串激电机基本原理..

串激电机基本原理..
串激电机基本原理..

概述:

1.3 1.3.1它对于外接电源有广泛的适应性:

不论是交流电还是直流电;不论是60Hz 还是50 Hz;不论12V 、24VDC 还是110V 、220V 、 240V ;总之它可设计成适应任一外接电源的电机.

1.3.2它的转速高,调速范围广:

它的转速范围为3000~40000RPM ,在同一电机上采用多个抽头可得到较宽的调速范围

.家 用电器正需要这种高转速、宽调速范围的电机.因感应电机达不到高转速(不大于3000 RPM ).例

如吸尘器,它需要高转速在容器内外形成负压,以产生吸力.

1.3.3启动力矩大,体积小: 当负载力矩增大时,串励电动机能调整自身的转速和电流,以增大自身的力矩.

1.4串励电动机的设计特点:

串励电动机一般依据客户对电气性能要求及外部结构的需要而设计 .一个设计优良的串励电 动机,不仅达到客户对电气性能及外部尺寸的要求,还要在绝缘、结构、安全、成本等方面上

优化,既使电机能通过相关的实验考核,符合 相间的标准,又节省材料

和工时.

二、串励电动机基本工作原理

2.1基本原理:

如左图一,它是串励电动机的基本工作 原理图?电流流经上部定子线

圈,产生一定方 向的磁场撚后经碳刷进入换向器(铜头),再 在转子绕

组中分成上、下并联支路流过,导流 的转子线圈在外部磁场作用下产生

力,从而

串励电动机作为电机家族的一员,它以自身的诸多特点而普遍应用于家用电器及电动工 具中.随着家用电器的普遍应用,它的前景越来越广大.

串励电动机的定义:

定子励磁绕组和电枢(转子)绕组为串联,既可通直流又可通交流电,具有换向器换向的电 动机.

串励电动机的基本结构:

串励电动机主要是由定子,转子,前、后端盖(罩)及散热风叶组成.定子由定子铁芯和

套 在极靴上的绕组组成,其作用是产生励磁磁通,导磁及支撑前后罩;转子由转子铁芯,

轴,电枢 绕组及换向器组成,其作用是保证并产生连续的电磁力矩,通过转轴带动负载做功,将电能 转化为机械能;前后罩起支撑电枢,将定、转子连结固定成一体的作用.其中转轴,前、后 罩要有足够的强度,以防电枢与罩发生共振现象,引起振动和危险.一般前、后罩内有滚动或 滑动轴承.

串励电动机的特点: 1.2 (图

使转子转动,铜头使转子中的电流始终保持上下对

称、 定子.因上部与下部定子线圈绕线方向一致,致

使上、 的. 串励电动机为何能按设计方向连续转动 ?

如左图二:其为串励电动机外接直流电时

电 流、磁通及力矩曲线.电流通过定子线圈的激磁方 向由线圈的进、

出线以及绕线方向决定.如图中 电流I,可产生磁通①1和反向磁通①2,

而对于串励 电动机,其力矩方向由电流I 及磁通①两个矢量决 定.这

就是定子绕线后接线的开口及交叉决定反 正、转向的原因.

正向电流如经绕组产生正向磁场,则电机 产生正向力矩,即正转.反

之则反转.

如左图三,对于单相串励电动机,因电流为交 变的单相

正弦波,则在定子中产生滞后约

1 ° ~5°的交变正弦波磁场,如图中①1和①2.其电流与磁 通矢量积

决定了力矩方向,从而产生形象同于全波整流波 的力矩波.当定子绕

组顺绕时产生上半部分力矩波,即产 生正向的平均力矩T 1,反之则产

生负向T 2.这样就决定了 电机的正、反转方向.

(瓜勻

连续;电流最后从另一个碳刷出来进入下部 下定子产生的磁场同向,这是必须保持一致 2.2 2.3换向电磁原理

在串励电动机的设计过程中,关于串励电动机的换

向问题是最关键的.因为换向状况的好坏直接决定了电

机寿命及对无线电 设备电磁干扰的好坏.怎样改善串 励

电动机的换向火花是一个复杂而困难的问题.

女口图一,欲使力矩Tm 的大小 和方向保

持为恒定,即①及I 在空间上的相位

必须恒 定.假使转子沿着轴向旋转,而导体 流过的电流却仍未换向,则作用力 便无法维持恒定,上述状况便无法 成立,这就需要换向.电枢旋转时, 12131 屉 I 1I 23

I 2ia

1【8||1|凰3]|

■ 2ia T (图A

2.4.2.1电刷放在几何中性线位置

如图一,电机可视为有两个磁场:定子激绕组产生的直轴主磁场 ①d 及电枢绕组产生 的交轴电枢磁场①aq,此时换向组件轴线与主磁场轴线重合,当电机旋转时,换向组件在 交轴电枢磁场中产生的旋转电势大小为:e^2W V ±?B aq

W --—向组件匝数

使每一组件边在经过一固定位置时,其电流得以切换的装置叫换向器(铜头). 组件:对 于串励电动机,指连接两换向片,由进出两线头所连接的多匝线圈为一组件,因组件和换向 片一一对应,所以组件数和换向片数相等.

如图四和五表示一个单迭绕组(迭绕对于串励电动机指:任意两串联的线圈都是后一

个紧迭在前一个上面,每个组件的始端与终端分别焊接在相邻两换向片上的绕组 )电枢的 换向过程.设其换向器片数为8换向器由右向左逆时针运动,并设碳刷宽稍大于一个换向 片的宽度.因碳刷位置是固定不变的,开始时换向片1与碳刷完全接触,组件8的下组件边 及组件1的上组件边电流合为2i a 流出;当换向器转动至碳刷与换向器片1和2接触处, 组件1被短路,组件8的下组件边及组件2的上组件边也合为2i a 流出;当碳刷与换向器片 2完全接触时,组件2的上组件边及组件1的下组件边合为2i a 流出,这样换向片1换向完 成,组件1中的电流方向由+i 变为-i .,完成此换向过程的时间称为换向周期 T K .设此电机负

= 6.25x 忙秒.

载转速为 12000R PM,则 T k =一60

— 12000x8

2.4引起换向火花的原因

对于串励电动机,其换向周期特短,一般

在 10-4秒级.在这么短的时间内,要释放电机换

向 组件所具有的能量,必然会引起火花.换向组

件 所具有能量为: (瓜出

端部漏磁通 P=(e r +e a )i+e kt i 下面将逐一讨论这些引起火花的电势.只有明 了这些电势与各量间的关系,才能有效地找到 改善火花的方法.对于串励电动机,一般要求e kt 三 8V,(e r +e a )三 4.5V. 2.4.1电抗电势er 在换向周期T K 内,换向组件中电流由+i a 变 到-i a ,电流的变化引起漏磁通的变化(包括槽漏

磁通、齿顶漏磁通和绕组端部漏磁通三部分

)从而在换向组件中产生漏自感电势 e L ;同时进行换向的其它组件,通过互感作用在该组件

中还感应出互感电势e m .

di 2i a

er =比 +em =-Lr7 =「 dt 其中L r 为换向组件的等效漏电感.Lr 史W 2

? ? L W --换向组件之匝数, 端部漏磁通i T k

L --电枢铁芯长.

