第8(1)章 吸收光谱法(1) 吸收光谱法(2)
仪器分析各章习题与答案
C因为分子中有C、H、0以外的原子存在D分子某些振动能
量相互抵消了
4.水分子有儿个红外谱带,波数最高的谱带对应于何种振动()
A2个,不对称伸缩
C3个,不对称伸缩
B4个,弯曲
D2个,对称伸缩
5.苯分子的振动自由度为(
)
A18B12
C
3.欲测定污水中痕量三价銘与六价洛应选用下列那种方法()
(1)原子发射光谱法(2)原子吸收光谱法
(3)荧光光度法(4)化学发光法
4.若需测定生物中的微量氨基酸应选用下列那种方法()
(1)荧光光度法 (2)化学发光法 (3)磷光光度法(4) X
荧光光谱法
二、问答题
1.试比较分子荧光和化学发光
2.简述瑞利散射与拉曼散射的区别。
(4)红外光谱法
11.在分子CH2= CHCH2OCH啲电子能级跃迁中,下列哪种电子能级跃迁 类型在该分子中不发生••
()
(1) ? 一?*(2)?-*? *(3)*
(4)22-*? *
12.双光束分光光度计与单光束分光光度计相比,其突出优点是 ( )
(1)可以扩大波长的应用范围(2)可以釆用快速响应的检
析法.
2.任何一种分析仪器都可视作由以下四部分组
成:
3.仪器分析主要分为三大类,它们是
和•
4.用pH计测定某溶液pH时,其信号源是
(I) 0.25cm的微波束;(2)铜的发射线。
2.计算下列辐射的波长(以cm和d为单位)
(1)频率为XlO^'Hz的可见光波
(2)频率为X10sHz的无线电波
3.计算习题1中各辐射以下列单位表示的能量。(1)erg(2)Ev
第八章分光光度法
②不同浓度的同一种物质,其吸收曲线形状
相似λmax不变。而对于不同物质,它们的 吸收曲线形状和λmax则不同。
2021/2/10
③吸收曲线可以提供物质的结构信息,并作 为物质定性分析的依据之一。
④在λmax处吸光度随浓度变化的幅度最大,
所以测定最灵敏。吸收曲线是定量分析中 选择入射光波长的重要依据。
T = It I0
A = lg (I0/It) = lg(1/T) = -lgT = kLc
T10 k L c10 A
2021/2/10
吸光度A、透射比T与浓度c的关系
A
T
T =10-kbc
A=kLc
c
2021/2/10
K 吸光系数 Absorptivity
当c的单位用g·L-1表示时,用a表示,
2021/2/10
吸光度与光程的关系 A = Lc
吸光度
0.00
检测器
吸光度
0.22
L
检测器
吸光度
0.44
样品
L
L
检测器
2021/2/10
样品 样品
光源 光源 光源
吸光度与浓度的关系 A = Lc
吸光度
0.00
L2>L1
光源
检测器 吸光度
0.22
L1
检测器
吸光度 L2
0.42
光源 光源
检测器
2021/2/10
量。
解:
C(mo/l
L)
A
b
0.57 2.51033
7.6105
摩尔质量为:
m 10000.001%0
M(g/mo)l n
7.6105
第八章吸光光度法
仪器分析
分离:色谱技术和毛细 管电泳 定性或定量:利用物质 原子、分子、离子等的 特性, 如光吸收和发射 、电导、电位、质荷比 、荧光 结构、形态、状态分析 及表征
定量分析
化学分析
容量分析
c 标 准 V标 准 c 待 测 V待 测 a b
M待测 重量分析 m称量 w待测 M称量 ms
仪器分析
S k c a (a可为任意数值)
S k lgc a
常量组分,准确度高
微量、痕量组分,准确 度较化学法差,而且不 同方法之间差别较大
仪器分析方法的分类
光学分析法
电化学分析法 色谱分析法(分离分析方法) 热分析法 其它分析方法(质谱法、中子活化分析等)
联用技术
光学分析法
分光光度计
基本部件
光源 单色器 吸收池 检测系统
稳压电源
棱镜 光栅
紫外:氘灯
可见:碘钨灯 紫外可见:氙灯
吸光度具有加合性,即体系总的吸光度等于各组份吸光 度之和(设各吸光物质之间没有互相作用)。
A总=A1+A2+……..An = ε 1bc1+ ε 2bc2+……. ε nbcn
在吸光度的测量中,有时也用透光率或透光度表示物质对光 的吸收程度。透光率以T表示: T=I/I0 , 则吸光度与透光率之 间的关系为A=lgI0/I=lg1/T 。 2、偏离朗伯-比耳定律的原因 根据朗伯-比耳定律,当吸收池厚度保持不变,以吸光度 对浓度作图时,应得到一条通过坐标原点的直线,该直线称 为标准曲线或工作曲线。在相同条件下测得试液的吸光度, 从工作曲线上就可以查得试液的浓度。但在实际工作中,常 常遇到偏离线性关系的现象,特别是在溶液浓度较高时,常 会出现标准曲线向上或向下弯曲产生正偏离或负偏离(p241, 图9-4)。
第8章吸光光度法
MR + H+
显然,增大酸度对显色 反应不利。 ⑴影响显色剂浓度和颜色; ⑵影响Mn+的存在状态;
