复旦大学2017~2018学年《高等数学C下》第二学期期末考试试卷及答案

合集下载

高数下期末考试试卷及答案

高数下期末考试试卷及答案

⋯⋯⋯⋯⋯2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共 3 页;2、考试时间110 分钟;3、姓名、学号必须写在指定地方7.设级数a a 0 (n )为交错级数,,则(). nnn 1(A) 该级数收敛(B)该级数发散(C)该级数可能收敛也可能发散(D)该级数绝对收敛8. 下列四个命题中,正确的命题是().(A)若级数 a 发散,则级数n2a 也发散n名姓⋯⋯⋯⋯⋯题号一二三四总分得分(B)若级数(C)若级数nn112a发散,则级数n2a收敛,则级数nnn11a也发散na 也收敛nn 1 n 1⋯⋯.阅卷人得分一、单项选择题(8 个小题,每小题 2 分,共16 分)将每题的正确答案的(D)若级数|a n |收敛,则级数n 1n 12a 也收敛n号学⋯⋯⋯代号A B C D、、或填入下表中.题号 1 2 3 4 5 6 7 8 阅卷人得分⋯线答案二、填空题(7 个小题,每小题 2分,共14 分) .号序封密1.已知a与b都是非零向量,且满足a b a b,则必有().(A) a b0(B) a b0(C) a b0 (D) a b03x 4y 2z 61. 直线x 3y z a 0与z 轴相交,则常数 a为.号班学教12 2lim( xy )sinx 0y 0过2.极限( ).y2.设( , ) ln( ),f x y x x则f2 2D : x y 2x ,二重积分(x y)d= .(1,0)___________.y2 2x y超(A) 0 (B) 1 (C) 2 (D)不存在3.函数 f (x, y) x y 在(3, 4) 处沿增加最快的方向的方向导数为.要3.下列函数中,df f 的是( ).(A)f ( x, y) xy (B)f (x, y) x y c0,c0为实数不4.设纸卷试题答2 2 x y(C)f (x, y) x y (D)f ( x, y) e4.函数 f (x, y) xy (3 x y) ,原点(0,0) 是f (x, y) 的( ).(A)驻点与极值点(B)驻点,非极值点5.设f x 是连续函数,D2 2{( x, y ,z) | 0 z 9 xy } ,2 2f (x y )dv在柱面坐标系下学大峡三⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯(C)极值点,非驻点(D)非驻点,非极值点5 .设平面区域x y2 2D : (x 1) (y1) 2 ,若I1d ,4Dx yI d ,24Dx yI3 d ,则有().34D(A)I I I (B)I1 I 2 I3 (C)I 2 I1 I3 (D)I 3I1 I 21 2 32 y2x2 26.设椭圆L :1的周长为l ,则(3x 4y )ds ().4 3L(A) l (B) 3l (C) 4l (D) 12l的三次积分为.6. 幂级数n 1n( 1)1nxn!的收敛域是.1 , xf ( x)7. 将函数 21 x , 0 x以2 为周期延拓后,其傅里叶级数在点x 处收敛于.2017 年《高等数学Ⅰ(二)》课程期末考试试卷 A 共3 页第1页⋯阅卷人得分4.设是由曲面z xy, y x, x 1及z 0 所围成的空间闭区域,求2 3d d dI xy z x y z .名姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x1.设u xf (x, )y解:三、综合解答题一( 5 个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤),其中 f 有连续的一阶偏导数,求ux,uy.解:.⋯号学⋯⋯⋯线封z z xy 在点(2,1,0) 处的切平面方程及法线方程.2.求曲面 e 3解:号序密过5.求幂级数nx n 1 的和函数S(x) ,并求级数n 1 nn 的和.n1 2解:超号班学要教不纸卷试题答3. 交换积分次序,并计算二次积分解:sin ydxdyxy.学大峡三⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯2017 年《高等数学Ⅰ(二)》课程期末考试试卷 A 共3 页第2页阅卷人得分四、综合解答题二( 5 个小题,每小题7分,共35分,解答题应写出文字⋯⋯⋯⋯⋯⋯说明、证明过程或演算步骤)1. 从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解4.计算xdS,为平面x y z 1在第一卦限部分.解:名姓⋯⋯⋯⋯⋯⋯.⋯号学⋯⋯⋯线2.计算积分L2 2( )dx y s,其中L 为圆周2 2x y ax ( a0).号序封密解:蝌,5.利用高斯公式计算对坐标的曲面积分dxdy + dydz + dzdxS2 2 2其中为圆锥面z x y z 0 z 1介于平面及之间的部分的下侧.解:过超号班学要教不纸卷试题答3.利用格林公式,计算曲线积分I (x y )dx (x 2xy)dy ,其中L 是由抛物线y x2 和2 2Lx y2 所围成的区域D的正向边界曲线.学大峡三⋯⋯.⋯y2y x2 x y⋯D⋯⋯O x⋯⋯⋯⋯2017 年《高等数学Ⅰ(二)》课程期末考试试卷 A 共3 页第 3 页2017 学年春季学期(B )若级数2a 发散,则级数na 也发散;n《高等数学Ⅰ(二) 》期末考试试卷(A)答案及评分标准(C )若级数n n 1 12 a 收敛,则级数 nn n 11a 也收敛;n(D )若级数|a n |收敛,则级数2a 也收敛.nn 1n 1一、单项选择题( 8 个小题,每小题 2 分,共 16 分)题号1 2 3 4 5 6 7 8答案D A B B A D C D二、填空题 (7 个小题,每小题 2 分,共 14 分) .3x 4y 2z 6 0 x 3y z a 01. 直线与 z 轴相交,则常数 a 为 3 。