即e r xWl ■』.这说明电机同一组件,其匝数越多,转速越高,电流越大,则电抗电势就愈大.

T k 2.4.2旋转电势e a

V --电枢线速度;L --fe 芯长;B aq --交轴电枢反应产生的磁密.其中B a 耘W . i a , 则 e a ocW 2

V 丄 i a . 可见e a 的大小与组件匝数平方、线速度及电流成正比;旋转电势e a 与电抗电势er 方向相 同,总是企图阻止换向组件内电流的变化,使换向延迟.

242.2 电刷不在几何中性在线:

如图七所示,当电刷偏离几何中性 线一定角度P 时,换向组件既切割电枢 磁场,产生旋转电势e a ;又切割主磁场,产 生对应的旋转电势e m .它们符合右手安 培定则. P 角越大,e m 越大.且e m 的电势方向 同e r 的相反. 242.3变压器电势e kt

换向组件轴线与主磁场轴线重

合,脉振主磁场①d 与换向线圈匝链,产生

变压器电势.

e kt =4.44fW ① d

因①d 与换向组件匝链,故e kt 数值很大,且比(e r +e a )大.其中:

W --—向组件匝数

f --电源频率.

2.5改善火花的方法

改善换向火花的方法大体有下列几种:

2.5.1使碳刷逆转向偏移一合适角度或将电枢组件与换向片的连接顺旋转方向移一角度 .

如图七所示:当碳刷逆转向偏离P 角后,换向组件产生的直轴旋转电势 e m 与交轴旋转 电势e a 及电抗电势e r 的方向相反,这样就出现(e a +e r -e m )使换向需释放的能量p 减小,从而 改善了火花.8越大,使得e m 越大,则出现e m >>(e r +e a ),同样使能量P 增大,不利换向,这样会 使原本延迟的换向变为超前,同时还使电磁转矩下降,故需合适的8角.

在实际设计中,因碳套固定在罩上,其位置不能变,故往往采用将电枢组件与换向片的连接 顺旋转方向移一角度.例如下图八所示.

e a e r

e m

图八(a )所示为换向组件产生的(e a +e r )大,因而火花大;当碳刷逆转向移动两片换向片时,产 、占

1112^5161

(a)

生的e m 使(e a +e r -e m )=0(如上图八中b 所示).在要求碳刷

位置不变的情况下,则将电枢组件与 换向片的连接顺旋转方

向位移两片换向片(如上图八中c 所示).

当然,事情也有其特殊性.如上图九所示:图(a )表示对于整距绕组的电枢,此时换向火花 好,即(e a +e r -e m )=O,图(b )表示将整距绕组变成短距绕组,此时下组件边处在S 极下靠中心 区的地方,切割电势e m >(e r +e a ),出现火花现象;图(c )表示采取了电枢组件与换向片的连接 逆转向移动了一个换向片,使e m 减小,从而达到(e a +e r -e m )=O 的目的,改善了火花.

2.5.2采用高的激磁绕组与电枢绕组匝数比(即低的电枢绕组与激磁绕组匝数比).

从电抗电势及旋转电势的公式可知,其数值的大小均与 W 的平方成正比,故减小换向组件 匝数(即是减少电枢总匝数)可较快地减小(e r +e a ),从下一节的电机设计知识可知,单相串励 电动机只要保持定、转子匝数乘积不变,改变定、转子匝数,不会使电动机主要性能发生大 的变化,为了减小换向组件中的感应电势,改善换向,宜采用小的电枢匝数.

当然,为了保证效率及温升,不是电枢绕组与激磁绕组的匝数比越小越好,一般串励电 机取在1.5~2.0.

2.5.3增加每槽并列组件数n d ,即增加换向片数.

0^ 空

112314'56|

~ LT!

N I

■ 456

U

N

1SS 4S 6 (c) (瓜) I

(b)

(c)

(瓜 )

在电机整体性能已定的条件下,即电枢绕组与激磁绕组已定,这时要改善火花,可采用增 加换向片数的方法改善火花.因e r 、e a 与换向组件的匝数平方成正比 Qt 与换向组件匝数成 正比,故减小换向组件匝数会大大降低(e a + e r )及e kt 值.在电枢绕组总匝数已定情况下,增加 每槽并列组件数n d ,即减少了换向各组件匝数,它需通过增加换向片数的方法达到.因增加 换向片数后,换向周期T K 相对减少,故实际效果并未达到平方关系,但可改善许多,特别对于 高电压电机,因每组件的匝数相对于低电压来说多得多,故采用增加换向片数效果显著.

2.5.4采用短距绕组.

如图十中⑴所示,当采用整距绕组时,虽然整距绕组可产生最大的电磁力矩,但换向的上下

件边在同一电枢 槽内.从电抗电势e r 的描述中可

知,这 时上下组件通过互 感作用在各组件边 中感应的互感电势 e m 增大,使火花增 大.当采用图中(2) 的短距绕组时,虽 然电磁力矩稍有减 小,但换向的上下 组件边不在同一槽 内,从而减小了 e m 降低了

火花.实际

在机械自动

绕线机上,采用的全是短距绕组,这样便于双飞叉

绕线.

2.5.5增大气隙

如图十一所示,因交轴电枢反应在顺主磁场方向

使直轴磁场增强,在逆主磁场方向使直 轴磁场减

弱,如图^一中曲线2;结果使主磁场波形发生畸变,

如图中曲线3;主磁

场的畸变 会影 响换

向组 件中 感应 电

势 的大 小,影 响

换 向.因 气隙 磁阻

大,故 增大 气隙

会削 a b 1 2]3]4 】H^9J'U !"1'21 i 4 [ 5 [U 口g [ 9

门俱禯

弱这种畸变,但气隙过大,使主磁路磁阻增大,效率下降,温升变差.单边气隙一般取0.2~0.5 之间.

2.5.6合适的电刷宽度、材料、压力以及换向器的材料和加工质量 .

对于串励电机,只要保证电流密度不大,一般碳刷不宜过宽.碳刷过宽,则被短接的组件 数过多,换向组件的互感电势大,不利换向;同时电磁力矩会减小,使得温升变差.但电刷过窄, 会减小换向周期,增加换向电势,也不利换向;同时电刷过窄电密过大和机械强度变低,都会 影响到电刷的寿命.一般电刷宽度取(1.2~2.5)片换向片宽.

单相串励电动机一般选用碳化石墨或人造树脂粘洁剂碳刷 .为改善换向最好选用硬质电化 石墨电刷,因其有较大电阻率,电刷与换向器的接触电阻较大,能较好地抑制换向过程中的 短路电流,有利换向减小火花.一般碳刷的电阻率要求为:30,000~100,000u Q .cm,能存受的 电密为10A/cm 2.

