混凝土结构设计原理5偏压构件正截面
5.受压构件的截面承载力
x ¢ ¢ N e f b x ( a¢ 或: u 1 c s ) s s As ( h0 a s ) 2 h
e¢
1 f ¢ s f y s y ss fy b 1
2
ei a¢ s
当偏心距很小且轴力较大时,能使远离轴向力一侧 纵筋屈服 ——反向破坏。
二、小偏心受压构件的计算
已知截面参数,N和M,求As’和As 。
公式:
未知量个数
¢ ¢ N 1 f cbx f y As s s As
1 ss fy b 1
x ¢ ¢ ¢ N e 1 f c b x (h0 ) f y As (h0 a s ) 2
> b ––– 小偏心受压 ae
偏心受压构件的试验研究
As<< As’时 会有As fy
e0 N e0 N e0 N e0 N
As
ss
As’f y’
fc
As
ss
As’f y’
fc
As
ss
As’f y’
fc
As fy
As’f y’
fc
h0
h0
h0
h0
e0 N e0很小 As适 中
Байду номын сангаас
e0 N
e0较小
f'yA's
Nu b 1 fcbh0b f A f y As
' y ' s
若N N u b则为小偏心受压 若N N u b则为大偏心受压
当ei 0.3h0时,按小偏心受压计算 , 当ei 0.3h0时,可按大偏心受压计 算(但不一定为大偏压 )
偏心受压构件的正截面承载力计算
xhoho 22[0Ndesffcsd 'db A s'(hoas')]
➢当 2as x时bh,0
As fcdbxffs'dsdAs' 0Nd
➢当 x ,b h且0
时x , 2 a s
令 x ,2则a可s 求得
As
0 Nd es
偏压构件是同时受到轴向压力N和弯矩M的作用, 等效于对截面形心的偏心距:e。=M/N的偏心压力的 作用。
图7-1偏心受压构件与压弯构件图
偏心距: 压力N的作用点离构件截面形心的距离e0 压弯构件: 截面上同时承受轴心压力和弯矩的构件。
偏心受压: (压弯构件)
单向偏心受力构件 双向偏心受力构件
大偏心受压构件 小偏心受压构件
fsd (ho as)
2)当 e0 0时.3h0
已知:b hN d M d f c d f s d f s d l 0
求: As 、 As '
注:As不论是拉还是压,均未达屈服强度,可按一则最小配筋 率来进行设计.
解: 令 A sm 'in b h 0 .0 0 2 b h
由式(7-6)和式(7-10),可求得x方程组
由7-10可钢筋应力 s
s cuEs(xh0 1)
由7-4可求得NU
0 N d fc d b x fs dA s sA s
2.当 h时/ h,0 取 代x入7h-10得钢筋应力
承载力NU1
近偏心则破坏
再由 7s -4求得截面
由公式7-13求截面承载力NU2 远偏心则破坏
0 N d e s f c d b h ( h 0 h /2 ) f s d A s ( h 0 a s )
概述及受压计算(混凝土结构设计原理)
a h 0 N b h 0
1 fc b b h 0 fy A s fy A s
.
a e 0 b M b 0 .5 [1 fc b b ( h b h 0 ) (fy A s fy A s )h 0 ( a s )/h 0 ]
B(Nb,Mb)
C(0,M0) Mu
⑷截面受弯承载力在B点达(Nb,Mb)到最大,该点近似为 界限破坏;
● CB段(N≤Nb)为受拉破坏, ● AB段(N >Nb)为受压破坏;
.
l一条曲线代表一种配筋量, 越向外,所用的钢筋越多; lM=0时,N最大;N=0时,M 不是最大;界限破坏时,M最 大; l无论配筋数量如何变化,界 限破坏时,轴力相同。
.