⑶影响配合物的组成。
实际工作中,作 A ~ pH 曲线,寻找适宜 pH 范围。
A
pH
3、显色温度的选择: 一般在室温,有时需加热,通过实验确定
4、显色反应时间:制作吸光度-时间曲线
(c(M)、 c(R) 、 pH一定)
一、显色反应的选择:
1、显色反应的类型:配位反应和氧化还原反应。 2、对显色反应的要求: ⑴灵敏度足够高:κ>105 超高灵敏,κ=(6~10)104 高灵敏,κ=(2~6)104中等,κ<2×104不灵敏 ⑵显色剂在测定波长处无明显吸收,试剂空白小。 对比度:两有色物质最大吸收波长之差 Δλ=|λMAXMR-λMAXR|≥60nm
2、吸收曲线:测量某 种物质对不同波长单色 光的吸收程度,以波长 为横坐标,吸光度为纵 坐标,得到的一条吸收 光谱曲线。
(1)用途: ①进行定性分析; ②进行定量分析; ③选择吸收波长; ④判断干扰情况。
9
定性分析与定量分析的基础
不同物质吸收光谱的形状以及max 不同
B 定性分析基础 物质对光的选择 吸收
练习题
1、人眼能感觉到的光称为可见光,其波长范围 是 A。400~780nm B。200~320nm C。200~780nm D。200~1000nm 答案: A 2 、符合比尔定律的一有色溶液,当其浓度增大 时,最大吸收波长和吸光度分别是 A。不变,增加 B。不变,减少 C。增加,不变 D。减少,不变 答案: A
Ia
透光率 (透射比)Transmittance
第8章 原子吸收光谱分析
三、引起吸收线变宽的因素 a、自然宽度(natural width) 用Δ ν N 表示。 b、多普勒变宽(Doppler broadening) 用Δ ν D 表示。表达式见图8-3。 c、压力变宽(包括劳伦兹变宽、共振变 宽),它们分别用Δ ν L 和Δ ν R表示。 d、其它因素变宽,如场致变宽、自吸效应等。 它们之间的关系式为:
二、原子吸收光谱分析法及其常规模式
原子吸收光谱分析
是基于物质所产生 的原子蒸气对特定 谱线(待测元素的 特征谱线)的吸收 作用来进行定量分 析的一种方法。 分析模式见示意图。
●原子吸收和原子发射是相互联系的两种相反过程。
Comparison of AAS and AES
因此,AAS和AES法在所使用的仪器和测定方法上有 相似之处,亦有不同点。 ●由于原子的吸收线比发射线的数目少得多,这样 谱线重叠的几率小得多。而且空心阴极灯一般并不 发射那些邻近波长的辐射线,因此其它辐射线干扰 较小。因此,AAS法的选择性高、干扰少且易于克 服。 ●在原子吸收法的实验条件下,原子蒸气中基态原 于数比激发态原子数多得多,所以测定的是大部分 原子。因此,原子吸收具有较高的灵敏度。
(2)冷原子化法
原子化温度为常温。
பைடு நூலகம்
T [ D ( L R N ) ]
2
2 1/ 2
四、积分吸收和峰值吸收
在吸收线轮廓内,吸收系数的值会随吸收光
子的波长变化而变化,要表示原子蒸气吸收的全
部能量,就必须在吸收线所在的波长区间进行积
分运算,所得结果简称为积分吸收值。
从理论上,积分吸收与原子蒸气中吸收辐射
E0 基态能级 E1、E2、E3为激发态能级 因此,A 产生吸收光谱; B 产生发射光谱。 电子从基态跃迁到能量最低 的激发态(第一激发态)时要吸收 一定频率的光(谱线) ,这种谱 线称为共振吸收线;当它再跃迁 回基态时,则发射出同样频率的 光(谱线),这种谱线称为共振发 射线(它们都简称共振线)。
(整理)紫外吸收光谱法
(整理)紫外吸收光谱法第8章紫外吸收光谱法紫外-可见分⼦吸收光谱法(ultraviolet-visible molecular absorption spectrometry,UV-VIS ),⼜称紫外-可见分光光度法(ultraviolet-visible spectrophotometry )。
它是研究分⼦吸收190~750nm 波长范围内的吸收光谱。
紫外-可见吸收光谱主要产⽣与分⼦价电⼦在电⼦能级间的跃迁,是研究物质电⼦光谱的分析⽅法。
通过测定分⼦对紫外-可见光的吸收,可以⽤于鉴定和定量测定⼤量的⽆机化合物和有机化合物。
在化学和临床实验室所采⽤的定量分析技术中,紫外-可见分⼦吸收光谱法是应⽤最⼴泛的⽅法之⼀。
§9-1 光吸收定律⼀、朗伯-⽐尔定律分⼦吸收光谱法是基于测定在光程长度为b (cm )的透明池中,溶液的透射⽐T 或吸光度A 进⾏定量分析。
通常被分析物质的浓度c 与吸光度A 呈线性关系,可⽤下式表⽰:0lg tI A abc I == (9-1)式中各参数的定义如表9-1所⽰。
该式是朗伯-⽐尔定律的数学表达式,它指出:当⼀束单⾊光穿过透明介质时,光强度的降低同⼊射光的强度、吸收介质的厚度以及光路中吸光微粒的数⽬呈正⽐。