电刷压力大小对换向性能和电刷损蚀有很大影响.压力大可减少火花,但磨损速度大 幅度增加,压力小使换向器在换向时出现烧蚀.一般取300~500g/c rf .

换向器的材料一般为紫铜制作,为改善换向及寿命,串励马达一般选用含银的银铜合 金.加工光洁度一般在0.4~1.2间,跳动量一般控制在5卩左右.

、单相串励电动机设计

3.1 基本公式:

3.1.1 反电动势E:

对于直流串励电动机: 其中:P -——寸数;

对于单相串励电动机: P N - _8 - -8 E = ---O n 10 =Ce ①n 10

(v ) 60a

N --电枢总的导体数

a --电枢绕组并联支路对数

①--每极气隙磁通量

n 电机转速

PN ?

3.1.2 电压平衡方程式: 对于直流串励电动机

对单相串励电动机: U =E+l a (R a +R f ) +A U b

R a -----电枢绕组电阻

R f --激磁绕组电阻

△ U b --- - 电刷与换向器间压降 U +U 2

Ux — -^端■电压有动分量

Ur --端电压无功分量

3.1.3 电磁力矩公式: 对于直流串励电动机 :T m 単九;

对于交流串励电动机 2沢a

PN 工 :Tm =——L "K p ①I N 日.(此为平均力矩,非瞬时力矩)

直流电机与交流电动机的区别

直流电机与交流电动机的区别 区别就是驱动电源的种类不同,交流电机是交流,直流电机是直流。 交流电机是定子所形成的旋转磁场在转子上感应出电势后产生的旋转动力。 转速一般是固定的转速。但由于其结构简单,供电电源方便,所以大量使用于工业企业中。小到家用冰箱洗衣机吸尘器,大到机床,等等,都使用交流电机。 直流电机的定子是一个固定磁场,直流电通过转子的电刷在其周围形成变化的磁场,从而在定子内转动。 由于交流比较容易获得,比较容易输送,所以目前我们所使用的电动机械大部分都是交流电机驱动的,交流电机应用更广泛一些。 直流电机是磁场不动,导体在磁场中运动;交流电机是磁场旋转运动,而导体不动. 直流电动机分为定子绕组和转子绕组.定子绕组产生磁场.当通直流电时.定子绕组产生固定 极性的磁场.转子通直流电在磁场中受力.于是转子在磁场中受力就旋转起来.直流电机构造 复杂.造价高. 交流电动机分定子绕组和转子导体.转子导体形状像鼠笼,导体与导体之间用硅钢片.有的交流电动机转子也有绕组. 三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,三相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,定子绕组产生旋转磁场后,转子导体(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向旋转起来。一般情况下,电动机的实际转速低于旋转磁场的转速不同步。为此我们称三相电动机为异步电动机。 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。 交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。交流电动机分为异步电动机和同步电动机两类。异步电动机按照定子相数的不同分为单相异步电动机、两相异步电动机和三相异步电动机。三相异步电动机结构简单,运行可靠,成本低廉等。

直流电机与交流电机的区别

直流电机与交流电机的区别 电动机的作用是将电能转换为机械能。电动机分为交流电动机和直流电动机两大类。 (一) 交流电动机及其控制 交流电动机分为异步电动机和同步电动机两类。异步电动机按照定子相数的不同分为单项异步电动机、两相异步电动机和三相异步电动机。三相异步电动机结构简单,运行可靠,成本低廉等优点,广泛应用于工农业生产中。 1. 三相异步电动机的基本结构 三相异步电动机的构造也分为两部分:定子与转子。 (1)定子: 定子是电动机固定部分,作用是用来产生旋转磁场。它主要由定子铁心、定子绕组和机座组成。 (2)转子: 转子是重点掌握的部分,转子有两种,鼠笼式与绕线式。掌握他们各自的特点与区别。鼠笼式用于中小功率(100K以下)的电动机,他的结构简单,工作可靠,使用维护方便。绕线式可以改善启动性能和调节转速,定子与转子之间的气隙大小,会影响电动机的性能,一般气隙厚度为之间。 掌握定子绕组的接线方法。 2. 三相异步电动机的工作原理 掌握公式n1=60f/P、S=(n1-n)/n1、n=(1-S)60f/P,同时明白它们的意义(很重要),要能够灵活运用这些公式,进行计算。同时记住:通常电动机在额定负载下的转差率SN约为。书上的例题要重点掌握。 3. 三相异步电动机铭牌上的数据 (1)型号:掌握书上的例子。 (2)额定值:一般了解,掌握额定频率和额定转速,我国的频率为50赫兹。(3)连接方法:有Y型和角型。 (4)绝缘等级和温升:掌握允许温升的定义。 (5)工作方式:一般了解。 4. 三相异步电动机的机械特性 掌握额定转矩、最大转矩与启动转矩的关系。书上的公式要掌握并能灵活运用进行计算。同时记住以下内容: (1)在等速转动时,电动机的转矩必须和阻转矩相平衡。 (2)当负载转矩增大时,最初瞬间电动机的转矩T(3)一般三相异步电动机的过载系数是. (4)电动机刚启动时n=0,s=1.