ei N
af ei
N
主页 目录 上一章 下一章 帮助
301
7.2.2 矩形截面正截面承载力计算 1.矩形截面偏心受压构件的计算 (1)基本计算公式
正截面承载力计算基本假定:
◆ 偏心受压正截面受力分析方法与受弯情况是相同的,即仍采 用以平截面假定为基础的计算理论,
◆ 根据混凝土和钢筋的应力-应变关系,即可分析截面在压力和 弯矩共同作用下受力全过程。
上一章 下一章
帮助
231
混凝土结构设计原理
P-∆效应
N1 Δ1 Δk Vi
N2 Δ1 Δk
第7章
N3 Δ1 Δk
N4 Δ1 Δk
M ΔM
主页
目录
Vi1
Vi2
Vi3
Vi4
上一章
N1
N2
N3
N4
下一章
u 当结构的二阶效应可能使作用效应显著增大时,在结构分 析中应考虑二阶效应的不利影响。
混凝土结构设计原理
绪论钢筋与混凝土能共同工作的原因:(1)钢筋和混凝土之间存在有良好的粘结力,在荷载作用下,可以保证两种材料协调变形,共同受力;(2)钢筋与混凝土具有相近的温度线膨胀系数(钢材为 1.2×10-5,混凝土为(1.0~1.5)×10-5),因此当温度变化时,两种材料不会产生过大的变形差而导致两者间的粘结力破坏;(3)混凝土对钢筋具有一定的保护作用。
第一章钢筋混凝土材料的物理力学性能1.立方体抗压强度fcu,k>轴心抗压强度fck>轴心抗拉强度ftk2.双向应力状态或三向应力状态:(1)双向压应力作用下,一向的抗压强度随另一向压应力的增加而增加;双向拉应力作用下,混凝土一向抗拉强度基本上与另一向拉应力的大小无关。
即双向受拉的混凝土强度与单向受强度基本一样:一向受拉一向受压时,无论是抗拉强度还是抗压强度都要降低。
(2)在三向受压状态中,由于侧向压应力的存在,混凝土受压后的侧向变形受到了约束,延迟和限制了沿轴线方向的内部微裂缝的发生和发展,因而极限抗压强度和极限压缩应变均有显著的提高,并显示了较大的塑性。
2.混凝土在荷载的长期作用下,其变形随时间而不断增长的现象称为徐变。
3.徐变的影响因素(1)内在因素是混凝土的组成和配比。
骨料的刚度(弹性模量)越大,体积比越大,徐变就越小。
水灰比越小,徐变也越小。
构件尺寸越大,徐变越小。
(2)环境影响包括养护和使用条件。
受荷前养护的温湿度越高,水泥水化作用越充分,徐变就越小。
采用蒸汽养护可使徐变减少(20~35)%。
受荷后构件所处的环境温度越高,相对湿度越小,徐变就越大。
4.收缩:混凝土在空气中硬化时体积会缩小,这种现象称为混凝土的收缩。
5.钢筋按力学性能分为:一类是具有明显的物理屈服点的钢筋(软钢)另一种是无明显的物理屈服点的钢筋(硬钢)。
6.混凝土结构对钢筋性能的要求:○1强度:钢筋应具有可靠的屈服强度和极限强度,钢筋的强度越高,钢材的用量越少。
偏心受压构件正截面承载力计算—矩形截面偏心受压构件正截面承载力计算
即x≤ξbh0,且x<2a’s,则由基本公式3可得:
Ne f y As h0 as
As As
Ne f y(h0 as )
(4)若判定为小偏心受压破坏
则按下式重新计算x:
N 1 fcbh0b
Ne 0.431 fcbh02 (1 b )(h0 as)
1
fcbh0
e
ei N
N Nu 1 fcbx f yAs f y As
Ne
Nue
1 fcbx(h0
x) 2
f yAs (h0
as )
e ei 0.5h as
fyAs
f'yA's
(1)情况1:As和A's均未知时 两个基本方程中有三个未知数,As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积(As+A's)最小?
