【精选】七年级代数式单元测试卷附答案
【精选】七年级代数式单元测试卷附答案
一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D 在点A,C之间时,∵CD=2AD ,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
人教版七年级数学上册《第三章代数式》单元测试卷及答案
人教版七年级数学上册《第三章代数式》单元测试卷及答案【主干体系建】思维导图扫描考点【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是( )A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= ( )A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是( )A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 ( )A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= ( )A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 ( )A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.参考答案【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是(C)A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为-6.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花(4a+10b)元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= (A)A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是(C)A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 (B)A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= (C)A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 (C)A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.【解析】(1)由题图可得,新房的面积为(a2+2a+4b)m2. (2)当a=5,b=6时a2+2a+4b=52+2×5+4×6=25+10+24=59(m2)所以这套新房铺地板砖所需的总费用为59×90=5 310(元).。
代数式单元测试卷(解析版)
一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)价目表每月用水量价格不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
【精选】七年级数学代数式单元测试卷附答案
一、初一数学代数式解答题压轴题精选(难)1.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
(4)解:一次性购物能更省钱。
【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
浙教版初中数学七年级上册第四单元《代数式》单元测试卷(较易)(含答案解析)
浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,书写规范的是( )A. −216PB. a ×14C. 73x 2D. 2y ÷z2. 一个两位数的个位数字是b ,十位数字是a ,那么能正确表示这个两位数的式子是.( )A. abB. baC. 10a +bD. 10b +a3. 对x 2−1y 的解释正确的是( )A. x 与y 的倒数的差的平方B. x 的平方与y 的倒数的差C. x 的平方与y 的差的倒数D. x 的平方与y 的倒数的和4. 在1,x 2−2,S =12ab ,nm 中,代数式的个数是( )A. 1B. 2C. 3D. 45. 当m = −1时,代数式2m +3的值是( )A. −1B. 0C. 1D. 26. 当a =2,b =13时,下列代数式的求值中,错误的是( )A. a(a +b)=2×(2+13)=423B. a 2+b =22+13=413C. a +ab =2+2×13=223D. (a +b)(a −b)=(2+13)×(2−13)=3137. 若x 是2的相反数,|y|=3,则x −y 的值为( )A. −5B. 1C. 5或−1D. −5或18. 下列说法中,正确的是( )A. x 2−3x 的项是x 2,3xB. a+b3是单项式C. 12,πa ,a 2+1都是整式 D. 3a 2bc −2是二次多项式9.下列单项式按一定规律排列:x3,−x5,x7,−x9,x11,⋯,其中第n个单项式为( )A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+110.下列各式中,与2a2b为同类项的是( )A. −2a 2bB. −2abC. 2ab 2D. 2a 211.下列算式中正确的是( )A. 4x−3x=1B. 2x+3y=3xyC. 3x2+2x3=5x5D. x2−3x2=−2x212.下列去括号的过程中,正确的是( )A. −(a+b−c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6cC. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,用20m长的铝合金做一个长方形的窗框.设长方形窗框的三根横条长为a(m),则长方形窗框的竖条长为m(用含a的代数式表示).14.已知x−2y=2,则−x+2y+6的值为.15.若a3b m与−2a n b是同类项,则n m=______.16.七年级某班有(3a−b)名男生和(2a+b)名女生,则男生比女生多___________名.三、解答题(本大题共9小题,共72.0分。
最新七年级数学代数式单元测试卷(含答案解析)
一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
2023-2024学年青岛版七年级数学上册《第五章 代数式与函数的初步认识》单元测试卷附答案
2023-2024学年青岛版七年级数学上册《第五章代数式与函数的初步认识》单元测试卷附答案学校:___________班级:___________姓名:___________考号:___________(共25题,共120分)一、选择题(共12题,共36分)1.(3分)下列各式中,代数式的个数有( )① a;② 2x=6;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba.A.2个B.3个C.4个D.5个2.(3分)2018年新年之后,大家期盼已久的第一场冬雪终于来临,俗语:“下雪不冷化雪冷”,温度由t∘C下降5∘C后是( )A.t−5∘C B.(t+5)∘C C.t+5∘C D.(t−5)∘C3.(3分)当a=1时,a+2a+3a+4a+⋯+99a+100a的值为( )A.5050B.100C.−50D.504.(3分)当x=1时,代数式ax5+bx3+cx−5的值为m,则当x=−1时,此代数式的值为( )A.−m B.−m−10C.−m−5D.−m+55.(3分)若a≤0,则∣a∣+a+2等于( )A.2a+2B.2C.2−2a D.2a−26.(3分)代数式y2+2y+7的值是6,则4y2+8y−5的值是( )A.9B.−9C.18D.−187.(3分)已知3−x+2y=−2,则整式x−2y的值为( )A.12B.10C.5D.158.(3分)当x=−3,y=2时,代数式2x2+xy−y2的值是( )A.5B.6C.7D.89.(3分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器10.(3分)下列关于变量x,y的关系,其中y不是x的函数的是( )A.B.C.D.11.(3分)下列各曲线中,不能表示y是x的函数的是( )A.B.C.D.,在这个函数关12.(3分)设路程为s(km),速度为v(km/h),时间为t(h),当s=50时t=50v 系式中( )A.路程是常量,t是s的函数B.速度是常量,t是v的函数C.时间是常量,v是t的函数D.s=50是常数,v是自变量,t是v的函数二、填空题(共6题,共18分)13.(3分)若实数a满足a2−2a=3,则3a2−6a−8的值为.14.