破壁机的原理结构

破壁料理机[1-3]、研磨机等产品功能,完全达到、冰激凌机、料理机榨汁 机、破壁料理机豆浆机集合了,释放植物生化素的机器。细胞壁一机多用功能,可以瞬间击破食物 编辑简介[1-3]是在传统榨汁机、原汁机、料理机的基础上发展起来的,属最新破壁料理机45000(现磨豆浆、五谷粉等于一体。由于超高转速第四代果汁机,集打果汁、冰沙、分以上)能瞬间击破疏果的细胞壁,有效地萃取植物生化素,从而获得破壁/转而最新一代的果汁机在则养生首选家电产品。料理机的美名,是现代居家保健、还,、沙冰是集加热和搅拌于一体的更多功能的破壁料理机,不仅可以做蔬果汁、药材汤、粥品等。采用低转速破壁,增强扭力的技术。鱼汤豆浆、可以加热做打出的蔬和分解的缺点,而且效果更佳,不仅避免了蔬果高速击打营养容易氧化[果汁如丝般细腻。发展历史编辑21930第一代果汁机:榨汁机是一种可以将蔬果快速榨成果蔬汁的机器。它早在)发明Dr. Norman Walker 年由诺蔓·沃克博士(通过离心力从汁渣混合物中分离出果,工作原理:是采用电机带动旋刀高速旋转汁,是单螺旋设计。疏果浪费多,,出汁率低大约只有50%主要特点:转速每分钟约5000-20000转,果汁易变色,口感差,零部件多,清洗麻烦。其主要工作目的都是将第二代果汁机:原汁机是在榨汁机的基础上发展起来的,水果变成果汁,以提高口感和方便饮用。工作原理:低转速螺旋榨压方式,汁渣分离的形式结构,是双螺旋设计以上,分离式结75%主要特点:每分钟60转,低速榨汁,原汁机的出汁率可达构,渣汁分离,连续提取,出汁质量高,零部件多,清洗麻烦。冰沙料理机是在全食物全营养理念发展而来的集打果汁、豆浆、第三代果汁机:等于一体的机型从采用容杯和主机分式设计,通过高速旋转刀片将容杯的疏果打碎,工作原理:而释放蕴涵在疏果中的水分。专业文档供参考,如有帮助请下载。. 叶锋利刀片,打出疏果汁口感不够转、4主要特点:转速每分钟约20000-40000 50-65%,清洗简单。细腻,破壁率约在继承了料理机的设第四代果汁机:破壁料理机是在料理机的基础上发展而来的,计结构以及主要功能,由于转速更高,打出的豆浆、疏果汁更细腻、口感。高速旋转刀采用镭射六叶翘尾刀片设计,采用容杯和主机分式架构、工作原理:度循环瞬间击打,萃取疏果植物生化素。片产生了强大的食物涡流,可以360叶带锯齿刀片,打出疏果汁很细腻口6主要特点:转速每分钟在45000转以上,,清洗简单。感很好,破壁率约在80-95%增加热型的破壁料理机是在料理机和豆浆机基础上发展而来的,第五代果汁机:可做出比以往更多的在搅拌的基础上搭配不同的智能加热程序,加了加热功能,营养料理。使得采用增强扭力的技术即大大增强每次转动的力度,工作原理:低转速破壁,打出来的效果比高速打出来的更佳。底盘较重,刀片较大,三维设计的钝刀,700w-1200w主要特点:功率,可加热, 90%-96%。扭力高,转速低,破壁率在产品结构编辑3线路板、主机中包含有交流串激电机、控制面板、破壁料理机由主机和容杯组成。高温安全保护装置、外壳及通风装置等;容杯含有

风电机的基本原理以及基本组成结构Word版

风电机的基本原理和部件组成如下: 大部分小功率风电机具有恒定转速(定速定桨),叶片尖端的转速为64米/秒,在叶轮轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。但是,随着大功率风电机的研发并投入使用,风电机的转速不再恒定(变速变桨),叶片尖端的转速也随着叶轮转速的变化和叶片长度的不同而变化。所以站长推荐对不同类型的风电机单独查看其技术数据。(请参考产品信息) 风电机结构 一般风电机结构图(双馈机型) (1.轮毂 2.齿轮箱 3.机舱罩 4.联轴器 5.电控系统 6.发电机 7.冷却器 8.泵站 9.偏航驱动 10.偏航制动 11.偏航轴承 12.底座 13.弹性底座 14.叶片) 机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱前端是风电机叶轮,即叶片、轮毂和轴。 叶片:捉获风,并将风力传送到轮毂。在600千瓦级别的风电机上,每个叶片的长度大约为20米;而在5兆瓦级别的风电机上,叶片长度可以达到60米。叶片的设计很类似飞机的机翼,制造材料却大不相同,多采用纤维而不是轻型合金。大部分叶片用玻璃纤维强化塑料(GRP)制造。采用碳纤维或芳族聚酰胺作为强化材料是另外一种选择,但这种叶片对大型风电机是不经济的。除此之外,已经有厂家用竹子做叶片,实际运行情况还有待试验。木材、环氧木材、或环氧木纤维合成物目前还没有在叶片市场出现,尽管目前在这一领域已经有了发展。钢及铝合金分别存在重量及金属疲劳等问题,目前只用在小型风电机上。。实际上,叶片设计师通常将叶片最远端的部分的横切面设计得类似于正统飞机的机翼。但是叶片内端的厚轮廓,通常是专门为风电机设计的。为叶片选择轮廓涉及很多折衷的方面,诸如可靠的运转与延时特性。叶片的轮廓设计,即使在表面有污垢时,叶片也可以运转良好。

直流电动机与交流电动机的比较

直流电动机与交流电动机的比较 【摘要】本文着重介绍了直流电机与交流电机的不同点,旨在提高工程中对电机的识别和选择的能力,提高实践教学中教师的理论水平。 【关键词】绕组;电磁转矩;直线 电机是一种将电能与机械能进行相互转换的电磁装备,在自动控制系统中,它作为一种将电压信号或电流信号转变为转轴的角速度或角位移输出的执行元件,应用日益广泛。 根据电源性质的不同,电机分为直流电动机和交流电动机,两者的工作原理及力矩产生的方式基本相同,其输出功率一般为0.1~10kW。两者都具有调速范围宽、机械特性和调节特性好、无自转现象、动态响应快等特点。但两者比较起来除了各自的应用场合不同外,还有以下四个方面的不同。 一、结构 要实现能量转换,电路和磁场之间必须有相对运动,所以旋转电机就要具备静止的定子和转动的转子两大部分。 直流电机的定子由主磁极、换向极、机座和电刷装置等组成。其中主磁极的铁心通常由硅钢片冲制叠压而成,特别是永久式直流伺服电机的定子上安装由永久磁钢制成的磁极,经充磁后产生气隙磁场。直流伺服电机的转子由电枢铁芯和电枢绕组、换向器等组成。 交流电机的定子由定子铁芯、定子绕组和机座组成,定子铁芯中安放着两种绕组,一相作为励磁绕组,另一相作为控制绕组[1]。转子由转子铁芯、转子绕组和转轴组成,其中笼形转子用高电阻率的导电材料(如黄铜等)制造。这是因为转子电阻越大,Sm减小,转速可调范围D就越大。 二、控制方法 对于直流电机,有电机学公式[2], 电枢电流和电磁转矩的关系为 两式结合得: 由此可知,在电磁转矩不变的情况下,改变电枢电压或励磁磁通,都可以改变电机的转速。通过改变电枢电压来控制电机转速的方法称为电枢控制;通过调节磁通来控制转速的方法称为磁极控制。 对于交流电机,控制包括启动、制动和调速等,这里只分析调速。 电机学中, 可知,异步电动机有下列三种基本调速方法: 1.改变定子极对数p调速。 2.改变电源频率f调速。 3.改变转差率s调速。 特别的是在伺服电机如单相异步电机,可以改变励磁绕组和控制绕组的电压幅值和两者之间的相位来可以改变电机的磁场的大小、方向和形状,这样也可以达到控制电机的效果。 三、静态特性 电机的静态特性(static characteristics)包括机械特性[3]和调节特性。提前说明的是这里所做的分析都是假设磁路趋于饱和(非饱和),电刷位于几何中心线,气隙磁通恒定的条件下进行的。

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子: 转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特