• 2.截面复核
已知:截面尺寸、材料强度、e0、L0,AS,AS’
求: N 解:判断大小偏心
1.对于垂直弯矩作用方向还应按轴心受压进行验算即应满足:
N Nu 0.9 ( fcd A fsd As )
2.对于弯矩作用方向按偏心受压进行验算
偏心受压构件正截面承载力计算 基本公式
(建筑规范)
1.计算假定
计算方法及步骤
矩形截面偏心受压构件对称配筋的计算方法
对称配筋,即截面的两侧用相同数量的配筋和相同钢材规格,
As=As',fsd = fsd',as = as'
1.不对称配筋与对称配筋的比较: (1) 不对称配筋: 优点是充分利用混凝土的强度, 节省钢筋;缺点主要是施工不便,容易将钢筋的位置 对调。 (2) 对称配筋: 优点为对结构更有利(可能有相反 方向的弯矩),施工方便,构造简单,钢筋位置不易 放错;缺点是多用钢筋。
结构设计原理偏心受压构件
本章主题
• 偏心受压构件的破坏形态及其特征 • 大偏心受压破坏(受拉破坏) • 小偏心受压破坏(受压破坏) • 界限破坏
• 偏心弯曲的影响 • 当长细比较大时,破坏时会产生较大的纵向弯曲,使构件偏心距增大,变形增大,承载力下降,还可
能出现失稳破坏。
• 矩形截面偏心受压构件正截面承载力计算 • 基本公式的引出及其应用条件 • 配筋设计 • 承载力验算
2、大、小偏心受压正截面承载力计算图式
esη e0 e's
γ0Nd
a's
x
fcd
A's
fs'dA's
x
fcdbx
h/ 2
ho
h0
h
as
σAs
As b
as
esη e0 e's
3、计算公式 纵轴方向力的平衡 :
A s 合力点取矩:
A
' s
合力点取矩:
N 0 d 作用点取矩 :
γ0Nd
h/ 2
a's
★两个基本方程中有三个未知数,
取补充条件
b ,即 x bh0
As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积 (As+As')最小?可取x=ξbh0
令 N0Nd、 Mu Nes
As' Nes
fcdbh02b(10.5b)
fs'd(h0as' )
≥
m' inbh
取 s fsd
As
4 10
应变图
160 剖面 A-A
P=97KN 195KN
265KN
应力图
混凝土结构设计原理~习题+答案-第六章受压构件正截面承截力
两种偏心受压破坏形态的界限与受弯构件两种破坏的界限相同,即 在破坏进纵向钢筋应力达到屈服强度,同时受压区混凝土亦达到极限压 应变εcu值,此时其相对受压区高度称为界限相对受压区高度ξb。 当:时,属于大偏心受压破坏;
η-lo法 原规范在偏心受压构件的截面设计计算中,采用由标准偏心受压柱 (两端铰支,作用有等偏心距轴压力的压杆)求得的偏心距增大系数η 与柱段计算长度lo相结合的方法,来估算附加弯矩。这种方法也称为η-lo 法,属于近似方法之一。GB50010—2002仍保留了此种方法。
考虑二阶效应的弹性分析法 假定材料性质是弹性的,各构件的刚度则采用折减后的弹性刚度。 但它考虑了结构变形的非线性,也就是考虑了二阶效应的影响。由它算 得的各构件控制截面的最不利内力可以直接用于截面的承载力设计,而 不再需要像原规范那样通过偏心距增大系数η来增大相应截面的初始偏 心距。考虑二阶效应的弹性分析法的关键是如何对构件的弹性刚度加以 折减, 新规范规定:当按考虑二阶效应的弹性分析方法时,可在结构分析 中对构件的弹性抗弯刚度EсI(I为不计钢筋的混凝土毛截面的惯性矩)
设该构件为大偏心构件,则令
求得: 故该构件属于大偏心受压构件 则: ,则 因: 则:
3. 某方形截面柱,截面尺寸为600×600mm。柱子的计算长度为3m。轴 向压力设计值为N=3500kN,弯矩设计值为。混凝土强度等级为 C30(fc=14.3N/mm2),纵向受力钢筋采用HRB335级钢 (=300N/mm2),若设计成对称配筋,求所需的钢筋面积。 3、解:设,则
计算温度系数,因 查表得,=0.875。 则:
,因此, 因此符合配筋率要求。
混凝土结构设计原理第二版梁兴文答案
混凝土结构设计原理第二版梁兴文答案【篇一:混凝土结构基本原理课后答案(主编:梁兴文)】ss=txt>第4章受弯构件正截面的性能与设计4.1 qk?19.4kn/m4.2 h0?600?40?560mm, as?875mm2,220 +118(as=882mm)4.3 h0?100?03?70mm, as?177mm2, ?6@150(h?500mm, h0?500?40?460mm, as?755mm h?550mm,h0?550?40?510mm, as?664mm222as=462mm2)随梁截面高度增加,受拉钢筋面积减小。
4.6 b?200mm, h0?500?40?460mm, as?925mm2b?250mm, h0?500?40?460mm, as?709mm h?300mm,h0?500?40?460mm, as?578mm22随梁截面宽度增加,受拉钢筋面积减小。