由于被分析物质的溶液是放在透明的吸收池中测量,在空⽓/吸收池壁以及吸收池壁/溶液的界⾯间会发⽣反射,因⽽导致⼊射光和透射光的损失。
如当黄光垂直通过空⽓/玻璃或玻璃/空⽓界⾯时,约有8.5%的光因反射⽽被损失。
此外,光束的衰减也来源于⼤分⼦的散射和吸收池的吸收。
故通常不能按表9-1所⽰的定义直接测定透射⽐和吸光度。
为了补偿这些影响,在实际测量中,采⽤在另⼀等同的吸收池中放⼊溶剂与被分析溶液的透射强度进⾏⽐较。
⼆、吸光度的加和性当溶液中含有多种对光产⽣吸收的物质,且各组分间不存在相互作⽤时,则该溶液对波长λ光的总吸收光度A 等于溶液中每⼀成分的吸光度之和,即吸光度具有加和性。
仪器分析课后习题参考答案
结果的影响。 用内标法进行测定时,是在被测元素的谱线中选择一条谱线作为分析线,在基体元素(或定 量加入的其它元素)的谱线中选择一条与分析线均称的谱线作为内标线,组成分析线对,利 用分析线与内标线绝对强度的比值及相对强度来进行定量分析。这时存在如下的基本关系: logR = log(I1/I2) = b1logC + logA 其中 A=a1/I2 内标元素和分析线对应具备的条件 ①内标元素与被测元素在光源作用下应有相近的蒸发性质; ②内标元素若是外加的,必须是试样中不含或含量极少可以忽略的。 ③分析线对选择需匹配;
两条原子线或两条离子线,两条谱线的强度不宜相差过大。 ④分析线对两条谱线的激发电位相近。
若内标元素与被测元素的电离电位相近,分析线对激发电位也相近,这样的分析线对称为 “均匀线对”。 ⑤分析线对波长应尽可能接近。
分析线对两条谱线应没有自吸或自吸很小,并不受其它谱线的干扰。 ⑥内标元素含量一定的。 9. 何谓三标准试样法? 解:三标准试样法就是将三个或三个以上的标准试样和被分析试样于同一实验条件下,在同 一感光板上进行 摄谱。由每个标准试样分析线对的黑度差与标准试样中欲测成分含量 c 的 对数绘制工作曲线,然 后由被测试样光谱中测得的分析线 对的黑度差,从工作曲线中查出 待测成分的含量。 10. 试述光谱半定量分析的基本原理,如何进行? 解:光谱半定量分析主要有三种方法. (1)谱线呈现法,当分析元素含量降低时,该元素的谱线数目也会逐渐减少,可以根据一 定实验条件下出现特征谱线的数目来进行半定量分析. (2)谱线强度比较法.可以将被测元素配制成不同浓度的标准系列,然后分别与试样同时 摄谱,并控制相同的摄谱条件,通过比较被测元素的灵敏线与标准试样中该元素的相应谱线 的黑度,用目视进行比较,进行半定量分析. (3)均称线对法选择基体元素或样品中组成恒定的某元素的一些谱线做为待测元素分析线 的均称线对(激发电位相近的谱线),通过二者的比较来判断待测成分的近似含量。
第八章 紫外吸收光谱分析
i.单取代苯
苯环上有一元取代基时,一般引起B带的精细结
构消失,并且各谱带的λmax发生红移,εmax值通常增大 (表2-14)。当苯环引入烷基时,由于烷基的C-H与 苯环产生超共轭效应,使苯环的吸收带红移,吸收强度 增大。对于二甲苯来说,取代基的位置不同,红移和吸 收增强效应不同,通常顺序为:对位>间位>邻位。
2.3.3 分子结构与紫外吸收光谱
1 有机化合物的紫外吸收光谱
(1) 饱和烃化合物
饱和烃类化合物只含有单键(σ 键),只能产生 σ →σ * 跃迁,由于电子由σ 被跃迁至σ *反键所 需的能量高,吸收带位于真空紫外区,如甲烷和乙 烷的吸收带分别在125nm和135nm。
(2)简单的不饱和化合物
不饱和化合物由于含有π键而具有π→π* 跃迁, π→π* 跃迁能量比σ→σ*小,但对于非共轭的简单不 饱和化合物跃迁能量仍然较高,位于真空紫外区。最 简单的乙烯化合物,在165nm处有一个强的吸收带。 当烯烃双键上引入助色基团时,π→π* 吸收将 发生红移,甚至移到紫外光区。原因是助色基团中的 n电子可以产生p-π共轭,使π→π* 跃迁能量降低, 烷基可产生超共轭效应,也可使吸收红移,不过这种 助色作用很弱。
共轭多烯的紫外吸收计算
共轭多烯的K带吸收位置λmax ,可利用伍德沃德 (Woodward)规则来进行推测,这个定则以丁二烯的作为 基本数据。 (i) 共轭双烯基本值 217 4个环残基取代 +5×4 计算值 237nm(238nm) (ii) 非骈环双烯基本值 4个环残基或烷基取代 环外双键 计算值 217 +5×4 +5 242nm(243nm)
2 一些基本概念
(1)发色团 分子中能吸收紫外光或可见光的结构系 统叫做发色团或生色团。象C=C、C=O、C≡C等 都是发色团。发色团的结构不同,电子跃迁类型也 不同。
武汉大学《分析化学》(第5版)(下册)课后习题(分子发光分析法) 【圣才出品】
第8章 分子发光分析法8-1 解释下列名词:(1)单重态;(2)三重态;(3)系间窜越;(4)振动弛豫;(5)荧光猝灭;(6)荧光量子产率;(7)重原子效应。