直流(DC)与交流(AC)伺服电机及驱动

目录 直流(DC与交流(AC伺服电机及驱动 (1 1.直流(DC伺服电机及其驱动 (1 (1直流伺服电机的特性及选用 (1 (2直流伺服电机与驱动 (2 (3PWM直流调速驱动系统原理 (3 2.交流(AC伺服电机及其驱动 (4 直流(DC与交流(AC伺服电机及驱动 1.直流(DC伺服电机及其驱动 (1直流伺服电机的特性及选用 直流伺服电机通过电刷和换向器产生的整流作用,使磁场磁动势和电枢电流磁动势正交,从而产生转矩。其电枢大多为永久磁铁。 直流伺服电机具有较高的响应速度、精度和频率,优良的控制特性等优点。但由于使用电刷和换向器,故寿命较低,需要定期维修。 20世纪60年代研制出了小惯量直流伺服电机,其电枢无槽,绕组直接粘接固定在电枢铁心上,因而转动惯量小、反应灵敏、动态特性好,适用于高速且负载惯量较小的场合,否则需根据其具体的惯量比设置精密齿轮副才能与负载惯量匹配,增加了成本。 直流印刷电枢电动机是一种盘形伺服电机,电枢由导电板的切口成形,导体的线圈端部起换向器作用,这种空心式高性能伺服电机大多用于工业机器人、小型NC 机床及线切割机床上。

宽调速直流伺服电机的结构特点是励磁便于调整,易于安排补偿绕组和换向极,电动机的换向性能得到改善,成本低,可以在较宽的速度范围内得到恒转速特性。永久磁铁的宽调速直流伺服电机的结构如下图所示。有不带制动器a和带制动器b两种结构。 电动机定子(磁钢1采用矫顽力高、不易去磁的永磁材料(如铁氧体永久磁铁、转子(电枢2直径大并且有槽,因而热容量大,结构上又采用了通常凸极式和隐极式永磁电动机磁路的组合,提高了电动机气隙磁通密度。同时,在电动机尾部装有高精密低纹波的测速发电机,并可加装光电编码器或旋转变压器及制动器,为速度环提供了较高的增量,能获得优良的低速刚度和动态性能。 日本发那科(FANUC公司生产的用于工业机器人、CNC机床、加工中心(MC 的L系列(低惯量系列、M系列(中惯量系列和H系列(大惯量系列直流伺服电机。其中L系列适合于频繁启动、制动场合应用,M系列是在H系列的基础上发展起来的,其惯量较H系列小,适合于晶体管脉宽调制(PWM驱动,因而提高了整个伺服系统的频率响应。而H系列是大惯量控制用电动机,它有较大的输出功率,采用六相全波

串激电机基本原理

概述: 串励电动机作为电机家族的一员,它以自身的诸多特点而普遍应用于家用电器及电动工具中.随着家用电器的普遍应用,它的前景越来越广大. 1.1串励电动机的定义: 定子励磁绕组和电枢(转子)绕组为串联,既可通直流又可通交流电,具有换向器换向的电动机. 1.2串励电动机的基本结构: 串励电动机主要是由定子,转子,前、后端盖(罩)及散热风叶组成.定子由定子铁芯和套在极靴上的绕组组成,其作用是产生励磁磁通,导磁及支撑前后罩;转子由转子铁芯,轴,电枢绕组及换向器组成,其作用是保证并产生连续的电磁力矩,通过转轴带动负载做功,将电能转化为机械能; 前后罩起支撑电枢,将定、转子连结固定成一体的作用. 其中转轴,前、后罩要有足够的强度,以防电枢与罩发生共振现象,引起振动和危险.一般前、后罩内有滚动或滑动轴承. 1.3串励电动机的特点: 1.3.1它对于外接电源有广泛的适应性: 不论是交流电还是直流电;不论是60Hz还是50 Hz;不论12V、24VDC还是110V、220V、240V ;总之它可设计成适应任一外接电源的电机. 1.3.2它的转速高,调速范围广: 它的转速范围为3000~40000RPM,在同一电机上采用多个抽头可得到较宽的调速范围.家用电器正需要这种高转速、宽调速范围的电机. 因感应电机达不到高转速(不大于3000 RPM).例如吸尘器,它需要高转速在容器内外形成负压,以产生吸力. 1.3.3启动力矩大,体积小: 当负载力矩增大时, 串励电动机能调整自身的转速和电流,以增大自身的力矩. 1.4串励电动机的设计特点: 串励电动机一般依据客户对电气性能要求及外部结构的需要而设计.一个设计优良的串励电动机,不仅达到客户对电气性能及外部尺寸的要求,还要在绝缘、结构、安全、成本等方面上 优化,既使电机能通过相关的实验考核,符合Array相间的标准,又节省材料和工时. 二、串励电动机基本工作原理 2.1基本原理: 如左图一,它是串励电动机的基本工作 原理图.电流流经上部定子线圈,产生一定方 向的磁场;然后经碳刷进入换向器(铜头),再 在转子绕组中分成上、下并联支路流过,导流 的转子线圈在外部磁场作用下产生力,从而

直流无刷电机与永磁同步电机区别

通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。 无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。 本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制 策略。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。 最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”。 仅对电机结构而言,二者确实相差不大,个人认为二者的区别主要在于: 1 概念上的区别。无刷直流电机指的是一个系统,准确地说应该叫“无刷直流电机系统”,它强调的是电机和控制器的一体化设计,是一个整体,相互的依存度非常高,电机和控制器不能独立地存在并独立工作,考核的也是他们整体的技术性能。而交流永磁同步电机指的是一台电机,强调的是电机本身就是一台独立的设备,它可以离开控制器或变频器而独立地存在独立地工作。 2 从设计和性能角度上看,“无刷直流电机系统”设计时主要考虑将普通的机械换向变为电子换向后如何还能保持机械换向电机的优点,考核的重点也是系统的直流电机特性,如调速特性等;而交流永磁同步电机设计主要着重电机本身的性能,特别是交流电机的性能,如电压的波形、电机的功率因数、效率功角特性等。 3 从反电势波形看,无刷直流电机多为方波,而交流永磁同步电机反电势波形多为正弦波。 4 从控制角度看无刷直流电机系统基本不用什么算法,只是依据转子位置考虑给那个绕组通电流即可,而交流永磁同步电机如果需要变频调速则需要一定的算法,需要考虑电枢电流的无功和有功等。 5 关于“那么三相无刷直流电机能不能使用三相正弦交流电呢如果可以,霍耳器件是否可以不用了” 从原理上讲,三相无刷直流电机使用三相正弦交流电是可以运行的,只不过是运行性能可能很差,如果三相无刷直流电机的反电势波形为方波,则使用三相正弦交流电时会产生很大的谐波损耗,温升很高。是否需要霍耳器件与使用什么电源(三相正弦交流电或方波脉冲电源)无关,而与电机的控制算法、控制策略及控制方式等因素有关,如果是用无位置传感

