园里有梨树15棵,桃树20棵。
梨树是桃树的几分之几?B求一个数比另一个数多几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
桃树比梨树多几分之几?C秋一个数比另一个数少几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
梨树比桃树少几分之几?第二类:单位1已知,用乘法计算。
A求一个数的几分之几是多少。
(五下)把已知数量看多单位1,就是求它的几分之几是多少,它反映的是部分与整体之间的关系。
基本关系式:单位1的量×对应分率=对应数量1.一条公路全长1200米,已经修了全长的13,修了多少米?2.一支钢笔单价是30元,圆珠笔的单价是钢笔的16。
分数应用题的方法和技巧
分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。
例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。
2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。
例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。
3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。
在上述例子中,通过乘以3,可以得到x = 45。
4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。
在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。
5. 注意化简:在解题过程中,可能需要对分数进行化简。
例如,将2/4简化为1/2,便于计算。
6. 注意单位转换:问题中可能涉及到单位的转换。
在解题过程中,需要注意将单位转换为一致的形式,以便计算。
7. 图形辅助:对于某些问题,可以用图形进行辅助。
例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。
8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。
例如,理解分数的基本运算法则、比例关系的性质等。
以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。
分数乘除法应用题解题方法总结汇总(全面完整)
(4)如果白兔有 48 只,灰兔比白兔多 3 ,灰兔比白兔多多少只? 4
2
3、求比一个数多几分之几是多少。
几 单位“1”的量×(1+ 几 )(分率)=是多少(分率对应的量)。
4 (1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多5 。婴
几 5、求比一个数少几分之几是多少。单位“1”的量×(1- 几 )(分率)=是多少(分率对应的量)。
(1)学校有 20 个足球,篮球比足球少
1 5
,篮球有多少个?
2 (2)一种服装原价 105 元,现在降价7 ,现在售价多少元?
(3)某校计划每月用水 120 吨,实际比计划节约 1 ,实际每月用水多少吨? 6
3、已知一个数比另一个数多几分之几是多少,求这个数。 几
是多少(分率对应的量)÷(1+几 )(分率)=单位“1”的量。 1
例 1:学校有 20 个足球,足球比篮球多 4 ,篮球有多少个?
4、已知一个数比另一个数少几分之几少多少,求这个数。 几
少多少(分率对应的量)÷几 (分率)=单位“1”的量。 例 1:某工程队修筑一条公路。第一天修了 38 米,第二天了 42 米。第一天比第二天少修的是这条公路全长的 1 28 。这条公路全长多少米?
。小新储蓄多少钱?
2、求比一个数多几分之几多多少。
几 单位“1”的量×几 (分率)=多多少(分率对应的量)。
(1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多45 。婴
儿每分钟心跳比青少年多多少次?
(2)学校有足球 20 个,篮球比足球多 1 ,篮球比足球多多少个? 2
分数应用题解题技巧
一条1公路,已经修了4/7
公路长度×4/7=已修长度
另外,分数应用题中有一个“量率对应”的明显特点,对一 个单位“1”来说,每个分率都对应着一个具体的数量,而每一个 具体的数量,也同样对应着一个分率,因此,正确地确定“量率 对应”是解题的关键。比如:
一本书有240页,小兰已经看了全1书的 2 ,已经看了多少页?
应的分率转化成相当于整体的几分之几,再进行解答。比如:
1
3
一本书有240页,小兰第一天看了全书的 ,第二天看了余下的 ,
4
5
剩下的第三天看完。她第三天看了多少页?
分析:这道题目中,小兰第一天看的页数与第二天看的页数这两个分 率的单位"1"是不一样的。我们可以先将第二天看的页数转化成看了 全书的几分之几,然后再进行解答。当然,这道题还有其它解法。
2
一本书有240页,小兰已经看了全书的 ,还剩下多少页没
有看?
3
分析:这道题目中,已看的分率是已知条件,而问题是求未看的页数。
我率们是2可(1以- 根)据,“再已根看据页“数单+位未1看的页量数×对=总应页分数率”=对知应道量未”看求部出分未的看对的应页分 数。3
三、学会分率的正确转化。
1、分数与比的转化
240(11)(13) 45
2 4011411453
在解答分数应用题或有关比的应用题时,我们还要学会根据分 数与比的关系,灵活地将分数转化成比或将比转化成分数,从而 降低解题的难度。比如:
六(1)有52人,男生与女生人数的比是6:7。男、女生各有 多少人?