(3分)“x与y平方的差”用代数式表示为,“x与y差的平方”用代数式表示为.15.(3分)若∣m+2∣+(n−1)2=0,则(m+n)2020的值为.16.(3分)已知x2+3x+7的值为11,则代数式3x2+9x−15的值为.17.(3分)已知a,b互为相反数,c是绝对值最小的数,d是负整数中最大的数,则a+b+c−d=.18.(3分)若a=2b+4,则5(2b−a)−3(−a+2b)−100=.三、解答题(共7题,共66分)19.(8分)如图所示,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1) 用a,b,x表示纸片剩余部分的面积;(2) 当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.20.(8分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:无制版费,不超过2000本时,每本收印刷费 1.5元;超过2000本时,超过部分每本收印刷费0.25元.(1) 若设该校共需印制证书x本,请用代数式分别表示甲,乙两厂的收费情况;(2) 当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?21.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1) 两种方案需的费用分别是多少元?(用含x,y的代数式表示并化简)(2) 若该客户需要购买20套西装,25条领带,则他选择哪种方案更划算?22.(8分)某农户去年承包荒山若干亩.投资7800元改造后,种果树2000棵.今年产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元.该农户将水果运到市场出售平均每天出售1000千克,需8人帮忙.每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1) 分别用a,b表示两种方式出售水果的收人.(2) 若a=1.3,b=1.1,且两种出售方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?23.(10分)如图,圆柱的高是3cm,当圆柱的底面半径r cm由小到大变化时,圆柱的体积V cm3也随之发生了变化.(1) 在这个变化中,自变量是,因变量是.(2) 写出体积V与半径r的关系式.(3) 当底面半径由1cm变化到10cm时,通过计算说明圆柱的体积增加了多少cm3.24.(12分)据商务部监测,2018年10月1日至7日,全国零售和餐饮企业实现销售额约1.4万亿元.苏宁电器某品牌电烤箱每台定价1000元,电磁炉每台定价200元,十一期间商场开展促销活动,向顾客提供两种优惠方案:方案一:买一台电烤箱送一台电磁炉;方案二:电烤箱和电磁炉都按定价的90%付款.某顾客要准备购买微波炉10台,电磁炉x台(x>10).(1) 若该顾客选择方案一购买,他需付款元(用含x的代数式表示);(2) 若该顾客选择方案二购买,他需付款元(用含x的代数式表示);(3) 若x=20,请你通过计算说明按哪种方案购买更省钱?能省多少钱?25.(12分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1) 请用含x代数式分别表示顾客在两家超市购物所付的费用;(2) 李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3) 计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?答案一、选择题(共12题,共36分)1. 【答案】D【解析】① a;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba是代数式,② 2x=6是等式.2. 【答案】D3. 【答案】A【解析】当a=1时a+2a+3a+4a+⋯+99a+100a=1+2+3+4+⋯+99+100=100×(100+1)2=5050.4. 【答案】B【解析】将x=1代入ax5+bx3+cx−5=m,得:a+b+c−5=m 则a+b+c=m+5当x=−1时原式=−a−b−c−5=−(a+b+c)−5=−m−5−5=−m−10,故选:B.5. 【答案】B【解析】∵a≤0∴∣a∣=−a.原式=−a+a+2=2.6. 【答案】B【解析】∵y2+2y+7=6∴y2+2y=−1又∵4y2+8y−5=4(y2+2y)−5∴4y2+8y−5=−4−5=−9.7. 【答案】C【解析】∵3−x+2y=−2∴2y−x=−5,则x−2y=5.8. 【答案】D【解析】当x=−3,y=2时2x2+xy−y2=2×(−3)2+(−3)×2−22=2×9−6−4=18−6−4=8.9. 【答案】B【解析】因为热水器里的水温随所晒时间的长短而变化,所以所晒时间是自变量,水的温度是因变量.10. 【答案】B【解析】函数的定义:对于x的每一个取值,y都有唯一确定的值与之对应的关系,A,C,D中每一个x都只对应一个y,而B中一个x对应两个y,故B中y不是x的函数.11. 【答案】B【解析】A,C,D选项中自变量x取任何值,y都有唯一的值与之相对应,y是x的函数;B选项自变量x取一个值时y都有2个值与之相对应,则y不是x的函数.12. 【答案】D中,v为自变量,t为v的函数,50为常量.【解析】在函数关系式t=50v二、填空题(共6题,共18分)13. 【答案】1【解析】∵a2−2a=3∴3a2−6a−8=3(a2−2a)−8=3×3−8=1∴3a2−6a−8的值为1.14. 【答案】x2−y2;(x−y)2【解析】“x与y平方的差”用代数式表示为x2−y2“x与y差的平方”用代数式表示为(x−y)2.15. 【答案】1【解析】由题意得m+2=0,n−1=0解得m=−2,n=1∴(m+n)2020=(−2+1)2020=1.16. 【答案】−3【解析】∵x2+3x+7=11∴x2+3x=4∴3x2+9x=3⋅(x2+3x)=3×4=12∴3x2+9x−15=12−15=−3.17. 【答案】1【解析】由题意得a+b=0,∣c∣=0,d=−1∴a+b+c−d=1.18. 【答案】−108三、解答题(共7题,共66分)19. 【答案】(1) ab−4x2.(2) 依题意得:ab−4x2=4x2将a=6,b=4代入上式,得x2=3.解得:x1=√3,x2=−√3(舍去)即正方形的边长为√3.20. 【答案】(1) 若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元.若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元.(2) 当x=8000时,甲厂费用为1000+0.5×8000=5000元乙厂费用为:0.25×8000+2500=4500元∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元.21. 【答案】(1) 按方案①购买,需付款:200x+(y−x)×40=(40y+160x)元;该客户按方案②购买,需付款:200x⋅90%+40y⋅80%=(180x+32y)(元).(2) 当x=20,y=25时,按方案①购买,需付款:40×25+160×20=4200(元);该客户按方案②购买,需付款:180×20+32×25=4400(元);∵4200<4400∴按方案①更划算.22. 【答案】(1) 市场销售的收入为:18000a−180001000×(25×8+100)−7800=18000a−5400−7800=18000a−13200.果园销售的收入为:18000b−7800.(2) 当a=1.3,b=1.1时市场销售收入为:18000×1.3−13200=23400−13200=10200(元)果园销售收入为:18000×1.1−7800=12000(元)∵10200<12000∴选择果园出售利润较高.23. 【答案】(1) r;V(2) V=3πr2.(3) 当r=1时V=3πr2=3π当r=10时V=3πr2=300π∵300π−3π=297π∴当底面半径由1cm变化到10cm时,圆柱的体积增加了297πcm3.24. 【答案】(1) (200x+8000)(2) (180x+9000)(3) 当x=20时,方案一的费用为200×20+8000=12000(元)方案二的费用为180×20+9000=12600(元)∵12000<12600∴方案一省钱,省600元.【解析】(1) 若该顾客选择方案一购买,他需付款1000×10+200(x−10)=200x+8000(元).(2) 该顾客选择方案二购买,他需付款90%×(10×1000+200x)=180x+9000(元).25. 【答案】(1) 设顾客在甲超市购物所付的费用为y甲顾客在乙超市购物所付的费用为y乙根据题意得:y甲=300+0.8(x−300)=0.8x+60;y乙=200+0.85(x−200)=0.85x+30.(2) 他应该去乙超市,理由如下:当x=500时y甲=0.8x+60=460,y乙=0.85x+30=455∵460>455∴他去乙超市划算.(3) 令y甲=y乙,即0.8x+60=0.85x+30解得:x=600.答:李明购买600元的商品时,到两家超市购物所付的费用一样.。