交流 直流电机的选择比较

1 电机类型选择 1.1 电机类型 他励电机 激励直流电机串励电机 直流电机复励电机复励电机 永磁直流电机(小功率) 鼠笼型电机 异步电机 交流电机绕线型电机 普通同步电机 同步电机无换向器电机 磁阻电机 1.2 交流电机与直流电机的比较: 交流电机结构简单,价格便宜,维护方便,但起动及调速特性不如直流电机。因此当生产机械起动、制动及调速无特殊要求时,应采用交流电机。但近年来,随着电力电子技术的发展,交流调速装置性能与成本已能和直流调速装置竞争,越来越多的直流调速领域被交流调速所占领。 不需调速的机械,包括连续工作制、短时工作制和重复短时工作制机械,应采用交流电机。在某些操作特别频繁、交流电机在发热和起动特性上不能满足工艺要求时,如可逆轧机前后工作辊道、机架辊等,才考虑直流电机。(GD2——飞轮转矩) a)直流电机受换向器限制,按目前制造水平,其最大转速与功率成绩~106kW·r/min。当接近或超过该值时,需采用交流电机。 b)同转速下,交流电机GD2比直流电机小。电机转速越高,交流、

直流电机GD2之差越大。 c)直流电机GD2大和功率受限。因此许多大型连轧机组轧机主传动采用双电枢、三电枢直流电机传动,但造价高、占地面积大。随着交流调速技术发展,多电枢方案已不可取,应考虑采用单台交流电机。如高速线材精轧机组主传动,采用单台交流电机方案。 d)直流电机效率低、耗能大,散热条件差,需要冷却通风功率大。交流同步电机的效率高,通风功率小,比直流电机节能、节水。交流异步电机功率因数低,效率与直流电机差不多。 e)在环境恶劣场合应采用无换向器、无火花、密闭的交流电机。 f)交流、直流电机调速性能差不多。交流电机本身维护工作量较小,其调速系统要求有较高的调整和维护水平。 2 电机电压选择 工业企业供电电压一般为10kV、6kV、380V。 电机额定电压和容量范围见下表。

直流电机与交流电机的对比

(一)直流电机驱动方式 直流驱动作为一种比较便宜的驱动方式很早以前就已居电动设备上广泛应用。然而,直流系统本身在性能、维修等方面存在一些固有的缺陷。 20世纪90年代前的电动车辆几乎是直流电机驱动的。直流电机本身效率低,体积和质量大,换向器和碳刷限制了它转速的提高,最高转速为6000-8000r/min。其工作原理是:直流电流经碳刷输送到换向器,并传到转子。 这各方式有两个明显的缺陷:第一,所有的电枢电流必湏经由碳刷来输送,电机的性能取决于碳刷的物理尺寸及磨损情况,而且这也会限制电机制动性能的发挥。另外,碳刷容易损坏,必湏定期(半年至一年)更换,否则会极大地影响电机寿命。考虑到这一点,直流电机上往往配臵侦测碳刷磨损并发出警告的装臵。第二,直流电动机的热量主要产生在电动机的内部部件,因此大多数直流电机都会同时配备一个风扇用于散热。以上装臵无疑增加了电机的成本。 因此,选购电机叉车时,选购直流驱动方式的电动机车主要是考虑了叉车的价格因素,考虑了直流驱动是一种比较便宜的驱动方式,同时直流驱动应用较早,技术也比较成熟。但如上所述,直流电机也具有很多缺点,这是企业在采购电动叉车时必湏考虑的技术因素。 (二)交流电机驱动方式比较分析 以交流电机为核心的交流驱动系统因其生产效率高、维护成本低被业内专家誉为21世纪电动叉车的革命性技术。全球叉车巨头竞相推出性能更佳的交流驱动电动叉车,以丰富自己的产品,满足用户需求,赢得市场份额。国内领先的叉车企业也开始致力于交流技术应用方面的研发,将新型交流驱动电动叉车作为参与国内乃至全球市场竞争的制胜砝码。 感应电机交流驱动系统是20世纪90年代民展起来的新技术。其原理是将三相交流电输送给固定的定子绕组,产生旋转的磁场感应闭合的转子绕组产生电流,转子在电磁力的作用下顺着旋转磁场的转动方向旋转。电机控制器采用矢量控制的变频调速方式。交流电动机最为突出的优势是没有碳刷,也没有直流电动机通常对最大电流方面的限制,这意味着电动机在实际使用中可以得到更多的能量及更大的制动扭力,于是可以更快的速度运转。其次,交流电动机的热量主要发生在电动机外壳部分的定子线圈,便于冷却与散热。因此,交流电动机比直流电动机所需元件数量大大减少,没有需要定期更换的易损件,几乎不用维护,更高效,更坚固耐用。近年来,随着交流感应电机变频技术的进步,以及大功率半导体器件和微处理器速度的大幅度提高,感应电机交流驱动系统与直流电机驱动系统相比,具有效率高、体积小、质量小,结构简单、免维修、易于冷却和寿命长等优点。该系统调速范围宽,而且能实现低速恒转矩、高速恒功率运转,很好地满足了电动车辆实际行驶所需的转速特性。 可以说,正是半导体技术突飞猛进催生了交流电机的技术革命,使交流电机的控制能力大大增强:而且,随着电子元件价格不断下跌,交流电机控制器硬件部分的成本得以降低,从而为交流驱动系统的大规模推广应用奠定了基础,创造了条件。 由此可见,选购电动叉车时,选择采用交流驱动系统的叉车具有明显优势。 三、选购交流驱动系统的叉车需要考虑的因素

常用电动机类型及特点

电动机类型及特点 一、同步电机与异步电机区别:(均属交流电机) 结构:同步电机和异步电机的定子绕组是相同的,主要区别在于转子的结构。同步电机的转子上有直流励磁绕组,所以需要外加励磁电源,通过滑环引入电流;而异步电机的转子是短路的绕组,靠电磁感应产生电流(又称感应电机)。相比之下,同步电机较复杂,造价高。 应用:同步电机大多用在大型发电机的场合。而异步电机则几乎全用在电动机场合。同步电机效率较异步电机稍高,在2000KW以上的电动机选型时,一般要考虑是否选用同步电机。 二、单相异步电动机与三相异步电动机: 单项电动机:当单相正弦电流通过定子绕组时,电机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。通常根据电动机的起动和运行方式的特点,将单相异步电动机分为单相电阻起动异步电动机、单相电容起动异步电动机、单相电容运转异步电动机、单相电容起动和运转异步电动机、

单相罩极式异步电动机五种。 区别:三相异步电动机采用380V三相供电,单相电机是用220V的电源,而且都是小功率的,最大只有2.2KW 。相比于同转速同功率的三相电机,单项电机的效率低、功率因数低、运行平稳性差、且体积大,成本高,但由于单相电源方便,且调速方便,因此广泛用于电动工具、医疗器械、家用电器等。 三、无刷直流电机 1、无刷直流电机: 无刷直流电机是永磁式同步电机的一种,而并不是真正的直流电机。无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机。直流无刷电机由电动机主体和驱动器组成,在电动机内装有位置传感器检测电动机转子的极性,驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 特点: ●全面替代直流电机调速、变频器+变频电机调速、异步电机+减速机调速; ●具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; ●可以低速大功率运行,可以省去减速机直接驱动大的负载; ●体积小、重量轻、出力大; ●转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小;