答:(1)单重态是指分子中的全部电子都自旋配对的分子能态,用符号S 表示,单重态分子具有抗磁性。
(2)三重态是指分子中存在两个自旋不配对的电子的分子能态,用符号T 表示,三重态分子具有顺磁性。
(3)系间窜越是指不同多重态的两个电子态间的非辐射跃迁的过程。
(4)振动弛豫是指分子将多余的振动能量传递给介质而衰变到同一电子能级的最低振动能级的过程。
(5)荧光猝灭是指荧光物质与溶剂分子间发生导致荧光强度下降的化学或物理过程。
(6)荧光量子产率是指荧光物质吸光后发射的荧光光子数与吸收的激发光光子数的比值。
(7)重原子效应是指磷光测定体系中存在原子序数较大的原子时,重原子的高核电荷引起或增强了溶质分子自旋轨道的耦合作用,从而增大了,体系间的窜11S T →01S T →跃概率,有利于磷光的产生的现象。
8-2 说明磷光与荧光在发射特性上的差别及其原因。
答:磷光与荧光在发射特性上的差别及其原因如下:(1)磷光是来自最低激发三重态的辐射跃迁过程所伴随的发光现象,发光过程速率常数小,激发态的寿命相对较长。
第一激发单重态的最低振动能级,通过系间窜越至第一激发三重态,再经振动弛豫,转至最低振动能级进而发射磷光,系间窜跃是自旋禁阻的,因此过程速率常数小。
(2)荧光是来自最低激发单重态的辐射跃迁过程所伴随的发光现象,发光过程速率常数大,激发态的寿命短。
8-3 简要说明荧光发射光谱的形状通常与激发波长无关的原因。
答:荧光发射光谱的形状通常与激发波长无关的原因为:荧光的产生是由第一电子激发态的最低振动能级开始,而与荧光分子被激发至哪一能级无关。
8-4 与分光光度法比较,荧光分析法有哪些优点?原因何在?答:(1)荧光分析法的优点相对分光光度法,荧光分析法具有更高的灵敏度。
(2)原因①荧光强度与激发光强度成正比,提高激发光强度可以使荧光强度增大,而分光光度法检测的是吸光度,增大入射光强度,透过光信号与入射光信号同比例增大,吸光度值不会发生变化,因此不能提高灵敏度;②荧光的测量是在与激发光垂直的方向上进行的,消除了杂散光和透射光对荧光测量的影响。
第八章 吸光光度法
第四节 吸光度测量条件的选择
一、入射光波长的选择
吸收大,灵敏度高 1、原则: 对朗伯-比尔定律偏离小 一般选λ max处 如有干扰,要避开。 “吸收最大,干扰最小”。
选500nm进行测定 选520nm进行测定
2013-7-14
二、参比溶液的选择 显色剂、其他试剂均无色时 用蒸馏水作参比; 显色剂有色、其他试剂无色时 用同样浓度的显色剂作参比; 显色剂无色、其他试剂有色时 用其他试剂作参比; 显色剂、其他试剂均有色时 用不加待测离子的试剂和显色剂混合溶液作参比。
二、光吸收的基本定律(朗伯-比尔定律) 1、透光率和吸光度 透光率 T 取值为0.0 % ~ 100.0 % 全部吸收 T = 0.0 % 全部透射 T = 100.0 % 吸光度 A lg T A 取值为0 ~ +∞ 全部吸收 A = + ∞
2013-7-14
全部透射
A=0
2、朗伯-比尔定律 当单色光通过均匀的溶液 时,吸光度与溶液的浓度 和液层的厚度成正比。 表示为:A=Kbc A——吸光度 光度法定 K——比例常数 量的依据 b——液层厚度,比色皿 厚度 c——溶液浓度 单色光 2013-7-14 均匀溶液
2013-7-14
2、单色器
作用:将光源发出的复合光转变为所需波长的单色光。 分为棱镜和光栅两种。
2013-7-14
光栅的分辨率比棱镜大, 可用的波长范围也较宽。
3、吸收池(比色皿)
作用:用来盛放待测溶液。 光学玻璃制成的无色透明的长方体容器,规格 有0.5,1.0,2.0,5.0cm等。
2013-7-14
显色反应及显色条件的选择
将待测组分转变为有色化合物的反应。 与待测组分形成有色化合物的试剂。
中国地质大学《分析化学》第8章原子吸收光谱法
返回
2019/1/29
(3)原子吸收线的宽度
3)压力变宽(pressure boradening)
由于辐射原子与其它粒子(分子、原子、离子 和电子等)间的相互作用而产生的谱线变宽,统称 为压力变宽。 压力变宽有两种:
罗伦兹(Lorentz )变宽——不同粒子碰撞引起的谱 线变宽;
上一内容 下一内容 回本章目录 回主目录
返回
2019/1/29
(3)原子吸收线的宽度
2)多普勒变宽(Doppler broadening)
多普勒变宽——原子在空间作相对热运动 引起的谱线变宽。 由于辐射原子作无规则的热运动,它与位 置固定的观测器间便产生相对的位移,从而发 生多普勒效应,使谱线变宽。这种谱线变宽由 于是热运动产生的,所以又称为热变宽。一般 可达10-3 nm,是谱线变宽的主要因素。
返回
2019/1/29
空心阴极灯