七年级上册数学第三章《代数式》单元测试(含答案)
七上第三章《代数式》单元测试班级:___________姓名:___________得分:___________ 一、选择题1.有下列各式:x−y3,−15a2b2,1y,1π,√x.其中单项式有()A. 1个B. 2个C. 3个D. 4个2.已知a,b为自然数,则多项式12x a−y b+2a+b的次数应当是()A. aB. bC. a+bD. a,b中较大的数3.某校七年级1班有学生a人,其中女生人数比男生人数的45多−(−2)人,则女生的人数为().A. 4a+159B. 4a−159C. 5a−159D. 5a+1594.若代数式x2+ax+9y−(bx2−x+9y+3)的值恒为定值,则−a+b的值为()A. 0B. −1C. −2D. 25.已知代数式x+2y+1的值是3,则代数式−2x−4y+2的值是()A. −2B. −4C. −6D. 不能确定6.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=ax3+bx+1,当x=1时,f(1)=6,那么f(−1)等于()A. 0B. −3C. −4D. −57.若(a+b)2017=−1,a−b=1,则a2017+b2017的值是()A. −1B. 0C. 1D. 28.边长为a的正方形,将边长减少b以后得到一个较小的正方形,所得较小正方形的面积比原来正方形的面积减少了().A. b2B. –b2+2abC. 2abD. a2–b29.有这样一道题,“当x=1213,y=−0.78时,求多项式7x3−6x3y+3x2y+3x3+6x3y−3x2y−10x3的值”.同学甲计算时用x=−1213,y=0.78代入,同学乙计算时用x=1213,y=0.78代入,结果两人的计算结果都正确,则原因是()A. 这个代数式的值只跟x,y的绝对值大小有关与符号无关B. 代数式化简结果只含有x,y的偶次项的原因C. 代数式化简结果x,y中其中一项系数为零,还有一项刚好与符号无关D. 代数式化简结果为零,与x,y的大小均无关系10.如图,若|a+1|=|b+1|,|1−c|=|1−d|,则a+b+c+d的值为()A. 0B. 2C. −2D. −1二、填空题11.一艘轮船沿江逆流航行的速度是28km/ℎ,江水的流速是2km/ℎ,则该轮船沿江顺流航行的速度是________.12.已知a2−2b−1=0,则多项式4b−2a2+5的值等于 ___ .13.一组按照规律排列的式子:x,x34,x59,x716,x925,⋯,其中第8个式子是_________.14.一个多项式与m2+m−2的和是m2−2m.这个多项式是______.15.一个两位数的个位数字为a,十位数字为b,这个两位数可表示为__.16.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为________。
人教版七年级数学上册《第三章代数式》单元测试卷-附答案
人教版七年级数学上册《第三章代数式》单元测试卷-附答案一、单选题1.下列各式中,符合代数式书写规则的是( )A .5x ⨯B .112xy C .2.5t D .1x y -÷2.当2m =-,5n =时,代数式()3m n -+的值是( )A .6B .6-C .9D .9-3.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去54.小明家距离学校m p ,小明从家出发骑车h t 可到学校,若要提前1h 到校(1t >),则每小时需行驶( )A .1m p t ⎛⎫+ ⎪⎝⎭B .1m pt ⎛⎫- ⎪⎝⎭ C .m 1pt - D .m 1pt +5.已知5x =,2y =且x y x y +=--,则x y -的值为( )A .3±B .3±或7±C .3-或7D .3-或7-6.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022 B .2022- C .2021 D .2021-7.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x = 4y =B .=1x - 1y =-C .2x = 1y =-D .2x =- 3y =8.已知x ,y ()22310x y --=,则下列式子的值最大的是( ).A .x y +B .x y -C .xyD .y x9.如图所示的正方形是由四个等腰直角三角形拼成的,则阴影部分的面积为( )A .22m n +B .22m n -C .2mnD .4mn10.已知四个不同的整数a b c d 、、、满足等式()()()()2015122479a b c d ----=,则+++a b c d 的值为( )A .0B .2015C .2058D .2067二、填空题11.小明买单价p 元的商品3件,给卖家q 元,应找回 元.12.设a b 、互为相反数,、c d 互为倒数,则()2024a b cd +-值是 .13.学校买来20个足球,每个a 元,又买来b 个篮球,每个58元.2058a b +表示 ;当45a = 10b = 则2058a b += 元.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的 .三、解答题15.线段AB 上有一点C ,AC 的长度是BC 的3倍少2,若BC 的长度用x 表示,则表示出AB 的长度.16.已知有理数a ,b ,c ,d ,e 其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c d ab e +++的值.17.若||2a =,b 既不是正数也不是负数,c 是最大的负整数.(1)分别求出a 、b 、c 的值;(2)求2022a b c +-的值.18.如图,是由长方形、正方形、三角形及圆组成的图形(长度单位:m ).(1)用式子表示图中阴影部分的面积:(2)按照图所示的尺寸设计并画出一个新的图形,使其面积等于参考答案1.C2.D3.C4.C5.D6.B7.D8.A9.C10.C11.()3q p -12.1-13. 买20个足球和b 个篮球一共的价钱 1480 14.a a b +/a b a + 15.42x -16.162或152- 17.(1)2a =± 0b = 1c =-;(2)3或1 18.(1)(2)。
新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)
新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为 岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。
七年级代数式单元测试卷 (word版,含解析)
一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
【培优版】浙教版(2024)七上第四章 代数式 单元测试(含解析)
【培优版】浙教版(2024)七上第四章代数式单元测试一、选择题(每题3分,共30分)1.(2024七上·仙居期末)下列计算正确的是( ).A.(−12)3=18B.(−1)3−(−2)2=−3C.x+y=xy D.a2b−2b a2=−a2b2.(2018七上·衢州期中)某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为( )A.(a-5%)(a+9%)万元B.(a-5%+9%)万元C.a(1-5%+9%)万元D.a(1-5%)(1+9%)万元3.(2024七上·鄞州期末)下列去括号正确的是( )A.a−(−3b+2c)=a−3b+2c B.−(x2+y2)=−x2−y2C.a2+(−b+c)=a2−b−c D.2a−3(b−c)=2a−3b+c4.当x=2时,整式ax3+bx-1的值等于-100,那么当x=-2时,整式ax3+bx-1的值为( )A.100B.-100C.98D.-985.(2024七上·拱墅期末)三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n 的差,只需知道一个图形的边长,这个图形是( )A.整个长方形B.图①正方形C.图②正方形D.图③正方形6.(2023七上·瑞安期中)如图是一个计算程序图,若输入x的值为6,则输出的结果的值是( )A.−18B.90C.126D.738 7.(2017七上·乐清期中)有理数a,b在数轴上对应的位置如图所示,那么代数式|a+1|a+1−|a|a+b−a |a−b|−1−b|b−1|的值是( )A .