直流电动机的基本原理:

一、直流电动机的基本原理: 下面电机原理部分的内容主要摘自谢明琛教授编著的《电机学》: 图示为一个最简单的直流电机模型,定子上有固定的永久磁铁做磁极,转子为圆柱型的铁芯,上面嵌有线圈(图中导体ab和cd连成一个线圈),线圈的首末端分别连接在两片彼此绝缘的圆弧型换向片上,换向片固定在转轴上,换向片构成的整体称为换向器,整个转动部分成为电枢,为了把电枢和外电路接通,在换向片上放置了两件空间位置固定的电刷A和B,当电枢转动时,电刷A只能与转到上面的换向片接触,电刷B只能与转到下面的换向片接触。 当这个原理样机作为直流发电机运行时,用原动机拖动电枢,使之以恒速n沿逆时针方向旋转,若导体的有效长度为l ,线速度为v,导体所在位置的磁通密度为 ,则在每根导体中感应出电势为 = v l e.. B δ

导体感应电势的方向用右手定则确定,在图示的瞬间,ab导体处在N极下,其电动势的方向由b—a,而导体cd处·在S极下,其电动势方向由d—c,整个线圈的电动势为2e,方向由d—a,如果线圈转过180度,则ab导体和cd导体的电动势方向均发生改变,故线圈电动势为交变电动势。 但通过测量,我们却发现在电刷A/B间的电动势却是单向的,这是为什么呢?这是因为电刷A只与N极下的导体接触,当ab导体在N极下时,电动势方向为b—a—A,电刷A的极性为+,在另一个时刻,导体cd转到N极下时,电动势的方向为c—d—A,电刷A的极性仍为+,可见电刷A的极性永远为+,同理,电刷B的极性就永远为-,故电刷A/B间的电动势为直流电动势。 若把上述电机模型用做电动机运行,在电刷A/B间施加直流电压,使电流从正极电刷A流入,通过线圈abcd,经负极电刷B流出,由于电流始终从N极下的导体流入,S极下的导体流出,根据电磁力定律可知,上下两根导体受到的电磁力方向始终为逆时针方向,它们产生的电磁力矩的方向也始终是逆时针方向,使电机按逆时针方向旋转,从上面的分析可以看出,在直流电机的绕组里,电枢线圈里的电流方向是交变的,但产生的电磁转距的方向却是单向的,这也是由于有换向器的原因。 以上是直流电机运行的基本原理,而对直流电机的基本结构,相信大家已经非常熟悉,我就不再浪费大家的时间,下面,就首先从电动机的额定参数的定义开始给大家开始介绍电机的运行方程及特点。

破壁机的原理结构

破壁料理机 破壁料理机[1-3]集合了榨汁机、豆浆机、冰激凌机、料理机、研磨机等产品功能,完全达到一机多用功能,可以瞬间击破食物细胞壁,释放植物生化素的机器。 简介编辑 破壁料理机[1-3]是在传统榨汁机、原汁机、料理机的基础上发展起来的,属最新第四代果汁机,集打果汁、冰沙、现磨豆浆、五谷粉等于一体。由于超高转速(45000转/分以上)能瞬间击破疏果的细胞壁,有效地萃取植物生化素,从而获得破壁料理机的美名,是现代居家保健、养生首选家电产品。而最新一代的果汁机在则是集加热和搅拌于一体的更多功能的破壁料理机,不仅可以做蔬果汁、沙冰,还可以加热做豆浆、鱼汤、药材汤、粥品等。采用低转速破壁,增强扭力的技术。不仅避免了蔬果高速击打营养容易氧化和分解的缺点,而且效果更佳,打出的蔬果汁如丝般细腻。[ 2发展历史编辑 第一代果汁机:榨汁机是一种可以将蔬果快速榨成果蔬汁的机器。它早在1930年由诺蔓·沃克博士(Dr. Norman Walker )发明 工作原理:是采用电机带动旋刀高速旋转,通过离心力从汁渣混合物中分离出果汁,是单螺旋设计。 主要特点:转速每分钟约5000-20000转,出汁率低大约只有50%,疏果浪费多,果汁易变色,口感差,零部件多,清洗麻烦。 第二代果汁机:原汁机是在榨汁机的基础上发展起来的,其主要工作目的都是将水果变成果汁,以提高口感和方便饮用 工作原理:低转速螺旋榨压方式,汁渣分离的形式结构,是双螺旋设计。 主要特点:每分钟60转,低速榨汁,原汁机的出汁率可达75%以上,分离式结构,渣汁分离,连续提取,出汁质量高,零部件多,清洗麻烦。 第三代果汁机:料理机是在全食物全营养理念发展而来的集打果汁、豆浆、冰沙等于一体的机型 工作原理:采用容杯和主机分式设计,通过高速旋转刀片将容杯的疏果打碎,从而释放蕴涵在疏果中的水分。

直流电机工作原理图解

直流电机工作原理图解 一.直流电机的物理模型图解释。 这是分析直流电机的物理模型图。其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦

互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。 二.直流发电机的工作原理 直流发电机是机械能转换为直流电能的电气设备。 如何转换?分以下步骤说明: 设原动机拖动转子以每分转n转转动; 电机内部的固定部分要有磁场。这个磁场可以是如图示的磁铁也可以是磁极铁心上绕套线圈,再通过直流电产生磁场。其中 If 称之为励磁电流。这种线圈每个磁极上有一个,也就是,电机有几个磁极就有几个励磁线圈,这几个线圈串联(或并联)起来就构成了励磁绕组。这里要注意各线圈通过电流的方向不可出错。在以上条件下环外导体将感应电势,其大小与磁通密度 B 、导体的有效长度 l 和导体切割磁场速度 v 三者的乘积成正比,其方向用右手定则判断。 但是要注意某一根转子导体的电势性质是交流电。而经电刷输出的电动势确是直流电了。这便是直流发电机的工作原理。如下动画演示: 三.直流电动机的工作原理

直流无刷电动机单相交流电机的区别.