空心阴极灯的特点: 发射的谱线窄; 发射强度较大; 光源稳定性好; 使用寿命长。 缺陷: 单元素灯。
上一内容
下一内容 回本章目录 回主目录
返回
2019/1/29
光源调制
光源调制:
来自火焰的辐射背景(连续光谱,直流信号)可与待测 物吸收线一同进入检测器,尽管单色器可滤除一部分背景, 但仍不能完全消除这些背景对测定的干扰。为此,必须对光 源进行“调制”。 光源调制定义:将入射光所产生的直流信号转换成交流信号,通 过电学方法将其与来自火焰的直流信号滤掉(RC电路),从 而避免火焰背景干扰。 光源调制方法: 1)机械调制—在光源和火焰之间加一切光器(分成四个扇形, 其中对角的两个扇形可让入射光通过)并以一定的速度(频 率)旋转,入射光被“切”成交变的光。 2)电学调制:通过脉冲方式给光源供电,直接产生“脉冲”光。
第八章 原子吸收光谱
(3)火焰
试样雾滴在火焰中,经蒸发,干燥,离解等过程产生大 量基态原子。
火焰温度的选择:
只要保证待测元素充分离解为基态原子就可以,超过所需 温度,使激发态原子增加;
(a)确保待测元素充分离解为基态原子的前提下,选用低 温火焰
(b)火焰温度取决于燃气与助燃气类型。(表8-3)
12:19:39
温
度
虚线:阶梯升温
oC
实线:斜坡升温
干燥
灰化
原子化 净化
时间,t
干 燥:去除溶剂,防样品溅射; 灰 化:使易挥发的基体和有机物尽量除去; 原子化:待测物化合物分解为基态原子 净 化:样品测定完成,高温去残渣,净化石墨管。
12:19:39
(3)石墨管原子化器的优缺点
优点:原子化程度高,试样用量少 缺点:背景干扰比火焰法大,精密度差(自动进样装置)
或由标准试样数据获得线性方程,将测定试样的吸光度A
数据带入计算。
12:19:39
2.标准加入法 取若干份体积相同的试液(cX),依次按比例加入不同
量的待测物的标准溶液(cO),定容后浓度依次为: cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO ……
分别测得吸光度为:AX,A1,A2,A3,A4……。 以A对加入量做图得一直线,图中cX点即待测溶液浓度 。
2 π ln 2 e2
A 0.434 D mc N0 fL kLN0 当使用锐线光源时,吸光度与原子蒸汽中待测元素的 基态原子数成正比 A kLN0
12:19:39
火焰温度低于3000K时,可以用基态原子数代表待测元 素的原子总数
当使用锐线光源时,A = k N0 L =k’ c (比尔定律)
8章吸光光度法
2019/10/20
光学光谱区
远紫外 近紫外 可见 近红外 中红外
(真空紫外)
远红外
10nm~200nm 200nm 400nm
780 nm 2.5 m 50 m
~400nm ~ 780nm ~ 2.5 m ~ 50 m ~300 m
2019/10/20
三、物质对光的选择性吸收
单色光:具有相同能量(相同波长)的光. 复合光:具有不同能量(不同波长)的光复合 在一起. 例如白光. 互补光:把两种适当颜色的光按一定的强度
2019/10/20
吸光质点间相互作用引起的对吸光定律的偏 离
质点间的静电作用 质点的散射 质点间的化学反应
2019/10/20
2.散射 试样不均匀,被测液含悬浮物或胶粒等散射指
点时,入射光因散射而损失。 3.化学因素
溶液中存在着离解、聚合、互变异构、配合 物的形成等化学平衡破坏了平衡浓度分析浓度的 正比关系,造成对朗伯—比耳定律的偏离。
2019/10/20
吸收曲线的讨论:
(1)不同物质,曲线形状 不同,最大吸收波长λmax 不同,可用作定性鉴定各 种物质
(2)同一种物质,浓度 不同,其吸收曲线形状相 似,λmax不变。
2019/10/20
(3)同一种物质,浓度不同,在某一定波长下吸光 度 A 有差异,在λmax处吸光度随浓度变化的幅度最 大,所以测定最灵敏。吸收曲线是定量分析中选择 入射光波长的重要依据。
2019/10/20
8.2 光度计及基本部件
1.目视比色法
观察方向
空白 c1
c2
c3
c4
方便、灵敏,准确度差. 常用于限界分析.
2019/10/20
目视比色法 特点
仪器分析课后习题第八章答案
精品文档
12.用波长为213.8nm,质量浓度为0.010mg.mL-1的锌标准溶 液和空白溶液交替连续测定10次,用记录仪记录的格数如下. 计算该原子吸收分光光度计测定锌元素的检出限.
3.在原子吸收光度计中为什么不采用连续光源(如钨丝灯或氘灯), 而在分光光度计中则需要采用连续光源?
解:虽然原子吸收光谱中积分吸收与样品浓度呈线性关系,但由于原子 吸收线的半宽度很小,如果采用连续光源,要测定半宽度很小的吸收线 的积分吸收值就需要分辨率非常高的单色器,目前的技术条件尚达不到, 因此只能借助锐线光源,利用峰值吸收来代替.