分析:这道题目,我们可以采用“按比例分配”的方法来解。也可以 根据男、女生人数的比先求出男、女生人数各占总人数的几分之几, 再求出52人的几分之几是多少。
分数应用题解的技巧
分数应用题解的技巧解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路)分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解.一、善于对应.在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因.因而,要正确解答分数应用题首先要善于找出数量之间的对应关系.如:某工厂有工人1350人,其中男工人占,男工人比女工人多多少人?根据题意,可找出下列对应关系:二、善于比较.有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路.如:(1)水果店运来苹果2000千克,比运来的梨多,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多,梨有多少千克?比较两道题,就会发现:一是单位“1”不同.(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知).二是数量2000千克对应的分率不同.(1)题中2000千克对应的分率是;(2)题中2000千克对应的分率是“1”.三是类型不同.(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答.四是列式与计算结果不同.三、善于假设.遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化.如:水结成冰时,体积增加.冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即.四、善于沟通.对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三.如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个.他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张.李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路.分数应用题是小学教学中的难点之一,它主要有三种类型:1.已知两个数,求一个数是另一个数的几分之几;2.已知一个数,求它的几分之几;3.已知一个数的几分之几是多少,求这个数。
分数的应用题六种解法
分数的应用题六种解法分数是数学中常见的表示比例和部分的方式,它在生活中的应用也非常广泛。
今天,我将为大家介绍六种解决分数应用题的方法。
一、画图法画图法是一种直观的解题方法。
以某个具体的例子来说明。
假设小明有2/3的巧克力,小红有1/4的巧克力,他们想将巧克力平均分配。
我们可以画两个巧克力盒,并按比例将巧克力分配给小明和小红。
这样,他们就可以直观地理解分配的过程。
二、找最小公倍数解决一些关于分数的应用题时,我们需要找到最小公倍数。
例如,小明每天按照1/5的速度走路,小红按照1/3的速度走路,他们同时从同一个地方出发,问多少天后他们会在同一个地方相遇。
我们可以找到1/5和1/3的最小公倍数,即15。
因此,他们将在15天后相遇。
三、转化为整数运算有些分数应用题可以转化为整数运算来解决。
例如,小明用1/2小时完成作业,小红用1/3小时完成同样的作业,问他们两人一起完成这个作业需要多长时间。
我们可以将1/2和1/3转化为分母的最小公倍数,即6。
因此,他们一起完成这个作业需要1/6小时。
四、比较大小在比较大小的应用题中,我们需要将两个或多个分数进行比较。
例如,小明用2/5的时间做数学题,用1/4的时间做英语题,问他用了更多的时间做数学题还是英语题。
我们可以将2/5和1/4的分母取相同的最小公倍数,即20。
然后比较分子的大小,即2和5,得出结论小明用了更多的时间做数学题。
五、分数的加减运算在分数的加减运算中,我们需要将分母相同的分数进行运算。
例如,小明走了3/5的路程,小红走了2/5的路程,问他们总共走了多少路程。
我们可以将3/5和2/5的分母取相同的最小公倍数,即5。
然后将分子相加,得到答案5/5,即1。
因此,他们总共走了1个路程。
六、分数的乘除运算在分数的乘除运算中,我们需要将分子进行运算,再将分母进行运算。
例如,小明用2/3小时做完一个作业,小红用3/4小时做同样的作业,问小红完成这个作业需要多长时间。
分数应用题解题技巧及口诀
分数应用题解题技巧及口诀
1. 哎呀呀,遇到分数应用题先别慌!咱要找关键量呀!就像找宝藏一样,找到了关键量,问题就好解决啦!比如说,有一道题说小明吃了一堆苹果的$\frac{1}{3}$,那这“$\frac{1}{3}$”就是个关键呀,咱得围绕它来解题呀!明白不?
2. 嘿!遇到那种问整体是多少的,就得用除法啦!这就好比是要把一块大饼还原成整个的呀!比如题目说知道了部分是多少,又知道占整体的几分之几,那赶紧用部分除以所占比例,整体不就出来啦!能懂不?
3. 哇塞,有的时候可以画图呀!把分数的关系用图表示出来,一下子就清楚啦,就跟地图让人看懂路线一样呢!像有个题是说甲占乙的几分之几,那画个图,甲乙的关系不就明明白白啦!是不是很神奇呀?