﹣1B .0C .1D .28.(2023七上·义乌月考)如图,7张全等的小长方形纸片(既不重叠也无空隙)放置于矩形ABCD 中,设小长方形的长为a ,宽为b (a >b ),若要求出两块黑色阴影部分的周长和,则只要测出下面哪个数据( )A .aB .bC .a +bD .a−b9.(2023七上·拱墅月考)已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是(用含a 的代数式表示)( )A .12aB .34aC .aD .54a 10.(2023七上·北仑期中)如图,长为y (cm ),宽为x (cm )的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为2cm ,下列说法中正确的有( )①小长方形的较长边为y−6;②阴影A 的较短边和阴影B 的较短边之和为x−y +2;③若y 为定值,则阴影A 和阴影B 的周长之差为定值;④当y =10时,阴影B 的周长比阴影A 的周长多4cm .A.①③B.①④C.①③④D.①②④二、填空题(每题4分,共24分)11.(2021七上·柯桥月考)若单项式2x2y m与﹣x n y3是同类项,则m+n= .12.(2024七上·仙居期末)若3a−2b=5,则式子6a−4b−5的值为 .13.(2024七上·鄞州月考)三个三位数abb,bab,bba由数字a,b组成,它们的和是2331,则a+b 的最大值是 .14.(2024七上·柯桥期中)若a,b互为倒数,x,y互为相反数,p是最大的负整数,则代数式ab+ x+y2023−p2的值为 .15.某种电视机每台定价为m元,商店在节日期间搞促销活动,这种电视机每台降价20%,促销期间这种电视机每台的实际售价为 元.(用含m的代数式表示)16.(2022七上·鄞州期中)如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图长方形的面积S2的比是 .三、解答题(共8题,共66分)17.(2024七上·诸暨月考)已知|x|=2,|y|=5,且|x+y|=−x−y,求x−y的值.18.(2024七上·义乌期末)先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b =﹣1.19.(2024七上·杭州月考)七年级(8)班某同学做一道题:“已知两个代数式A,B,A=x2+2x-1,计算A+2B.”他误将A+2B写成了2A+B,结果得到答案x2+5x-6,请你帮助他求出正确的答案.20.(2023七上·杭州月考)已知甲、乙两个油桶中各装有a升油.(1)把甲油桶的油倒出13给乙桶,用含a的代数式表示现在乙桶中所装油的体积.(2)在(1)的前提下,再把乙桶的油倒出14给甲桶,最后甲、乙两个桶中的油一样多吗?请说明理由.21.(2023七上·诸暨期中)已知A−B=7a2−7ab+1,且B=−4a2+6ab+5,(1)求A;(2)若|a+1|+(b−2)2=0,求A+B的值.22.(2023七上·诸暨期中)宁波市中考总分中要加大体育分值,我校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌篮球和跳绳,在查阅天猫网店后发现篮球每个定价120元,跳绳每条定价40元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一条跳绳;乙网店:篮球和跳绳都按定价的90%付款.已知要购买篮球60个,跳绳x条(x>60)(1)若在甲网店购买,需付款 元(用含x的代数式表示);若在乙网店购买,需付款 元(用含x的代数式表示);(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?23.(2023七上·杭州期中)数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2 +2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2−2a=2,则2a2−4a= ;(2)已知a−b=5,b−c=3,求代数式(a−c)2+3a−3c的值;(3)当x=−1,y=2时,代数式a x2y−bx y2−1的值为5,则当x=1,y=−2时,求代数式a x2 y−bx y2−1的值.24.(2020七上·温岭期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2﹣6(a﹣b)2+3(a﹣b)2(2)已知x2﹣2y=4,求6x2﹣12y﹣27的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.答案解析部分1.【答案】D【知识点】有理数的减法法则;有理数的乘方法则;合并同类项法则及应用【解析】【解答】解:A.(−12)3=−18≠18,故选项A错误;B.(−1)3−(−2)2=−1−4=−5≠−3,故选项B错误;C.x与y不是同类项,不可以合并,故选项C错误;D.a2b−2b a2=−a2b,故选项D正确;故答案为:D.【分析】根据有理数的乘方法则判断选项A;根据有理数的乘方法则、有理数的减法法则判断选项B;根据合并同类项法则判断选项C、D,即可得解.2.【答案】D【知识点】列式表示数量关系【解析】【解答】解:由题意得:12月份的利润为:a(1-5%)(1+9%)故答案为:D【分析】根据11月份比10月份减少5%,可得出11月份的利润,再求出12月份的利润。
代数式单元测试卷 (word版,含解析)
一、初一数学代数式解答题压轴题精选(难)1.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,2.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。
人教版七年级数学上册《第三章代数式》单元检测卷及答案
人教版七年级数学上册《第三章代数式》单元检测卷及答案(时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是( )xyA.x×5B.72ab D.m-1÷nC.2142.用代数式表示“a的3倍与b的差的平方”,正确的是( )A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为( ))t B.(L-t)tA.(L-t2C.(L-t)t D.(L-2t)t25.下面各选项中的两个量成正比例关系的是( )A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与xD.已知xy=3,y与x6.若2m-n-4=0,则-2m+n-9的值是( )A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多( )A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为( )A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= .11.如果A×B=4.5,那么A和B成比例关系;如果x÷y=3.5,那么x和y成比例关系;如果m∶1.2=1.5∶n,那么m和n成比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, .三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?参考答案一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是(B)xyA.x×5B.72C.21ab D.m-1÷n42.用代数式表示“a的3倍与b的差的平方”,正确的是(C)A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为(D)A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为(D))t B.(L-t)tA.(L-t2-t)t D.(L-2t)tC.(L25.下面各选项中的两个量成正比例关系的是(D)A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与x=3,y与xD.已知xy6.若2m-n-4=0,则-2m+n-9的值是(A)A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多(D)A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为(D)A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是-1 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= 110.11.