(完整word版)高等数学下册试卷及答案

(完整word版)高等数学下册试卷及答案

高等数学(下册)考试试卷(一)、填空题(每小题 3分,共计24分)1、 z=<log a (x 2 y 2)(a 0)的定义域为 D = 重积分ln(x 2 y 2 )dxdy 的符号为|x| |y| 1皿八 皿…、…, x (t )4、设曲线L 的参数方程表示为y (t )5、设曲面习2-入一y 9介于z(x 2的和为n 1n(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y )在(x 0,y 0)处可微的充分条件是(f (x, y)在(X o ,y o )处连续;3、由曲线 y ln x 及直线x y e 1,1所围图形的面积用二重积分表示6、微分方程 dy dxy taM 的通解为 x x7、方程y(4)4y0的通解为(C) z f x (x 0,y °) x f y (x 0,y °) y 当 v( x)2 ( y)2 。

时,是无穷小;(D) 12、设uz f x (x 0,y °) hmy 0(x)2yf(-) xf(Y),其中x f y (x 0,y 。

)y (y )2f 具有一阶连续导数,0。

2mU则x22y —U 等于((A)xy x y; (B) x;(C) y ;x (D)0 。

y3、设 :2x22y z 1, z0,则三重积分IzdV 等于( )f x (x ,y ) , f y (x, y )在(X 0, y o )的某邻域内存在;2、x ),则弧长元素ds分的外侧,则1)ds (B)(A) 4o 2do 2d1r 3sin cos dr ;(A)方程xy 2y x 2y 0是三阶微分方程;(B)方程y — x — ysin x 是一阶微分方程;dx dx(C) 方程(x 2 2xy 3)dx (y 2 3x 2y 2)dy 。

是全微分方程; (D)方程 曳 1x 宣是伯努利方程。

dx 2 x7、已知曲线y y(x)经过原点,且在原点处的切线与直线 2x y 6 0平行,而y(x)(B)典 °d ;「2sin dr ;2 (C) d1 3 .r sincos dr ; (D)1 3.r sincos dr 。

复旦大学数学科学学院 2017 2018 学年第二学期期末考试试卷

复旦大学数学科学学院 2017 2018 学年第二学期期末考试试卷

复旦大学数学科学学院2017~2018学年第二学期期末考试试卷A 卷课程名称:___高等数学C (下) _ ___ 课程代码:_ MATH120006 开课院系:__数学科学学院 __________ 考试形式: 闭卷一、 (本题满分48分,每小题8分)计算下列各题:1、 计算 2(,)lim y x y →.2、 设 sin x x z e y -=,求x xyz z 1,(2,)π''' .姓 名: 学 号: 专 业::我已知悉学校对于考试纪律的严肃规定,将秉持诚实守信宗旨,严守考试纪律,不作弊,不剽窃;若有违反学校考试纪律的行为,自愿接受学校严肃处理。