24.7 c20, h0?500?40?460mm, as?981mmc25, h0?500?40?460mm, as?925mm c30, h0?500?40?460mm, as?895mm22随梁截面宽度增加,受拉钢筋面积减小。
24.8 hrb400, h0?500?40?460mm, as?925mmhrb500, h0?500?40?460mm, as?765mm2224.10 as?45mm,as?878mm,选配320(as?942mm)224.11 as?as?40mm,as?1104mm,选配220+218(as?1137mm) 224.13 (1)as?822mm,选配220+218(as?1137mm)22(2)as?2167mm,选配622(as?2281mm)224.14 as?60mm,as?2178mm,选配622(as?2281mm)第5章受压构件225.1 fc?16.7n/mm,fy??410n/mm,取b?400mm2,h?400mm,as??2718mm,选配8。
国开作业《混凝土结构设计原理-模拟测验》 (18)
题目:1.钢筋和混凝土的强度标准值是钢筋混凝土结构按极限状态设计时采用的材料强度基本代表值。
选项A:对选项B:错答案:对题目:2.荷载设计值等于荷载标准值乘以荷载分项系数,材料强度设计值等于材料强度标准值乘以材料分项系数。
选项A:对选项B:错答案:对题目:1. 受弯构件抗裂度计算的依据是适筋梁正截面()的截面受力状态。
选项A:第I阶段末选项B:第III阶段末选项C:第II阶段末答案:第I阶段末题目:2. 受弯构件正截面极限状态承载力计算的依据是适筋梁正截面()的截面受力状态。
选项A:第II阶段末选项B:第III阶段末选项C:第I阶段末答案:第III阶段末题目:3. 钢筋混凝土梁的受拉区边缘达到()时,受拉区开始出现裂缝。
选项A:混凝土的抗拉强度设计值选项B:混凝土的抗拉强度标准值选项C:混凝土实际的抗拉强度选项D:混凝土弯曲时的极限拉应变答案:混凝土弯曲时的极限拉应变题目:1. 梁的破坏形式为受拉钢筋的屈服与受压区混凝土破坏同时发生,则这种梁称为()。
选项A:适筋梁选项B:平衡配筋梁选项C:少筋梁选项D:超筋梁答案:平衡配筋梁题目:1. 单筋矩形梁正截面承载力计算基本公式的适用条件是:()选项A:I、IV选项B:II、IV选项C:II、III选项D:I、III题目:1.钢筋混凝土受弯构件正截面承载力计算公式中考虑了受拉区混凝土的抗拉强度。
选项A:对选项B:错答案:错题目:1. 双筋矩形截面梁正截面承载力计算基本公式的第二个适用条件的物理意义是()。
选项A:保证受压钢筋屈服选项B:防止出现超筋破坏选项C:防止出现少筋破坏选项D:保证受拉钢筋屈服答案:保证受压钢筋屈服题目:1. 剪跨比不是影响集中荷载作用下无腹筋梁受剪承载力的主要因素。
选项A:对选项B:错答案:对题目:2. 无腹筋梁以及不配置箍筋和弯起钢筋的一般板类受弯构件,其斜截面受剪承载力的计算应考虑截面高度的影响。
选项A:对选项B:错答案:对题目:2. 大偏心受压情况下,轴向压力的存在会使构件的正截面承载力提高。
5.钢筋混凝土偏心受压构件
5.2 轴心受压柱正截面受压承载能力
二、轴心受压螺旋箍筋柱的正截面受压承截力计算
螺旋箍筋和焊接环筋柱
螺旋箍筋柱和焊接环筋柱 的配箍率高,而且不会像普通 箍筋那样容易“崩出”,因而 能约束核心混凝土在纵向受压 时产生的横向变形,从而提高 了混凝土抗压强度和变形能力, 这种受到约束的混凝土称为 “约束混凝土”。
1 杆端弯矩同号时的二阶效应 (1)控制截面的转移
杆端弯矩同号时的二阶效应(P-δ效应)
5.4 偏心受压构件二阶效应
(2)考虑二阶效应的条件
杆端弯矩同号时,发生控制截面转移的情况是不 普遍的,为了减少计算工作量,《混凝土结构设计 规范》规定,当只要满足下述三个条件中的一个条 件时,就要考虑二阶效应:
此外,在长期荷载作用下,由于混 凝土的徐变,侧向挠度将增大更多,从 而使长柱的承载力降低的更多,长期荷 载在全部荷载中所占的比例越多,其承 载力降低的越多。
5.2 轴心受压柱正截面受压承载能力
《混凝土结构设计规范》采用稳定系数φ来表示长柱承载力的降低 程度
5.2 轴心受压柱正截面受压承载能力
2 承载力计算公式
方形、矩形截面箍筋形式 I形、L形截面箍筋形式
5.2 轴心受压柱正截面受压承载能力
在实际工程结构中,由于混凝土材料的非匀质性,纵 向钢筋的不对称布置,荷载作用位置的不准确及施工时不 可避免的尺寸误差等原因,使得真正的轴心受压构件几乎 不存在。但在设计以承受恒荷载为主的多层房屋的内柱及 桁架的受压腹杆等构件时,可近似地按轴心受压构件计算。 另外,轴心受压构件正截面承载力计算还用于偏心受压构 件垂直弯矩平面的承载力验算。