电机小结——2.无刷直流电机与单相交流电机比较的优势 工控 2010-10-04 15:21:37 阅读174 评论0 字号:大中小订阅 无刷直流电机采用永磁材料激磁,而不是电激磁,在相同的工况下,体积小,重量轻。并且无刷电机具有高效节能、控制特性好、可靠性高、寿命长、噪音低等优点,正在越来越多的家电领域取代交流电机。对于油烟机系统与单相交流电机相比较,直流无刷电机有如下优势: 直流无刷驱动器包括电源部及控制部图

外转子直流无刷电机外形图 1.调速方面: 目前交流电机只能做到三档调速,而直流无刷电机可以在0-1500转之间做到无极调速,可以极大的方便用户选择合适的转速。增加了产品使用的舒适性。

2.噪音方面: 实现了启动噪音和运转噪音的双重降低:首先,直流变频实现软启动,平衡的运转状态消除了吸油烟机启动时产生的噪音。其次,用户根据使用需求可以选择不同的频率,在0-1500转之间,选择相应的运转状态,噪音始终处于超低范围。 3.风量方面: 直流无刷电机本身具有起动转矩高,过载能力强,负载特性硬的特点。用户实际使用时电机转速要高于交流电机,风量也要高于交流电机。 4.系统效率方面: 高效是直流无刷调速系统据有的优点。在油烟机全压效率上,可以高出交流电机7-8个百分点,达到29.78%。 5.节能方面: 节能已经成为未来家电的发展方向,抽油烟机在家庭里也属于每天都要使用的电器,虽然每次使用时间不长,但由于目前使用的交流电机效率太低,能耗还是很大。而采用直流电机节能的空间非常大,通过试验,在相同风量下交流异步电机需要180W的输入功率,而直流电机只需要 80W。直流马达在效率方面要比交流马达高出50%以上。 6.电机重量和温升: 直流无刷电机由于采用永磁结构,电机重量只有交流电机的70%。在室温下全速运行时电机温升只有交流电机的50%。 7.系统可靠性方面: 直流无刷调速系统的应用在目前已经非常成熟,系统的可靠性也在很多产品中得到验证。电机小结——4.三相异步电动机,单向交流异步电动机,同步电机原理 工控 2010-10-04 16:07:39 阅读107 评论0 字号:大中小订阅 一. 三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,三相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,定子绕组产生旋转磁场后,转子导体(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向旋转起来。一般情况下,电动机的实际转速低于旋转磁场的转速不同步。为此我们称三相电动机为异步电动机。 二、单相交流电动机的旋转原理 单相交流电动机只有一个绕组,转子是鼠笼式的。 单相电不能产生旋转磁场.要使单相电动机能自动旋转起来,我们可在

串激电机原理

第一章 单相串激电动机的运转原理 本章通过对单相串激电动机的运转原理、交直流两用的基本概念、高速运转及软特性和调速电路等方面的叙述,比较全面的阐明单相串激电动机的运转原理。 1-1运转原理及交直流两用的基本概念 单相串激电动机的结构虽与直流电动机相同,但可交直流两用。在交流电源供电时,产生旋转力矩的原理,仍可用直流电动机的运转原理来解释,因此本节先介绍直流电动机的运转原理,然后再文章说明能够交直流两用的基本概念。 当导体中通有电流时,在异体周围产生磁场,其磁力线的方向取决于电流方向(右手定则)。 如将通电的导体放入一磁场中,这一磁场与通电导体所产生的磁场相互作用,将使此导体受到一个作用力F,并因此而产生运动,导体会从磁力线密的地方向磁力线稀的地方移动。而磁力线的稀密,则由二个磁场的磁力线方向来决定,磁场磁力线的方向是从N极走向S 极,而通电导体产生的磁力线走向用左手定则,二个磁场的磁力线方向一致则密,方向相反则稀。 当将由二个互相相对的导体组成的线圈放入磁场时,线圈的二个边也受到了作用力,此二力方向相反,形成了力矩,如图1所示。 图1 当线圈在磁场中转动时,相应的二个线圈边,从一个磁极下转到另一个磁极下时,此时由于磁场极性有了改变,将使导体受到的作用力的方向改变,也就是转矩的方向改变,从而使线圈向反方向转动,于是线圈只能绕中心轴来回摆动,而不能连续旋转。当线圈的中的二个线圈边转到另一磁极下时,如能使线圈中的电流,也改变电流方向,则极性改变,电流也改变方向,结果使转矩方向保持不变,线圈就能连续旋转。 换向器与电刷的作用,就是使线圈从一个极转到另一个磁极下时,相应的改变线圈中电流的方向。这也可理解为:在各个磁极下的线圈中的电流,始终保持着各自一定的电流方向。因此,从另一个磁极下转过来的线圈,就要改变线圈中电流的原来的方向。 但实际上换向过程是非常复杂的,尤其是高转速电机,要在极短的时间中,使线圈的电流改变方向,这必然带来一系列的电磁问题。同时换向器和电刷又是一对磨擦付,所以还有机械上的问题,这都对电机的设计和制造带来了很多特殊要求。 以上就是直流电动机的基本运转原理,下面逐步说明单相串激电动机能交直流两用的基本概念。 直流电机的定子磁场除某些小功率电机由永久磁铁(硬磁材料)产生外,大多由缠绕在定子铁芯(软磁材料)上的激磁线圈通入激磁电流后产生的。而单相串激电动机则必须采用激磁方式。激磁的磁极极性决定于电流方向和线圈的缠绕方向,此二者中任一方向改变,就

交流电机与直流电机的区别

交流电机:交流电机输入电源为220V(中国)或110V(日本)的交流电,通过启动电容,在定子线圈上形成旋转的磁场,带动鼠笼转子旋转。 特点:1、电机没有控制板。 2、电机没有电刷。 3、电机有启动电容 4、能直接用插座电源 交流电机的优点: 1、结构简单,使用寿命较长 2、技术成熟 3、通用性强 4、价格便宜 交流电机的缺点: 1、能效不高,只有40%左右,不能满足欧盟ERP要求,属于即将被 淘汰的产品。 2、控制性差,电机特性曲线难实现线性效果,转速不好控制。通常 只能用抽线头实现档位控制。低速时电磁音很明显。 3、保护种有类单一,只有过热保护。启动时有凸波电流。 直流有刷电机:电机输入直流电压(DC),通过碳刷和转子换向器结构,保持转子线圈产生的磁场 与机壳永磁体相斥,从而保持转子运转。 特点:1、有碳刷,无控制电路板。 2、转子有换向器。 3、电机定子是永磁体。 4、不能直接用插座电源,需要通过开关电源转换才能使用。 直流电压供电:12V、24V、36V、48V、110V 直流有刷电机优点: 1、能效高,可以达到80—90% 2、控制性好,特性曲线有较好的直线性 3、技术成熟,应用广泛 直流有刷电机缺点: 1、使用寿命短,电刷属磨耗品,几千小时后需更换。 2、有碳刷摩擦产生的噪音 3、有电火花,碳刷换向时产生,严重时会干扰到其它电器的正常使用。 4、其使用的很多场合,受到直流无刷电机的影响。 直流无刷DC电机, 通过控制板实现电子换向,保持定子线圈产生的磁场与转动的永磁 体转子磁场相斥,从而保持转子运转。 特点:1、有专门的换向控制电路板。 2、没有换向器、没有碳刷。 3、电机转子是永磁体。 4、不能直接用插座电源,需要通过开关电源转换才能使用。 直流电压供电:12V、24V、36V、48V、110V

相关文档
最新文档