如果A×B=4.5,那么A和B成反比例关系;如果x÷y=3.5,那么x和y成正比例关系;如果m∶1.2=1.5∶n,那么m和n成反比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, 881.三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?解:(1)4×15=60(cm3).答:这个圆柱的体积是60 cm3.(2)如果用S表示圆柱的底面积,h表示圆柱的高,因为“圆柱的底面积×高=圆柱的体积”,体积一定,也就是积一定,所以S与h成反比例关系,sh=60.(3)60÷20=3(cm).答:如果圆柱的底面积是20 cm2,那么圆柱的高是3 cm.14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?解:(1)因为+25-15-22+24-21+14-12=-7所以经过这7天,仓库里的水泥减少了,减少了7 t.(2)因为100-(-7)=100+7=107(t)所以那么7天前,仓库里存有水泥107 t.(3)依题意,得进库的装卸费为[(+25)+(+24)+(+14)]a=63a出库的装卸费为(|-15|+|-22|+|-21|+|-12|)b=70b所以这7天要付(63a+70b)元装卸费.15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.解:(1)根据题意,1号探测气球的海拔高度为(0.8x+2)m;2号探测气球的海拔高度为(0.3x+10)m.(2)依题意有0.8x+2=0.3x+10解得x=16.故出发16 s 1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.解:(1)顾客购买电器的价格是x=800元时,甲购物平台没有优惠,需要付费800元,乙购物平台有优惠,需要付费500+90%×(800-500)=770(元)所以顾客应选择在乙购物平台下单比较划算.(2)选择甲购物平台下单比较划算.理由如下:顾客购买电器的价格是x>2 000元时,甲购物平台需要付费1 000+80%(x-1 000)=(0.8x+200)(元)乙购物平台需要付费500+90%(x-500)=(0.9x+50)(元).(3)当x=3 500时,甲购物平台需要付费0.8×3 500+200=3 000(元)乙购物平台需要付费0.9×3 500+50=3 200(元)因为3 000<3 200所以该顾客应该选择甲购物平台下单比较划算.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?解:①货仓P在A,B之间时,距离点A有x km,则距离点B有(50-x)km,距离点C 有(130-x)km.运费为50x×1.5+10×(50-x)×1+60×(130-x)×1=(5x+8 300)元.由题意,得0≤x≤50所以x=0时,运费最低,为8 300元.②货仓P在B,C之间时,距离点C有y km,则距离点B有(80-y)km,距离点A有(130-y)km.运费为60y×1+10×(80-y)×1.5+50×(130-y)×1.5=(-30y+ 10 950)元.由题意,得0≤y≤80所以当y=80时,运费最低,为8 550元.因为8 300<8 550所以货仓P在A,B之间,距离点A有 0 km,即在A处时,运费最低,为8 300元. 答:货仓在点A处时,运费最低,为 8 300元.自我诊断知识分类题号总分评价1,2,3,4,5,7,8代数式11,12,13,14求代数式的值6,9,10,15,16,17。
【精选】七年级数学代数式单元测试卷附答案
一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
七年级数学上册《第三章代数式》单元测试卷及答案
七年级数学上册《第三章代数式》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式符合代数式书写规范的是( )A .a bB .1a -C .2y x ÷D .3123xy 2.a 是一个两位数,b 是一个三位数,如果把b 放在a 的左边组成一个五位数,这个五位数是( ) A .ba B .b a + C .100b a + D .1000b a +3.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A .(15)x x -B .(30)x x -C .(302)x x -D .(15)x x +4.c 是a 的16,c 是b 的18,那么a 与b 的比是( ) A .11:68 B .4:3 C .3:4 D .5:75.已知5m +和52n -互为相反数,则2m n +的值为( ) A .5- B .52- C .52 D .06.已知关于y 的多项式237n y y -+与3245my y +-的次数相同,那么25n -的值是( )A .80B .80-C .80-或54-D .45-或20- 7.如果()32a =--,()33b =-和223c ⎛⎫=- ⎪⎝⎭,那么a bc +的值为( ) A .4- B .4C .20D .20-8.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .2024B .2022C .6069D .60709.某学校楼阶梯教室,第一排有m 个座位,后面每一排都比前面一排多2个座位,则第n 排座位数是( ) A .2m + B .2(1)m n +- C .2(1)n m +- D .2m n +10.根据图中数字的列规律,在第⑥个图中,a b c --的值是( )A .190-B .66-C .62D .34-二、填空题11.a 的15%减去70可以表示为 .12.某淘宝网店去年的营业额为m 万元,今年比去年增加15%,今年的营业额是 万元. 13.从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1,2,3,4,5,6,7,……当数到2022时,对应的手指为 ;当第n 次数到食指时,数到的数是 (用含n 的代数式表示).14.已知||5a =,||3b =且||a b b a -=-,则a b += .15.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是km/h a ,则2h 后两船相距 千米.三、解答题16.下列表述中,字母各表示什么?(1)正方形的周长为4a ;(2)买单价为5元的毛巾,花了5a 元钱;(3)某班女生比男生多1人,女生共有(x +1)人.17.已知:()21102a b -++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 的值:(2)试求代数式()()328b a c d -+-的值.18.渠县同心百货、繁鑫文印两家惠民文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.为促销,同心百货商店推出的优惠方案是:买1支毛笔送2张宜纸,繁鑫文印商店的优惠方案是:按总价的九折优惠.小丽同学想购买5支毛笔,x 张宜纸()10x ≥.(1)用含x 的代数式填空:①若到同心百货商店购买,应付_______元;①若到繁鑫文印商店购买,应付______元;(2)若小丽同学要买50张宣纸,选择哪家文具商店购买更划算?请说明理由.若购买200张呢? 19.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .(1)把,,,a b a b -这四个数用“<”连接起来: ;(2)用“>”或“<”填空:a b +______0,a b -______0;(3)化简:a b a b +--= ;(4)若3,4,2a b c d ==、互为相反数,m n 、互为倒数,求()22023c d mn a b +-++的值.20.111111111111,,,122232334344545=-=-=-=-=⨯⨯⨯⨯(1)第5个式子是_______;第n 个式子是_______.(2)从计算结果中找规律,利用规律计算:111111223344520202021+++++=⨯⨯⨯⨯⨯_______; (3)计算:(由此拓展写出具体过程): ①111113355799101++++⨯⨯⨯⨯; ①1111126129900-----. 21.学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收400元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x 的代数式表示)(2)学校要印刷2400份材料,不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要_____________个三角形;(2)照此规律,摆成第n 个图案需要_____________个三角形(用含n 的代数式表示);(3)照此规律,摆成第2021个图案需要几个三角形?23.