Ass 0
dcor
s
Ass1
Nu ( fc r ) Acor f yAs
混凝土结构设计原理第五版思考题参考答案
问答题参考答案绪论1.什么是混凝土构造?根据混凝土中添加材料的不同通常分哪些类型?答:混凝土构造是以混凝土材料为主,并根据需要配置与添加钢筋、钢骨、钢管、预应力钢筋与各种纤维,形成的构造,有素混凝土构造、钢筋混凝土构造、钢骨混凝土构造、钢管混凝土构造、预应力混凝土构造及纤维混凝土构造。
混凝土构造充分利用了混凝土抗压强度高与钢筋抗拉强度高的优点。
2.钢筋与混凝土共同工作的根底条件是什么?答:混凝土与钢筋协同工作的条件是:〔1〕钢筋与混凝土之间产生良好的粘结力,使两者结合为整体;〔2〕钢筋与混凝土两者之间线膨胀系数几乎一样,两者之间不会发生相对的温度变形使粘结力遭到破坏;〔3〕设置一定厚度混凝土保护层;〔4〕钢筋在混凝土中有可靠的锚固。
3.混凝土构造有哪些优缺点?答:优点:〔1〕可模性好;〔2〕强价比合理;〔3〕耐火性能好;〔4〕耐久性能好;〔5〕适应灾害环境能力强,整体浇筑的钢筋混凝土构造整体性好,对抵抗地震、风载与爆炸冲击作用有良好性能;〔6〕可以就地取材。
钢筋混凝土构造的缺点:如自重大,不利于建造大跨构造;抗裂性差,过早开裂虽不影响承载力,但对要求防渗漏的构造,如容器、管道等,使用受到一定限制;现场浇筑施工工序多,需养护,工期长,并受施工环境与气候条件限制等。
4.简述混凝土构造设计方法的主要阶段。
答:混凝土构造设计方法大体可分为四个阶段:〔1〕在20世纪初以前,钢筋混凝土本身计算理论尚未形成,设计沿用材料力学的容许应力方法。
〔2〕1938年左右已开场采用按破损阶段计算构件破坏承载力,50年代,出现了按极限状态设计方法,奠定了现代钢筋混凝土构造的设计计算理论。
〔3〕二战以后,设计计算理论已过渡到以概率论为根底的极限状态设计方法。
〔4〕20世纪90年代以后,开场采用或积极开展性能化设计方法与理论。
第2章 钢筋与混凝土的力学性能1.软钢与硬钢的区别是什么?设计时分别采用什么值作为依据? 答:有物理屈服点的钢筋,称为软钢,如热轧钢筋与冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。
2024年电大混凝土结构设计原理考试题库答案
混凝土结构设计原理试题库及其参考答案第1章 钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
(错)2.混凝土在三向压力作用下的强度能够提升。
(对)3.一般热轧钢筋受压时的屈服强度与受拉时基本相同。
(对)4.钢筋经冷拉后,强度和塑性均可提升。
(错) 5.冷拉钢筋不宜用作受压钢筋。
(对)6.C20表示f cu =20N/mm 。
(错)7.混凝土受压破坏是因为内部微裂缝扩展的成果。
(对)8.混凝土抗拉强度伴随混凝土强度等级提升而增大。
(对)9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。
(错)10.混凝土受拉时的弹性模量与受压时相同。
(对)11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增加与应力不成正比。
(对)12.混凝土强度等级愈高,胶结力也愈大(对)13.混凝土收缩、徐变与时间有关,且相互影响。
(对)第3章 轴心受力构件承载力1.轴心受压构件纵向受压钢筋配备越多越好。
( 错 )2.轴心受压构件中的箍筋应作成封闭式的。
( 对 )3.实际工程中没有真正的轴心受压构件。
( 对 )4.轴心受压构件的长细比越大,稳定系数值越高。
( 错 )5.轴心受压构件计算中,考虑受压时纵筋轻易压曲,因此钢筋的抗压强度设计值最大取为。
( 2/400mm N错 )6.螺旋箍筋柱既能提升轴心受压构件的承载力,又能提升柱的稳定性。
( 错 )第4章 受弯构件正截面承载力1.混凝土保护层厚度越大越好。
( 错 )2.对于的T 形截面梁,因为其正截面受弯承载力相称于宽度为的矩形截面梁,因此其配筋率应按'f h x ≤'f b 来计算。
( 错 )0'h b A f s =ρ3.板中的分布钢筋布置在受力钢筋的下面。
( 错 )4.在截面的受压区配备一定数量的钢筋对于改进梁截面的延性是有作用的。
(对 )5.双筋截面比单筋截面更经济合用。
( 错 )6.截面复核中,假如,阐明梁发生破坏,承载力为0。
国开电大-混凝土结构设计原理-形考任务1-4答案
《混凝土结构设计原理》形考作业11.钢筋与混凝土两种材料的温度线膨胀系数相差较大。
A.对B.错正确答案: B2.对于延性要求比较高的混凝土结构(如地震区的混凝土结构),优先选用高强度等级的混凝土。
A.对B.错正确答案: B3.钢筋的伸长率越小,表明钢筋的塑性和变形能力越好。