签名: 年 月 日 )3、 计算二重积分Dx dxdy y ⎰⎰sin(),其中D 是由直线 y x =,y =2和曲线x y =3所围成的闭区域。

4、 判别级数n ∞=⎛+ ⎝∑21ln 1 的敛散性。

5、 设函数()f x ,()g x 满足()()f x g x '=,()2()x g x e f x '=-,且f g (0)0,(0)2==,求()f x .6、 将信息分别编码为X 和Y 后传递出去,接收站接收时,X 被误收为Y 的概率0.02,而Y 被误收为X 的概率0.01,信息X 与信息Y 传递的频率程度之比为2:1. 若接收站收到的信息是X ,问 (1) 接收站收到的信息是X 的概率是多少?(2) 原发信息也是X 的概率是多少?二、 (6分)设z z x y (,)=是由方程xy z e z e 20--+=所确定的二元函数,求dz .三、 (8分)求两直线21y x z x =⎧⎨=+⎩与 3y x z x =+⎧⎨=⎩之间的最短距离。

四、 (8分)计算22[1]Dx y x y dxdy ++⎰⎰,其中D x y x y x y 22{(,)0,0}=+≤≥≥, 22[1]x y ++表示不超过221x y ++的最大整数。

复旦大学2017~2018学年《高等数学A下》第二学期期末考试试卷及答案

复旦大学2017~2018学年《高等数学A下》第二学期期末考试试卷及答案

复旦大学数学科学学院2017~2018学年第二学期期末考试试卷 A 卷(1) 设)1ln()1(2xy xy z ++=,求x z '。

(2) 解方程222x y x y =-'。

(3) 求椭球面12222=++z y x 上一点,使得在这点的椭球面切平面与42=+-x y x 平行。

(4) 求函数y x y x u 123223--+=的极值。

已知悉学校对于考试纪律的严肃规定,将秉持诚实守信宗旨,严守考试纪律,不作弊,不剽窃;若有违反学校考试纪律的行为,自愿接受学校严肃处理。

签名:年月 日 )(5)计算计算⎰+Lds y x )(,其中曲线L x y x 2:22=+。

(6)计算⎰⎰⎰Ωdxdydz z 2,其中所围和由0322=--=Ωz y x z 。

(7) 求幂级数∑∞=-122)2(2ln n n n x n 的收敛半径与收敛区间。

(8)求球面4222=++z y x 被平面0=++z y x 所截的上半部分在xoy 面上的投影区域的面积。

2.(本题共10分)设x x y ln =是方程0)(2=+'+''y y x p y x 的一个解,(1)求)(x p 的表达式;(2)求解方程x x y y x p y x ln )(2=+'+''。

3.(本题共10分)设v u v u e y e x -+==,,试将方程022='+'+''+''y x yy xx z y z x z y z x 从化为关于自变量v u ,的方程(假设),(y x z z =有连续的二阶偏导数)。

4.(本题共10分)计算⎰⎰∑+++++dxdy xy z dzdx zx y dydz yz x )2()2()2(222,其中∑为曲面221y x z --=的上侧。

5.(本题共10分)计算⎰-++Lx x dy y e xy dx y y e )sin 2()cos (2,其中有向曲线2x y L =是从)0,0(O 到)1,1(A 的一段。

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( ) A.dx dy +B.dx +D.dx(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin)()yLxy x dx x e dy++-⎰,其中L为摆线sin1cosx t ty t=-⎧⎨=-⎩从点(0,0)O到(,2)Aπ的一段弧6、求微分方程xxy y xe'+=满足11xy==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z=与上半球面z=(10)'2、(1)判别级数111(1)3nnnn∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x∈-求幂级数1nnnx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z=的定义域为;(2)已知函数xyz e=,则在(2,1)处的全微分dz=;(3)交换积分次序,ln10(,)e xdx f x y dy⎰⎰=;(4)已知L是抛物线2y x=上点(0,0)O与点(1,1)B之间的一段弧,则=⎰;(5)已知微分方程20y y y'''-+=,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为30x y zx y z++=⎧⎨--=⎩,平面π为10x y z--+=,则L与π的夹角为();A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a-=确定,则zx∂=∂();A.2yzxy z- B. 2yzz xy- C. 2xzxy z- D. 2xyz xy-(3)微分方程256xy y y xe'''-+=的特解y*的形式为y*=();A.2()xax b e+ B.2()xax b xe+ C.2()xax b ce++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为();A222000sin ad d r drππθϕϕ⎰⎰⎰B.22000ad d rdrππθϕ⎰⎰⎰C.2000ad d rdrππθϕ⎰⎰⎰D.22000sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D. 三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin 3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy ∑++⎰⎰,∑为抛物面22z xy =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx = .二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