若干个1与1-排成一行:1,1,1,1,1,1,1,1,1,------规则是:先写一行1,再在第k 个1与第1k +个1之间插入k 个()11,2,3,k -=.(1)第2012个数是1还是1-?(2)前2012个数的和是多少?参考答案1.A【分析】本题考查了代数式.根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【详解】解:A 、a b书写形式正确,故本选项符合题意; B 、正确书写形式为a -,故本选项不符合题意;C 、正确书写形式为2y x个,故本选项不符合题意; D 、正确书写形式为373xy ,故本选项不符合题意. 故选:A .2.C【分析】本题考查列代数式,由题意得,把新的五位数中b 扩大100倍,即可求解.【详解】解:由题意得,这个五位数是100b a +故选:C .3.A【分析】根据已知表示出矩形的另一边长,进而利用矩形面积求法得出答案.此题主要考查了列代数式,根据题意表示出矩形的另一边长是解题关键.【详解】解:一个矩形的周长为30,矩形的一边长为x∴矩形另一边长为:15x -故此矩形的面积为:(15)x x -.故选:A .4.C【分析】本题考查了比的代数式表示式,根据题意将a 与b 转化为c 的倍数,相比即可解题.【详解】解:c 是a 的16,c 是b 的18 6a c ∴= 8b c =:6:83:4a b c c ∴==故选:C .5.D【分析】本题主要考查了绝对值的非负性、相反数的定义、代数式求值等知识点,根据绝对值的非负性和相反数的定义求出m 与n 的值成为解题的关键.根据绝对值的非负性和相反数的定义求出m 与n 的值,再代入2m n +计算即可.【详解】解:①5m +和52n -互为相反数 ①5025m n ++-= 又①50m +≥502n -≥ ①50m += 502n -= ①552m n =-=, ①2550m n +=-+=故选:D .6.D【分析】本题考查多项式的次数,多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,分0m =与0m ≠两种情况,根据两个多项式的次数相同,求出n 的值,代入求解即可. 【详解】解:当0m =时3224545my y y +-=-,次数为2;当0m ≠时3245my y +-次数为3;多项式237n y y -+的次数为n多项式237n y y -+与3245my y +-的次数相同∴当0m =时 2n = 2255220n -=-⨯=-当0m ≠时 3n = 2255345n -=-⨯=-∴25n -的值是45-或20-.故选D .7.A【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:①()328a =--=()3327b =-=-①()827481249a bc ⨯=-+=+=-- ①a bc +的值为4-.故选:A .8.D 【分析】本题主要考查图形规律,由前4个图形总结得到第n 的图形的规律,即可得到第2024个图形含有的正方形数量.【详解】解:第1个图中有正方形1个第2个图中有正方形413=+个第3个图中有正方形7123=+⨯个第4个图中有正方形10133=+⨯个所以第n 个图中有正方形13(1)(32)n n +-=-个.当2024n =时,图中有3 2 02426070⨯-=个正方形.故选:D .9.B【分析】本题主要考查了列代数式,理解题意是解题的关键.根据题意列出代数式即可.【详解】解:由题意可知,第一排有m 个座位第二排有(21)m +⨯个座位第三排有(22)m +⨯个座位第四排有(23)m +⨯个座位...故第n 排座位数是2(1)m n +-故选B .10.D【分析】本题考查了图形中有关数字的变化规律,通过观察图形,得到()1?2n n a =- ()1?22nn b =-+ ()11?22n n c =⨯- 把6n =代入求出a b c 、、的值,再把a b c 、、的值代入到a b c --计算即可求解,仔细观察图形找到规律是解题的关键.【详解】解:通过观察可得规律:左边三角形上的数字 ()1?2n n a =- 右边三角形上的数字()1?22n n b =-+ 下面三角形上的数字()11?22n n c =⨯- ①当6n =时()661?264a =-= 64266b =+= 164322c =⨯= ①64663234a b c --=--=-故选:D .11.0.1570a -/15%70a -【分析】由已知,先列出a 的15%为0.15a ,再表示它减70即可.【详解】解:a 的15%为0.15a ,再减70则表示为0.1570a -.故答案为:0.1570a -.【点睛】此题是考查学生列代数式为题.值得注意的是a 的15%应列为0.15a ,要求规范列代数式. 12.1.15m【分析】本题考查了列代数式,根据今年的营业额()115%=+⨯去年的营业额列式求解即可.【详解】解:根据题意,得:今年的营业额是()115% 1.15m m +=故答案为:1.15m .13. 无名指 ()812n -+或()818n -+【分析】本题考查规律型数字的变化类问题,解题的关键是从一般到特殊探究规律、发现规律、利用规律解决问题,属于中考常考题型.先探究规律,发现规律后利用规律即可解决问题.【详解】解:如题意可知,八次为一个循环体重复出现202282526÷=⋯⋯当数到2022时,对应的手指与第6次对应的一样为:无名指;第一个循环体出现食指时,数到的数是:()8112-+ ()8118-+;第二个循环体出现食指时,数到的数是:()8212-+ ()8218-+;第三个循环体出现食指时,数到的数是:()8312-+ ()8318-+;⋯当第n 次数到食指时,数到的数是()812n -+ ()818n -+故答案为:无名指,()812n -+或()818n -+.14.8-或2-/−2或−8【分析】本题考查代数式求值,绝对值的意义,根据绝对值的意义,得到0a b -<,进而求出,a b 的值,再代入代数式计算即可.【详解】解:①||5a = ||3b =①5,3a b ①||a b b a -=-①0a b -<①5,3a b =-=±①538a b +=--=-或532a b +=-+=-;故答案为:8-或2-.15.160【分析】本题主要考查列代数式,根据:2h 后甲、乙间的距离=甲船行驶的路程+乙船行驶的路程即可得,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.【详解】解:解:2h 后两船间的距离为:2(40)2(40)160a a ++-=千米;故答案为:16016.(1)a 表示正方形的边长(2)a 表示毛巾的数量(3)x 表示男生的人数【分析】(1)根据正方形的周长=边长×4即可得出答案;(2)根据总价=单价×数量即可得出答案;(3)根据女生比男生多1人即可得出答案.【详解】(1)解:根据题意可得,a 表示正方形的边长;(2)解:根据题意可得,a 表示毛巾的数量;(3)解:根据题意可得,x 表示男生的人数.【点睛】本题考查了代数式,熟练掌握各代数式的意义是解题的关键.17.(1)11,2a b ==- 0,1c d ==- (2)8-【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【详解】(1)解:21102a b 110,02a b 11,2a b c 是最小的自然数,d 是最大负整数0,1c d ;(2)解:11,2a b0,1c d ==- 328b a c d 32181012 18118 9818918=-.18.(1)()460x + ()3.690x +(2)若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买50张宣纸,选择繁鑫文印商店购买更划算,理由见解析:【分析】(1)根据所给的两个商店的优惠标准列式求解即可;(2)根据(1)所求分别代入50x =,200x =求出两个商店的费用即可得到答案.【详解】(1)解:由题意得,若到同心百货商店购买,应付()()520410460x x ⨯+-=+元;若到繁鑫文印商店购买,应付()()95204 3.69010x x ⨯+⨯=+ 故答案为:()460x + ()3.690x +;(2)解:若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算,理由如下:当50x =时46045060260x +=⨯+= 3.690 3.65090270x +=⨯+=①260270<①若小丽同学要买50张宣纸,选择同心商店购买更划算;当200x =时460420060860x +=⨯+= 3.690 3.620090810x +=⨯+=①810860<①若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算.