A.对B.错正确答案: B4.粘结和锚固是钢筋和混凝土形成整体、共同工作的基础。
A.对B.错正确答案: A5.一般来说,设计使用年限长,设计基准期可能短一些;设计使用年限短,设计基准期可能长一些。
A.对B.错正确答案: B6.荷载设计值等于荷载标准值乘以荷载分项系数,材料强度设计值等于材料强度标准值乘以材料分项系数。
A.对B.错正确答案: A7.我国《混凝土规范》规定:钢筋混凝土构件的混凝土强度等级不应低于()。
A.C10B.C15C.C20D.C25正确答案: C8.钢筋经冷拉后,()。
A.可提高和B.可提高和伸长率C.可提高和D.可提高,但不能提高正确答案: D9.混凝土强度等级C30表示:()。
A.混凝土的立方体抗压强度30 N/mm2B.混凝土的棱柱体抗压强度设计值30 N/mm2C.混凝土的轴心抗压强度标准值30 N/mm2D.混凝土的立方体抗压强度达到30 N/mm2的概率不小于95%正确答案: D10.()是结构按极限状态设计时采用的荷载基本代表值,是现行国家标准《建筑结构荷载规范》(GB 50009)中对各类荷载规定的设计取值。
A.荷载标准值B.组合值C.频遇值D.准永久值正确答案: A11.关于素混凝土梁与钢筋混凝土梁在承载力和受力性能方面的说法,错误的是()。
A.素混凝土梁的破坏形态属延性破坏B.适筋钢筋混凝土梁的破坏形态属延性破坏C.相同截面尺寸的素混凝土梁和钢筋混凝土梁,前者的受弯承载力更高正确答案: A C12.钢筋与混凝土之所以能够有效地结合在一起共同工作,主要基于()。
A.钢筋和混凝土之间良好的黏结力B.接近的温度线膨胀系数C.接近的抗拉和抗压强度D.混凝土对钢筋的保护作用正确答案: A B D13.关于钢筋混凝土结构的优点,下列说法正确的是()。
06.2偏压构件
6。近似计算P―Δ效应的增大系数法(附录B)
D3 D2 D1
有侧移框架结构的二阶效应
◆ 有侧移结构,其二阶 效应主要是由水平荷载 产生的侧移引起的。
⑷ 形成这种破坏的条件是:偏心距e0较大,且受拉侧 纵向钢筋配筋率合适,通常称为大偏心受压。
3、受压破坏compressive failure
(小偏心受压破坏)
产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配 置较多时。
e0 N
N
e0
o
M
直至达到截面承载力极限 状态产生破坏。
对短柱可忽略挠度 f 影响。
②长细比l0/h =5~30的长柱
f 与e0相比已不能忽略。 A
f 随轴力增大而增大,柱 跨中弯矩M = N ( ei+ f ) 的增长速度大于轴力N的
N0 N1
增长速度。即M随N 的增
加呈明显的非线性增长。
N
短柱
长柱
No ei N1ei
B
C N1 f1
o M
长柱最终在M和N的共同作用下达到截面承载力极限状
态,但轴向承载力明显低于同样截面和初始偏心距情况 下的短柱。
因此,对于长柱,在设计中应考虑附加挠度 f 对弯矩 增大的影响。
③长细比l0/h >30的细长柱
侧向挠度 f 的影响已很大,A
在未达到截面承载力极限
状态之前,侧向挠度 f 已 N0
l0 34 12( M1 )
i
M2
若构件的长细比满足(6.2.3)公式的要求,
N M1
N M1
单 曲 率
M2
M2
N
《混凝土结构设计原理》第六章-课堂笔记
《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。
2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。
3.深入理解偏心受压构件的Nu-Mu关系曲线。
4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。
5.掌握受压构件的主要构造要求和规定。
♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。
6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。
6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。
6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。
单层工业厂房的预制柱常采用工字形截面。
圆形截面主要用于桥墩、桩和公共建筑中的柱。
柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。
6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。
同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。