9.应用原子吸收光谱法进行定量分析的依据是什么?进行定量分析有哪些方法? 试比较它们的优缺点. 解:在一定的浓度范围和一定的火焰宽度条件下,当采用锐线光源时,溶液 的吸光度与待测元素浓度成正比关系,这就是原子吸收光谱定量分析的依据。 常用两种方法进行定量分析: (1)标准曲线法:该方法简便、快速,但仅适用于组成简单的试样。 (2)标准加入法:本方法适用于试样的确切组分未知的情况。不适合于曲 线斜率度,应注意那些问题?怎样 选择原子吸收光谱分析的最佳条件? 解:应该从分析线的选择、光源(空心阴极灯)的工作电流、火焰的 选择、燃烧器高度的选择及狭缝宽度等几个方面来考虑,选择最佳的 测定条件。
11.从工作原理、仪器设备上对原子吸收法及原子荧光法作比较。 解:从工作原理上看,原子吸收是通过测定待测元素的原子蒸气对其特 征谱线的吸收来实现测定的,属于吸收光谱,而原子荧光则是通过测量 待测元素的原子蒸气在辐射能激发下所产生的荧光的强度来实现测定的, 属于发射光谱。
第八章原子吸收光谱
换用纯度较高的单元素灯减小干扰。
(3)灯的辐射中有连续背景辐射, 用较小通带或更换灯。
二 物理干扰(基体效应) 指试液与标准溶液物理性质(如粘度、
表面张力、雾化气体的压力等)有差别 而产生的干扰。是非选择性干扰。
消除方法:
1. 采用与被测试样组成相似的标准样 品制作工作曲线。 2. 标准加入法。
基态第一激发态,吸收一定频率的辐射能量。
产生共振吸收线(简称共振线)
激发态基态
吸收光谱
发射出一定频率的辐射。
产生共振吸收线(也简称共振线) 发射光谱
特征吸收 基态元素M E 特征辐射 激发态M*
1.原子吸收与原子发射法的对比
(1)吸收辐射后基态的原子数减少,辐射吸收值与基
态原子的数量有关,也即由吸收前后辐射光强度的变化
I
e
0
I d
将 It=I0e-KvL 代入上式: I e I e-K L d 0
则: A lg
e
e
0
0
I 0 d
0
I 0 e -K L d
用锐线光源测量,则Δve< Δva ,
由图可见,在辐射线宽度范围内,Kν
可近似认为不变,近似等于峰值时的 吸收系数K0。
气体测量管中进行吸光度测量。 特点:常温测量; 灵敏度、准确度较高(可达10-8 g汞)。
五、单色器
1.作用 2.组件 将待测元素的共振线与邻近线分开。 色散元件(棱镜、光栅)、凹凸镜、狭缝等。 两条谱线间的距离与波长差的比
3.单色器性能参数 (1)线色散率(D)
值ΔX/∆λ 。实际工作中常用其倒数 ∆λ/ ∆X 。
将待测试样在专门的氢化物生成器中产生氢化物,送
第八章 原子吸收光谱分析法作业
第八章原子吸收光谱分析法一、简答题1.原子吸收光谱和原子荧光光谱是如何产生的?比较两种分析方法的特点。
2.解释下列名词:⑴谱线轮廓;⑵积分吸收;⑶峰值吸收;⑷锐线光源;⑸光谱通带。
3.表征谱线轮廓的物理量是哪些?引起谱线变宽的主要因素有哪些?4.原子吸收光谱法定量分析的基本关系式是什么?原子吸收的测量为什么要用锐线光源?5.原子吸收光谱法最常用的锐线光源是什么?其结构、工作原理及最主要的工作条件是什么?6.空心阴极灯的阴极内壁应衬上什么材料?其作用是什么?灯内充有的低压惰性气体的作用是什么?7.试比较火焰原子化系统及石墨炉原子化器的构造、工作流程及特点,并分析石墨炉原子化法的检测限比原子化法高的原因。
8.火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?试举例说明。
9.原子吸收分光光度计的光源为什么要进行调制?有几种调制的方式?10.分析下列元素时,应选用何种类型的火焰?并说明其理由:⑴人发中的硒;⑵矿石中的锆;⑶油漆中的铅。
11.原子吸收光谱法中的非光谱干扰有哪些?如何消除这些干扰?12.原子吸收光谱法中的背景干扰是如何产生的?如何加以校正?13.说明用氘灯法校正背景干扰的原理,该法尚存在什么问题?14.在测定血清中钾时,先用水将试样稀释40倍,再加入钠盐至0.8mg/mL,试解释此操作的理由,并说明标准溶液应如何配制?15.产生原子荧光的跃迁有几种方式?试说明为什么原子荧光的检测限一般比原子吸收低?二、填空题1.原子吸收光谱分析法与发射光谱分析法,其共同点都是利用原子光谱,但二者在本质上有区别,前者利用的是现象,而后者利用的是现象。
2.根据玻耳兹曼分布定律,基态原子数远大于激发态原子数,所以发射光谱法比原子吸收法受的影响要大,这就是原子吸收法比发射光谱法较好的原因。
3.澳大利亚物理学家瓦尔什提出用吸收来代替吸收,从尔解决测量吸收的困难。
4.空心阴极灯发射的光谱,主要是的光谱,光强度随着的增大而增大。
第八章 原子吸收光谱分析.