【点睛】本题主要考查了列代数式和代数式求值,正确理解题意是解题的关键.19.(1)b a a b <-<<(2)<,>(3)2a - (4)214【分析】(1)由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即可解答;(2)由数轴可知3,3,03,b b a a b -<<<,进而完成解答;(3)先利用(2)的结论去绝对值,然后再运算即可;(4)由数轴可知0,0b a <>从而确定a 、b 的值,再根据相反数、倒数的性质代入计算即可.【详解】(1)解:由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即b a a b <-<<. 故答案为:b a a b <-<<.(2)解:由数轴可得:3,3,03,b b a a b -<<<,则0a b 0a b -.故答案为:<,>(3)解:①0a b 0a b -①()()2a b a b a b a b a b a b a +--=-+--=---+=-.故答案为:2a -.(4)解:由数轴可知0,0b a <>①3,4,2a b c d ==、互为相反数,m n 、互为倒数 ①3,4,0,12a b c d mn ==-+== ①()22203525211411202320232244c d mn a b +⎛⎫⎛⎫-++=-+-=-+-=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了数轴、去绝对值、相反数、倒数代数式求值等知识点,掌握数轴的应用成为解题的关键.20.(1)1115656=-⨯;()111n n 1n n 1=-++ (2)20202021(3)①50101;①1100【分析】此题主要考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)观察一系列等式得到一般性规律,写出第5个式子与第n 个式子即可;(2)原式利用得出的规律化简,计算即可得到结果;(3)①原式变形为9139111111123501⎛⎫-+-+⋯+- ⎪⎝⎭,利用得出的规律化简,计算即可得到结果; ①原式变形为1223349910011111-----⨯⨯⨯⨯,利用得出的规律化简,计算即可得到结果. 【详解】(1)解:①111122=-⨯ 1112323=-⨯ 1113434=-⨯ 1114545=-⨯ ①第5个式子是:1115656=-⨯; 第n 个式子是()111n n 1n n 1=-++; 故答案为:1115656=-⨯ ()111n n 1n n 1=-++; (2)解:111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112233420202021=-+-+-+⋯+-112021=- 20202021=; (3)解:①111113355799101++++⨯⨯⨯⨯ 1111111233599101⎛⎫=-+-+⋯+- ⎪⎝⎭ 1112101⎛⎫=- ⎪⎝⎭50101=. ①1111126129900----- 0111122334911190=⨯---⨯-⨯-⨯ 1112233499101110⎛⎫=⎪++- ⨯⨯++⨯⨯⎝⎭ 1111111122334199100⎛⎫=⎪-+-+-++-- ⎝⎭ 111100⎛⎫=-- ⎪⎝⎭111100=-+1100=. 21.(1)甲:()0.2400x +元,乙:0.4x 元(2)选择甲印刷厂比较合算,见解析【分析】本题考查了列代数式、求代数式的值,理解题意,正确列出代数式是解此题的关键. (1)根据甲、乙两厂的收费方式列出代数式即可;(2)把2400x =代入(1)中所求的代数式,分别计算出甲、乙两厂的费用,比较即可得出答案.【详解】(1)解:由题意得:甲印刷厂的收费为:()0.2400x +元乙印刷厂的收费为:0.4x 元;(2)解:当2400x =时甲印刷厂的收费为:0.24000.22400400880x +=⨯+=(元).乙印刷厂的收费为:0.40.42400960x =⨯=(元)因为880960<所以选择甲印刷厂比较合算.22.(1)16(2)31n +(3)6064【分析】本题考查了规律型:图形的变化类以及列代数式,根据各图案所需三角形个数的变化,找出变化规律“31n a n =+”是解题的关键.(1)根据前4个图案所需三角形的个数,可得出每个图案所需三角形的个数比前一个图形多3个,再结合4a 的值即可求出5a 的值;(2)由(1)的结论“每个图案所需三角形的个数比前一个图形多3个”,可得出21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+;(3)代入2021n =即可求出结论.【详解】(1)解:设摆成第n (n 为正整数)个图案需要n a 个三角形.①1234471013a a a a ====,,,①2132433a a a a a a -=-=-=①54316a a =+=.故答案为:16;(2)解:由(1)可知:21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+.故答案为:31n +;(3)解:当2021n =时20213202116064a =⨯+=①摆成第2021个图案需要6064个三角形.23.(1)第2012个数为1-.(2)1888-【分析】本题主要考查了数字规律,理解并应用数字规律是解题的关键.(1)根据规则可知第1k -行共有数字个数为()()()21111122k k k k k +--++-=-,由于62k =时,数字个数为1953个,63k =时,数字个数为2016个,从而得出第2012个数;(2)由(1)可知2012个数在62行,则共有62个1,其余均为1-,然后据此求和即可.【详解】(1)解:排列规律如下:1行:1,1-2行:1,1,1--3行:1,1,1,1---………k 行①到第1k -行共有数字个数为()212341122k k k k k +++++⋯+=-=- 由于62k =时219532k k +=,63k =时220162k k +=. ①第2012个数为1-.(2)解:设前2012个数的和为S由(1)可得:2012个数在62行,则共有62个1,其余均为1-.则()()62112012621888S =⨯+-⨯-=-.。
人教版数学七上 第三章 代数式 单元测试(含答案)
人教版数学七上 第三章 代数式一、单选题1.下列代数式书写规范的是( )A .2m ×nB .256abC .a ÷bD .3x2.“x 的三分之一与y 的一半的差”用代数式表示正确的是( )A .3x−2yB .13x−yC .13x−2yD .13x−12y 3.为落实“双减”政策,某校利用课后服务时间开展读书活动.现需要购买甲、乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8(100−x )元B .8x 元C .10(100−x )元D .8(100−10x )元4.买一个足球需m 元,买一个篮球需n 元,则买3个足球和2个篮球共需( )元A .5mnB .6mnC .(3m +2n )D .(2m +3n )5.如果2x +3y =7,那么8x +12y−1等于( )A .13B .27C .28D .不能确定6.若|x−4|+(y +13)2=0,则6xy 的值为( )A .43B .8C .−8D .−437.近年来,重庆作为网红城市,旅游业市场发展迅速:据调查,今年重庆5月份旅游旺季全市旅游业收入为x 亿元,6月份比5月份减少了25%,暑期如约而至,7月份比6月份增加了78%,则7月份重庆全市的旅游业收入是( )亿元.A .(1﹣25%+78%)xB .(1﹣25%)(1+78%)xC .(1﹣25%)x +(1+78%)xD .[1﹣25%(1+78%)]x8.若x 表示一个一位数,y 表示一个两位数,小明把x 放在y 的右边来组成一个三位数,你认为下列表达式中能表示这个数的是( )A .yxB .100x +yC .10x +yD .10y +x 二、填空题9.按照列代数式的规范要求重新书写:a ×a ×2−b ÷3,应写成 .10.一张贺卡的单价是a 元/张,小明买8张,用去 元.11.若代数式2y 2+3y +7的值是8,则代数式4y 2+6y−2023的值是 .12.足球上白色皮共有a 块,比黑色皮的2倍少4块,共有黑色皮 块.13.“a 的2倍与b 的差的平方”用式子表示为 ,当a =−2,b =−1时,此式子的值为 .14.如图,下列各图形中的三个数之间均具有相同的规律,根据此规律,用含有n 的代数式表示y = .15.单项式6a 2可以表述为“棱长为a 的正方体的表面积”,请再赋予它一个新的实际背景: .16.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,则第6个图案中有黑色棋子 个;第n 块图案中有黑色棋子 个.17.a 是为1的有理数,我们把11−a 称为a 的差倒数.