偏心受压构件正截面破坏形态偏压构件破坏特征受拉破坏受压破坏
2.2 受压构件中钢筋的作用
普通钢箍柱
螺旋钢箍柱
2.2 受压构件中钢筋的作用
纵筋的作用
(1)提高正截面受压承载力; (2)改善破坏时的脆性,提高变形能力; (3)防止因偶然偏心而突然破坏 (3)减小持续压应力下混凝土收缩和徐变的影响。
实验表明,收缩和徐变能把柱截面中的压力由混凝土向钢筋转移, 从而使钢筋压应力不断增长。压应力的增长幅度随配筋率的减小 而增大,如果不给配筋率规定一个下限,钢筋中的压应力就可能 在持续使用荷载下增长到屈服应力水准。
f 4 螺旋箍筋柱与普1通箍筋柱c 力-位移2曲线的比较
2.4 螺旋箍筋轴压柱正截面承载力
采用螺旋筋和焊接环筋后,可以使核心混凝土处于三 向受压状态,提高了混凝土的抗压强度和变形能力,从 而间接提高了轴心受压柱的受压承载力和变形能力。
(a)
(b)
s
(c)
s
1 fc 4 2
2
dcor fyAss1
稳定系数
Nul
Nus
稳定系数 主要与柱的
长细比l0/b有关
N Nu 0.9 ( fc A f yAs )
当纵筋配筋率大于3%时,A中应扣 除纵筋截面的面积。
折减系数 0.9是考虑初始偏心的影响,以及主要承受恒载作用的轴压受压 柱的可靠性。
2.4 螺旋箍筋轴压柱正截面承载力
混凝土圆柱体三向受压状态的纵向抗压强度
当柱截面短边大于400mm,各边纵筋配置根数超过3 根时,或当柱截面短边不大于400mm,但各边纵筋配置 根数超过4根时,应设置复合箍筋。
1. 受压构件概述
纵筋搭接区段 受拉:直径不宜小于d/4,间距不大于5d/100mm 受压:直径不宜小于d/4,间距不大于10d/200mm 搭接筋直径大于25mm,在接头端外100mm各设两个 箍筋 d:搭接中的较小直径
第6章-受压构件的截面承载力-自学笔记
第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。
图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。
(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。
即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。
尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。
偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。
当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。
就是图6-2b这种情况。
当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。
就是图6-2c 这种情况。
§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。
§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。
轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构件按单曲率弯曲时M1 / M2 取正号,否则取负号
考虑自身挠曲影响偏压构件弯矩设计值
M Cmns M2 M2
Cm
0.7 0.3
M1 M2
0.7
ns
1
1300
1 M2 N
ea
lc h
c
h0
c
0.5 fc A N
1.0
ea max h / 30 20mm
当无需考虑自身挠曲影响时,取 ns 1.0 对剪力墙结构,取 C m ns 1.0
x
1
1
2
Ne
f
' y
As'
h0
1 fcbh02
as'
h0
b h0
2as'
As
1
fcbx
f
' y
As'
fy
N
0.002bh
大偏压两侧钢筋均未知
关键: x
hb
0
(总用筋量最少)
N 1 Ne
fcbx f
1 fcbx h0
' y
As'
0.5
fy
x
As
f
' y
As'
h0
矩形截面大偏压构件正截面承载力
N
1 fcbx
f
' y
As'
fy As
Ne 1 fcbx
h0 0.5x
f
' y
As'
h0 as'
e
N
ei e'
2as' x bh0
fy As
1 fc fy' As'
h e ei 2 as
x
As
As'
ei e0 ea M
e0 N
b as
险向 端
截 面 偏 离 柱
压 力 引 起 了 附
弯 矩 作 用 产
端加 生
,弯 了
控矩 挠
制曲
弯变
矩形
增
大