变宽程度
DVD 7.162107 V0
T M
多普勒变宽与吸收原子自身的相对原子质量的平方根成反比, 与火焰的温度平方根成正比,与谱线频率有关。
3、压力变宽
由于原子相互碰撞使能级发生稍微变化引起的变宽,又称
为碰撞(Collisional broadening)变宽。它是由于碰撞使
激发态寿命变短所致。外加压力越大,浓度越大,变宽越显
仪器分析-原子吸收光谱分析
K0Βιβλιοθήκη 2 lnDvD
2
e2 mc
N0
f
将上式带入朗伯比尔定律中得到
2 π ln 2 e2
A 0.4343K 0L 0.4343 D D mc N0 fL kLN0
由于N0 ∝N∝c
( N0基态原子数,N原子总数,c 待测元素浓度)
所以:A=KLN0=K′LN=K′′c
仪器分析-原子吸收光谱分析
原子吸收光谱分析的常规模式
定 量 分 析
3
仪器分析-原子吸收光谱分析
§8-2 原子吸收光谱分析基本原理
一、共振线
E3
1、共振吸收线
E2
使电子由基态跃迁到
第一激发态所产生的
吸收谱线称为共振吸
E1
收线(也简称共振线)
A
B
E0
A 产生吸收光谱
B 产生发射光谱
E0 基态能级 E1、E2、E3、激发态能级
吸收线的宽度受多种因素影响,一类是由原子性质所决定,另 一类是外界因素。
1、自然宽度 Δ N
无外界因素影响时,谱线固有的宽度叫自然宽度。
自然宽度与激发态原子的平均寿命有关。一般约10-5nm。
照射光具有一定的宽度。
仪器分析各章习题与答案
仪器分析各章习题与答案Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第一章绪论问答题1. 简述仪器分析法的特点。
第二章色谱分析法1.塔板理论的要点与不足是什么2.速率理论的要点是什么3.利用保留值定性的依据是什么4.利用相对保留值定性有什么优点5.色谱图上的色谱流出曲线可说明什么问题6.什么叫死时间用什么样的样品测定.7.在色谱流出曲线上,两峰间距离决定于相应两组分在两相间的分配系数还是扩散速率为什么8.某一色谱柱从理论上计算得到的理论塔板数n很大,塔板高度H很小,但实际上柱效并不高,试分析原因。
9.某人制备了一根填充柱,用组分A和B为测试样品,测得该柱理论塔板数为4500,因而推断A和B在该柱上一定能得到很好的分离,该人推断正确吗简要说明理由。
10.色谱分析中常用的定量分析方法有哪几种当样品中各组分不能全部出峰或在组分中只需要定量其中几个组分时可选用哪种方法11.气相色谱仪一般由哪几部分组成各部件的主要作用是什么12.气相色谱仪的气路结构分为几种双柱双气路有何作用13.为什么载气需要净化如何净化14.简述热导检测器的基本原理。
15.简述氢火焰离子化检测器的基本结构和工作原理。
16.影响热导检测器灵敏度的主要因素有哪些分别是如何影响的17.为什么常用气固色谱分离永久性气体18.对气相色谱的载体有哪些要求19.试比较红色载体和白色载体的特点。
20.对气相色谱的固定液有哪些要求21.固定液按极性大小如何分类22.如何选择固定液23.什么叫聚合物固定相有何优点24.柱温对分离有何影响柱温的选择原则是什么25.根据样品的沸点如何选择柱温、固定液用量和载体的种类26.毛细管色谱柱与填充柱相比有何特点27.为什么毛细管色谱系统要采用分流进样和尾吹装置28.在下列情况下色谱峰形将会怎样变化(1)进样速度慢;(2)由于汽化室温度低,样品不能瞬间汽化;(3)增加柱温;(4)增大载气流速;(5)增加柱长;(6)固定相颗粒变粗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)目视比色法
特点
利用眼睛比较被测样品 与标准系列颜色的深浅 利用复合光(太阳光) 测量的是透过光的强度 准确度低,用于限界分析 不可分辨多组分 方法简便,灵敏度高
30
C0
C1
C2
C3
C4
C5
标准系列 观察方向 未知样品
2) 光电比色法
通过滤光片分出一窄范围的光(几十nm,近似单色 光),照射样品池,测量的是吸收光的强度 吸收滤光片:只允 许指定的窄范围波 长光透过,其他波 长的光均被吸收
绿 蓝绿 绿蓝 蓝 紫 紫红 红
7
复合光
光的互补
黄绿 黄 橙
2 物质对光的吸收——物质的颜色与光的关系
光谱示意
完全吸收
复合光
表观现象示意
黑体
完全透过 各种光部分 均匀被吸收 物体选择性 吸收某种光 入射光 I0 透射光 It
透 明
物体呈现其 互补光颜色
玻璃在可见光区是透明的;石英在紫外光区是透明的
二战期间,美国政府希望士兵得到
较好的营养。但是当时,不知道食 品中到底有什么维生素,有多少。 在当时需要简便快速的测定方法。 1941年,第一台commercial available 的分光光度计问世。 Beckman DU Spectrophotometer. 使得维生素的测定变得非常简单。
8.1 吸光光谱
1 2 3 4
电磁波谱 物质对光的吸收 溶液的吸光定律 郎伯-比尔定律适用范围
5
1
10-2 nm 10 nm
射 线 x 射 线 紫 外 光
电磁波谱
0.1 cm 10cm
微 波
102 nm 104 nm
红 外 光
103 cm
105 cm
无 线 电 波
可
见
光
远紫外
(真空紫外)
KMnO4
红
物质呈现透过光的颜色,被吸收的光与透过光呈互补色
3 物质对光选择吸收
光的波粒二象性 光的折射 波动性
E
光的衍射 光的偏振 光的干涉
粒子性
光电效应
一定波长(频率)的光具有一定的能量
E=hv=hc/
10
物质对光选择吸收的实质:物质原子或分子的核外电 子能级不同,只能吸收能量与其能级差相匹配的波长 的光。
23
化学偏离:被分析物质与溶 剂发生缔合、离解、溶剂化 反应,产生不同的吸收光谱 仪器偏离:单色光不纯引起
朗伯-比尔定律的适用条件
1. 单色光:应选用max处或肩峰处测定,此时
干扰组分、溶剂等不吸收或有很弱的吸收
ML2 ML3
2. 吸光质点形式不变
A
ML
离解、络合、缔合会破坏线性关系, 应控制条件(酸度、浓度、介质等).
100
T
A
50
A=∞ T% T = 100.0 % A = 0.0 T = 36.8 %
A
0.5
0
0
C
A = 0.434
18
吸光度适宜的取值范围:0.2~0.8
吸光系数ε
A CL
越大, 灵敏度越高: <104 为低灵敏度;
104~105 为中等灵敏度; >105为高灵敏度.