4. 记住咯,看到增加或减少的分数,得小心啦!可不能马虎哟!这就像是走钢丝,得步步谨慎!比如说题目说某东西增加了$\frac{1}{4}$,那咱就得把原来的看作单位“1”,然后再计算呀!对不?
5. 哈哈,分数应用题里的单位“1”很重要呀!就像游戏里的老大一样!一
旦确定了单位“1”,就像找到了方向啦!比如人家问你某东西占谁的几分
之几,那赶紧找到那个“1”呀!这不难吧?
6. 哎呀呀,咱还得学会灵活转化呀!分数可以变来变去的呢,就像孙悟空七十二变一样!例如知道了甲是乙的几分之几,那乙是甲的几分之几不也就可以算出来啦!是不是很有意思呀?
我的观点结论:只要掌握了这些技巧和口诀,分数应用题就没那么可怕啦,咱都能轻松应对!。
分数乘除法应用题的解题技巧和策略
分数乘除法应用题的解题技巧和策略分数乘除法是数学中的一个重要知识点,也是学生在学习数学中的难点之一。
要想在分数乘除法应用题中取得良好的成绩,除了掌握基本的计算方法外,还需要灵活运用解题技巧和策略。
下面将从多个角度给大家介绍分数乘除法应用题的解题技巧和策略。
一、理解题意,分析问题在解决任何一道数学题目之前,首先要对题目进行仔细分析,明确题目的要求和条件。
对于分数乘除法应用题来说,要特别注意题目中分数的变化和关系,弄清楚各个分数之间的乘除关系。
在分析问题的过程中,可以通过画图、列方程式等方法将问题形象化,从而更好地理解题意。
二、掌握分数乘法和除法的计算方法分数乘法和除法是解题的基础。
对于分数的乘法,我们可以将分子与分子、分母与分母相乘,然后简化得到最终结果。
对于分数的除法,我们可以将除法转化为乘法,即将被除数的倒数与除数相乘,然后简化得到最终结果。
掌握了分数乘除法的计算方法,才能更好地应用到解题中去。
三、寻找倍数关系,简化计算在解决分数乘除法应用题时,经常会遇到相乘或相除的两个乘数或被除数之间存在倍数关系的情况。
此时,我们可以将分数进行化简,寻找它们之间的倍数关系,从而简化计算。
当我们需要计算3/5与6/8的乘积时,可以将3/5和6/8分别化简为最简分数,再进行相乘计算,最终得到结果。
四、注意约束条件,避免计算错误在解决分数乘除法应用题时,我们往往会受到一些约束条件的影响,比如不能为0、分母不为0等。
在解题过程中,一定要注意这些约束条件,并及时予以限制,避免出现计算错误。
也要注意分数的正负号问题,正确区分乘法和除法中的正负号,避免计算混乱。
五、举一反三,积累解题经验解决分数乘除法应用题是需要一定的经验积累的。
在平时的学习中,我们要多做各种类型的分数乘除法应用题,并及时总结归纳解题经验,逐步提高解题能力。
在解题的过程中,遇到新的问题可以多与同学、老师交流讨论,积极倾听他人的解题思路,从中获取新的解题经验。
分数应用题的解题技巧
分数应用题的解题技巧1. 嘿,大家知道吗,找单位“1”可是分数应用题的关键哦!比如说,“甲班人数是乙班的三分之二”,那这里的单位“1”不就是乙班嘛!这就像在一个大谜团中找到关键线索一样重要,能让我们快速理清思路,难道不是吗?2. 哇塞,遇到分数应用题时,咱得学会量率对应呀!就像有一堆苹果,知道了部分苹果占总数的几分之几,那就能找到对应的数量啊。
比如知道有三分之一的苹果是红色的,有 6 个红色苹果,这不就能求出苹果总数了嘛,神奇吧!3. 嘿呀,转换单位“1”也是很厉害的一招呢!举个例子,“甲比乙多二分之一”,如果把乙看成单位“1”,那么甲就是一又二分之一呀。
就好像给问题变了个魔法,一下子就找到解决办法啦,是不是很妙?4. 哎呀,要善于抓住不变量哦!像有一道题,男生走了几人后,男女生人数比例变了,但总人数不变呀。
这就如同在混乱中找到了那个一直稳稳的坚守者,能帮我们搞定难题呀,对不对?5. 嘿嘿,画线段图可太有用啦!比如“小明的钱比小红多三分之一”,就可以用线段图画出来,一下子就直观了。