1. 一阶弯矩最大处与二阶弯矩最大处处相接近时,弯矩增加得最多 2. 两端弯矩值不相等但单曲率弯曲时,弯矩增加得较多 3. 两端弯矩值不相等且双曲率弯曲时,弯矩增加得较少甚至很少
有侧移时偏压长柱二阶效应
a
' s
h/ 2
ei e'
a
' s
h/ 2
e'
ei
h 2
as'
e'
h 2
ei
as'
矩形截面小偏纵筋面积计算
远筋一般不屈服,过多无用
N
1 fcbh0
f
' y
As'
s As
0.002bh
Ne
1
fcbh02 1 0.5
f
' y
As'
h0
as'
As
max
Ne
'
fcbh
f
偏心距较 小或偏心 距较大但 远筋较多
偏心距很小
偏心距特小
大偏 小偏
b b
大小偏压判别
界限破坏
s y
y s y
远侧钢筋受拉屈服 同时
近侧混凝土被压碎
大偏
小偏
cu
b b b
无侧移时偏压长柱挠曲变形二阶效应
一阶变形 最终变形 一阶弯矩 最终弯矩
结原条
果因件
:::
危轴 两
' y
h0'
h0' as
0.5h
(轴压比大于1.0)
s
1 b 1
fy
ξ h / h0
s
21 b
h / h0
h / h0
s
21 b
ξ h / h0 ξ h / h0
s fy'
s h/
f
' y
h0
As'
As'
As'
As'
As
例501 300400 lcx 3.5 lcy 4.375 C30 HRB400
第5讲 钢筋混凝土单向偏压构件正截面承载力设计
As b
as
单向偏心受压构件
e
N
e'
x As'
h0
a
' s
h
近远 侧侧 :: 距距 离离 轴轴 向向 力力 较较 近远 一一 侧侧
偏压短柱破坏形态
偏心距较大、远筋不多
大偏压 (受拉破坏)
远筋受拉屈服→→近侧混凝土压碎
小偏压 (受压破坏)
近侧混凝土压碎;远筋受拉不屈服 近侧混凝土压碎;远筋受压不屈服 远侧混凝土压碎(反向破坏)
M 168106 e0 N 310103 542mm
ei e0 ea 542 20 562mm 0.3h0 0.3 360 108mm
M2x 165 M1x 155
h0 h as 400 40 360mm
ea
20mm
h 30
400 30
13mm
N 310 as' as 40 As' ? As ?
z
N M1x
M1 155 0.939 0.9 M2 165
c
0.5 fc A N
0.514.3 300 400 310 103
as'
As'
Ne 1 fcbxh0 0.5x
fy' h0 as'
0.002bh
As
1 fcbx
f
' y
As'
fy
N
0.002bh
大偏压构件纵筋面积计算技术处理
① 如果 x bh0:压筋过弱,按压筋未知重算
②
如果
x 2as' :压筋过强,
As
fy
Ne' h0 as'
ei e'
s
1 H2 G
1 0.14
EcJd
排架结构柱:
s
1
1500M0
1 /N
e0 /
h0
l0 h
2
c
偏压构件不需考虑自身挠曲影响条件
1、构件端部弯矩绝对值(同一主轴方向)比值:MM
1 2
0.9
2、轴压比:
N 0.9
fc A
3、构件长细比:
lc i
34 12 M1 M2
M1 —— 绝对值较小者(考虑侧移影响后的端部弯矩) M 2 —— 绝对值较大者(考虑侧移影响后的端部弯矩)
+
=
或
由在 竖因 向水 荷平 载荷 引载 起产 了生 附了 加侧 弯移 矩的
框 架 柱 中
☆ 端部或端部附近的弯矩相对加大 ☆
偏压构件考虑侧移二阶效应后端部弯矩
框架结构、剪力墙结构、框-剪结构及筒体结构中的柱、墙:
M Mns s M0
排架结构的柱:
M sM0
框架结构柱
s
1
1
Nj
Dh
剪力墙结构、框-剪结构及筒体结构
1 b 1
fy
fy
as
h0
a
' s
h
非对称配筋截面设计计算方案
ei 0.3h0
先按大偏压计算
ei 0.3h0
应按小偏压计算
大偏压已知压筋求拉筋
As' 0.002bh
N 1 fcbx f Ne 1 fcbx h0
' y
As'
0.5
f x
y
As
Байду номын сангаас
f
' y
As'
h0
as'
h0
a
' s
h
矩形截面小偏压构件正截面承载力
N
1 fcbx
f
' y
As'
s As
Ne 1 fcbx
h0 0.5x
f
' y
As'
h0 as'
eN
ei e'
h e ei 2 as
ei e0 ea
M e0 N
s As
As b
1 fc
f
' y
As'
x As'
f
' y
s
2.768
1.0
ns
1
1300
h0 M2 N
ea
lc h
2
c
1
360
3500 2 1.0
1300
165 106 310 103
20
400
1.038
M2x N x
Cm
0.7 0.3 M1 M2
0.7 0.3 0.939
0.982
0.7
M Cmns M2 0.9821.038165 168kNm M2 165kNm