例如:2的差倒数是11−2=−1,−1的差倒数 11−(−1)=12,已知a 1=−13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差的倒数,⋯,则a 4= ,依此类推a 2024= .三、解答题18.指出下列各代数式的意义:(1)2a +3; (2)(a +3)x ; (3)c ab ; (4)x x−y 19.已知a 是最小的正整数,b 比﹣1大3,c 的相反数还是它本身.(1)求出a 、b 、c 的值;(2)计算(2a +3c )×b 的值.20.如图,有一块长和宽分别为10和6的长方形纸片,将它的四角截去四个边长为a(0<a<3)的小正方形,然后将它折成一个无盖的长方体纸盒,解答下列问题:(1)求这个无盖长方体纸盒的表面积(用含a的代数式表示).(2)求这个无盖长方体纸盒的容积(用含a的代数式表示并化简).并求出当a=3时,此时纸2盒的容积.21.已知代数式ax2−x+1,请按照下列要求分别求值:(1)当a=2,x=1时,求代数式的值;(2)当a=1,5+x−x2=3时,求代数式的值;(3)当x=2023时,代数式ax2−x+1的值是m,则当x=−2023时,求ax2−x+1的值(结果用m表示).22.春暖花开,新学期伊始,某中学为了给学生提供充足的体育运动器材,准备购买一批某品牌的足球和跳绳,足球每个定价为150元,跳绳每条定价为25元.该品牌通过线下实体店和网店两种方式进行销售,线下实体店的销售方案为:买一个足球送一条跳绳;网店的销售方案为:足球和跳绳都按定价打九折.(1)如果购买足球60个,跳绳a条(a>60),若在实体店购买,共需付款元;若在网店购买,共需付款元(用含a的代数式表示).(2)如果购买足球60个,跳绳120条,通过计算说明怎样购买最合算.参考答案:1.D2.D3.A4.C5.B6.C7.B8.D9.2a2-b310.8a11.−202112.a+4213.(2a−b)2914.3n+115.6个边长为a的正方形的面积和(答案不唯一) 16.29 5n−117.−133 418.(1)a的2倍与3的和;(2)a与3的和的x倍;(3)c与a,b的积的商;(4)x 与x,y两数的差的商19.(1)a、b、c的值分别为1,2,0;(2)4.20.(1)60−4a2(2)4a3−32a2+60a,31.521.(1)2(2)3(3)m+404622.(1)(25a+7500),(22.5a+8100)(2)在实体店购买足球60个,送跳绳60条,在网店购买跳绳60条,购买方式最合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。
(2)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况分别根据图表的收费标准列出代数式并计算即可得解。
3.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
(4)解:一次性购物能更省钱。
【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.4.已知:a、b、c满足a=-b,|a+1|+(c-4)2=0,请回答问题:(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,P为数轴上一动点,其对应的数为x,若点P 在线段BC上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);(3)若点P从A点出发,以每秒2个单位长度的速度向右运动,试探究当点P运动多少秒时,PC=3PB?【答案】(1)解:因为,所以a+1=0,c-4=0,即a=-1,c=4. 因为a=-b,a=-1,所以b=-a=-(-1)=1. 综上所述,a=-1,b=1,c=4(2)解:因为点P在线段BC上,b=1,c=4,所以 . 因为,所以x+1>0,, . 0时,;当时,;当时, . 因此,当点P在线段BC上(即 )时,== = .(3)解:设点P的运动时间为t秒. 因为点P从A点出发,以每秒2个单位长度的速度向右运动,所以AP=2t. 因为点A对应的数为-1,点C对应的数为4,所以AC=4-(-1)=5. PB. 故点P不可能在点C的右侧. 因此,PC=AC-AP. 因为AP=2t,AC=5,所以PC=AC-AP=5-2t. 分析本小题的题意,点P与点B的位置关系没有明确的限制,故本小题应该对以下两种情况分别进行求解. ①点P在点B的左侧,如下图. 因为点A对应的数为-1,点B对应的数为1,所以AB=1-(-1)=2. 因为AP=2t,AB=2,所以PB=AB-AP=2-2t. 因为PC=3PB,PC=5-2t,PB=2-2t,所以5-2t=3(2-2t). 解这个关于t的一元一次方程,得. ②点P在点B的右侧,如下图.因为AP=2t,AB=2,所以PB=AP-AB=2t-2. 因为PC=3PB,PC=5-2t,PB=2t-2,所以5-2t=3(2t-2). 解这个关于t的一元一次方程,得 .综上所述,当点P运动或秒时,PC=3PB.【解析】【分析】(1)因|a+1|0;(c-4)20,所以由题意得a+1=0,c-4=0,即a=-1,c=4,所以b=1.(2)结合(1),由题意得,所以原式去绝对值化简得原式=x+1-(x-1)+2(4-x)=-2x+10.(3)结合(1),由题意得AP=2t,PC=5-2t;然后分情况讨论P在B点左右两侧两种情况。
5.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.(1)试用含的代数式填空:①涨价后,每个台灯的销售价为________元;②涨价后,商场的台灯平均每月的销售量为________台;③涨价后,商场每月销售台灯所获得总利润为________元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【答案】(1);;(2)解:甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元);②涨价后,商场的台灯平均每月的销售量为800-10a(元);③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ).【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.6.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为________(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是________.【答案】(1)3;3;4(2);1或-3(3)-1;5【解析】【解答】解:(1)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3.(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,,∴x+1≥0,x-2≤0,x+3≥0,∴-1≤x≤2.即当x取=-1时为最小值,此时代数式值为5【分析】(1)数轴上表示2和5的两点之间的距离是|2-5|,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|;数轴上表示1和-3的两点之间的距离是|1-(-3)|;(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,求出x的值;(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,得到-1≤x≤2;求出代数式的值.7.某家具厂生产一种课桌和椅子,课桌每张定价180元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子方案二:课桌和椅」都按定价的80%付款某校计划添置100张课桌和把椅子,(1)若,请计算哪种方案划算;(2)若,请用含的代数式分别把两种方案的费用表示出来(3)若,乔亚萍认为用方案一购买省钱,小兰认为用方案二购买省钱,如果两种方案可以同时使用,你能帮助学校设讣·种比乔亚萍和小兰的方案都更省钱的方案吗?若能,请你写出方案,若不能,请说明理由.【答案】(1)解:当x=100时方案一:100×180=18000;方案二:(100×180+100×80)×80%=20800;18000<20800∴方案一划算;(2)解:当x>100时方案一:100×180+80(x-100)=80x+10000;方案二:(100×180+80x)×80%=64x+14400;(3)解:当x=320时按方案一购买:80×320+10000=35600按方案二购买:64×320+14400=3488035600>34880∴方案二更省钱.【解析】【分析】(1)根据两种方案的优惠方式,分别列式计算,再比较大小即可作出判断。