这就像给问题拍了一张清晰的照片,让我们看得明明白白的,你说好不好?6. 哇哦,学会比例知识也能助我们一臂之力呢!像有个题说三个人的工作量之比是 2:3:4,那分配东西不就简单啦。
这好比给问题安上了翅膀,让它不再难倒我们呀,是不是呀?7. 哈哈,用方程来解分数应用题也是不错的选择哟!比如说“一个数的三分之一比它的四分之一多5”,设这个数为 x,列方程就能轻松搞定啦。
就像有了一把万能钥匙,能开各种难题之锁呢,很酷吧!8. 哟呵,千万别小瞧假设法呀!假设一些情况,能让问题变得清晰起来。
比如“鸡兔同笼”的问题,假设全是鸡或全是兔,不就可以算了嘛。
这跟在黑暗中点燃一盏灯一样,能照亮我们解题的路呢,厉害吧!9. 咱得记住,多练习才能把这些技巧掌握得牢牢的呀!只有不断实践,才能在分数应用题的海洋中畅游无阻呀!大家加油哦!我的观点结论:分数应用题的解题技巧有很多,只要我们善于运用这些技巧,多思考多练习,就一定能把分数应用题拿下!。
分数加减应用题解题技巧
分数加减应用题解题技巧
解决分数加减的应用问题时,以下是一些解题技巧:
1.理解问题:仔细阅读问题,理解所给的信息和要求。
识别
关键信息,例如分数的值、运算符号,以及应用的背景或情境。
2.确定运算:根据问题中的描述,确定是需要进行加法还是
减法运算。
这可能需要将问题中的文字描述转化为数学表达式。
3.找出公共分母:如果涉及到不同分母的分数,需要找到它
们的最小公倍数,以便进行分数的加减运算。
将分数转化为相同分母后,再进行运算。
4.进行运算:根据所确定的运算,进行分数的加法或减法运
算。
将分子相加或相减,分母保持不变。
如果有需要,可以进行约分或简化分数。
5.注意整数部分:在一些应用问题中,分数可能与整数部分
相结合。
在进行运算时,需要将整数部分和分数部分分别处理,并最后进行合并。
6.检查答案:计算完成后,核对答案,确保运算结果与问题
要求相符。
特别注意答案的形式,是否需要将结果转化为最简分数或混合数。
7.解释答案:对于应用问题,通常需要解释答案的意义或回
答问题的要求。
以问题的语境为基础,清晰地解释答案并
回答问题。
8.学会分数应用技巧:熟悉常见的分数应用技巧,如分数的
比较、分数的换算,以及应用分数进行实际问题的求解。
这将有助于更快地解决分数加减的应用题。
通过理解问题、确定运算、找出公共分母、进行运算,并检查答案,你可以有效地解决分数加减的应用问题,并提高解题效率。
不断练习和应用这些技巧,能够更自信和准确地解决相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数应用题解题的一般步骤:
1、 找出单位“1” (标准量),观察单位“1”(标准量)是已知还是未知,如果已知时,可以确定用乘法计算;如果未知就用除法计算。
2、分析题意,找出各个信息所对应的量。
并能有条理地说明解题思路、有根有据地说清楚自己是怎么思考的,这样是培养逻辑思维能力的一个有效方法。
3、 根据(比较量 ÷单位“1” =对应分率)(单位“1”×对应分率=比较量)(比较量 ÷对应分率=单位“1”)各量之间的关系列式计算。
总结:以上步骤可以用一句话概括:一找二定三列式,即第一步找单位“1”,第二步确定单位“1”已知还是未知,第三步列式解答。
分数或百分数应用题解题的口诀
知“1”用乘:单位“1”的量×所求的量对应的分率=所求的量
求“1”用除:已知的量÷已知的量对应的分率=单位“1”的量
了解什么是“1”。
“1”,就是单位“1”,也就是“标准量”。
如: 我班女生人数是男生人数的32。
这里是把男生人数做为一个标准,拿女生人数跟男生人数去做比较,我们就把这里的男生人数叫做单位“1”的量,即标准量。
女生人数是比较量,32
是女生所对应的分率。
如何判断单位“1”?
找到关键句,即含有分数或百分数的句子,把句子补充完整,与分数(或百分数)最接近的那个量是单位“1”,或“比”字“是”字后面,“的”字前面。