L :吸光液层的厚度,光程, cm C:吸光物质的浓度, g / L, mol / L
1
Water Analytical Chemistry
8.1 8.2 8.3 8.4 8.5
吸光光谱 比色法和分光光度法 显色反应及其影响因素 吸收光谱法定量的基本方法 应用实例
2
基本概念
吸收光谱法:基于被测物质的分子(或原子)
对光 具有选择吸收的特性而建立的分析方法。
入射光 I0 透射光 It
A = A1 + A2 + … +An
A Ai i Ci L L i Ci
i i i
21
有机物综合指标——紫外吸光度 (Ultraviolet Absorbance UVA)
含不饱和键 和杂原子的 有机物在紫 外光254nm 初的吸光度 之和
吸 光 度
波长254nm
22
透光率定义:
T It I0T Nhomakorabea值为0.0 % ~ 100.0 %
全部吸收
全部透射
T = 0.0 %
T = 100.0 %
16
Lambert – Beer 光吸收定律:当一束平行单 色光通过均匀的样品时,其吸光度与吸光组 分的浓度、吸收池的厚度乘积成正比.
L
入射光 I0
C
透射光 It
如何测定吸光 度(光强)?
光电比色法的局限性: (1)预先知道吸收波长
光电比色计结构示意图
(2)单色光不纯
(3)只限于可见光
31
2
分光光度法
0.575
光源
单色器
吸收池
检测器
显示
特点:(1)可连续分出纯度较高的单色光
(2)精确,可选择最大吸收波长
(3)应用范围可扩展到紫外光和红外光区,对应 称为紫外分光光度计、红外分光光度计
32
(4)可进行多组分的测定
分光光度计的类型
0.575
光源
单色器
吸收池
检测器
显示
单波长单光束分光光度计:一束单色光轮流通过 参比和试样溶液,由于电源波动引起的误差较 大——简易型分光光度计
33
单波长双光束分光光度计
光束分裂器
光源 单色器
比值
吸收池
检测器
显示
34
A A 1 A 2
A 1
ML2 ML3 ML
3. 稀溶液
浓度增大,分子之间作用增强
24
朗伯-比尔定律在定量分析中的应用
溶液浓度的测定
A
A= CL
工作曲线法
0.80 Ax 0.60 0.40 0.20
*
(校准曲线)
0.00
cx 0 1.0 2.0 3.0 4.0 c(mg/mL)
25
吸光度的测量
A lg
I0 It
CL
除被测组分对波长为的光有吸收外,还有其他干扰吸收: 1)吸收池对光的反射、吸收; 2)样品中样品基体、显色剂(或其它试剂)和共存组分对光的 吸收 消除措施:用参比溶液调T=100%(A=0),再测样品溶液的吸 光度,即消除了吸收池对光的吸收、反射,溶剂、试剂对光的吸 收等。 I0 I0 I0 I参比 A1 = lg A 2 = lg A = A 2 - A1 = lg I参比 I试液 I试液
27
8. 2
比色法和分光光度法
目视比色法
1 比色法
2
光电比色法
分光光度法
3 分光光度计的校正
4 722型分光光度计
28
比色法和分光光度法特点
灵敏度高:测定下限可达10-3~10-6
mol· -1, 10-4%~10-5% L 准确度能够满足微量组分的测定要求: 相对误差2~5% 操作简便快速 应用广泛
T
It I0
10
CL
lg T A CL
CL
或
A lg
I0 It
思考:如何获得单色光? 单色光的波长如何选择?
17
吸光度(Absorbance)与透光率的关系
lg T CL A
T : 透光率
1.0
T 10
A
10
CL
A: 吸光度 T = 0.0 %
38
光栅:在镀铝的玻璃表面刻有数量很大的等宽度等 间距条痕(600、1200、2400条/mm )。 利用光通过光栅时发生衍射和干涉现象而分光。 -平面透射光栅 -反射光栅
平面透 射光栅 透 镜 光屏
M1
波长范围宽, 色散均匀,
35
双波长分光光度计
分光光度计组件
光源 单色器 氢灯,氘灯,185 ~ 350 nm; 卤钨灯,250 ~ 2000 nm. 基本要求:光源强,能量分布均匀,稳定 作用:将复合光色散成单色光 棱镜 玻璃, 350 ~ 2500 nm, 石英,185 ~ 4500 nm 光栅 平面透射光栅, 反射光栅 (又称比色皿)玻璃,光学玻璃,石英,按其厚 度分为0.5 cm,l cm,2 cm,3 cm和5 cm。 作用:将光信号转换为电信号,并放大 光电管,光电倍增管,光电二极管,光导摄 像管(多道分析器)
样品池
检测器
信号输出
表头、记录仪、屏幕、数字显示
36
氙灯
氘灯
钨灯
37
单色器:将光源发出的连续光谱分解为单色光 的装置。 棱镜:依据不同波长光通过棱镜时折射率不同 玻璃350~3200nm, 石英185~4000 nm
800
λ1
白光
600 500
λ2
入射狭缝 准直透镜 棱镜 聚焦透镜 出射狭缝
400
5 郎伯-比尔定律的适用范围
朗伯比尔定律的局限性
A
定律本身的局限性:
只适于稀溶液<0.01mol/L 高浓度时组分间有相互作用:
分子间距减小、相邻粒子的电 荷分布变化等引起ε的变化
C
吸收定律偏离 郎比定律适用前提是对 单色光的吸收,而实际 上波长选择器从连续光 源中分离出的是所需波 长的波长带(多色辐射)
物质的颜色与吸收光、透过光的关系
吸收光颜色 紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 橙 吸收光波长 /nm 物质颜色(互补色) 400 ~ 450 黄绿 450 ~ 480 480 ~ 490 490 ~ 500 黄 橙 红 红紫 紫 蓝 绿蓝 蓝绿