高等数学下册的期末考试及试卷试题包括答案.docx

高等数学下册的期末考试及试卷试题包括答案.docx

高等数学 A( 下册 ) 期末考试试题大题一二三四五 六七小题12345得分一、填空题:(本题共 5 小题,每小题 4 分,满分 20 分, 把答案直接填在题中横线上 )r rr rrr rrr1、已知向量 a 、 b 满足 a b0 , a2, b2 ,则 a b.2、设 zx ln( xy) ,则3z.x y23、曲面 x 2 y 2z 9 在点 (1, 2, 4) 处的切平面方程为.4、设 f ( x) 是周期为2 的周期函数,它在 [, ) 上的表达式为 f (x) x ,则 f ( x) 的傅里叶级数在 x3 处收敛于,在 x处收敛于.5、设 L 为连接 (1, 0) 与 (0,1) 两点的直线段,则(xy)ds.L※以下各题在答题纸上作答, 答题时必须写出详细的解答过程,并在每张答题纸写上: 姓名、学号、班级.二、解下列各题:5 小题,每小题 7 分,满分 35 分)(本题共 1、求曲线2x 2 3y 2 z 2 91,2)z23x2y2在点 M 0 (1, 处的切线及法平面方程.2、求由曲面 z2x 2 2 y 2 及 z 6 x 2 y 2 所围成的立体体积.3、判定级数( 1)nlnn1 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1n4、设 zf (xy, x) sin y ,其中 f 具有二阶连续偏导数,求z , 2z .yxx y5、计算曲面积分dS ,其中 是球面 x 2y 2z 2 a 2 被平面 zh (0 h a) 截出的顶部.z三、(本题满分 9 分) 抛物面 zx 2 y 2 被平面 x yz 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分 10 分)计算曲线积分( e x siny m dx ( e x cos y mx dy ,L其中 m 为常数, L 为由点 A(a,0) 至原点 O(0,0) 的上半圆周 x 2y 2ax (a 0) .四、(本题满分 10 分)x n 求幂级数的收敛域及和函数.n 13n n五、(本题满分 10 分)计算曲面积分I2x3dydz 2y3dzdx 3(z21)dxdy ,其中为曲面 z 1 x2y 2 ( z0) 的上侧.六、(本题满分 6分)设 f ( x) 为连续函数, f (0) a , F (t )[ z f ( x2y2z2 )]dv ,其中t是由曲面 zx2y2t与 zt2x22所围成的闭区域,求lim F (t)y t 3 .t 0-------------------------------------备注:①考试时间为 2 小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。

高等数学下册期末考试试题及答案

高等数学下册期末考试试题及答案

高等数学A (下册)期末考试试题【A 卷】考试日期:2009年一、A 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅= —4.2、设ln()z x xy =,则32zx y ∂=∂∂ —1/(y *y ) . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 2x+4y+z-14=0 . 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 . 5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ 1.414 .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 解:两边同时对x 求导并移项。

2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 条件收敛4、设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰, 其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z=与z =,求 3()lim t F t t +→. ———--——-———-—-—-——————-—-————--——-—-—备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。

2017-2018高数(C-2)期末试卷(A)

2017-2018高数(C-2)期末试卷(A)

2017-2018学年第二学期本科试卷 课程名称:高等数学(C-2)(期末考试)(A 卷)试题页 第 5 页 (共 6 页)学 院:专业:学号:姓名:―――――――――――――装――――――――――――订――――――――――――线―――――――――――――― 提示:请将答案写在答题纸上,写在试卷页或草稿纸上的无效。

交卷时请将答题纸(第1,2页)和试卷页、草稿纸分开上交。

一、填空题(每小题3分,共15分): 1.将二次积分⎰⎰101d ),(d y x y x f y 化为先对y 后对x 的二次积分为 ; 2.微分方程02)(3=+'-''x y y y x 的阶数为 ; 3.微分方程082=-'-''y y y 的通解为=y ; 4.级数∑∞=---1112)1(n n n 的和=s ; 5.幂级数∑∞=0!n n x n 的收敛半径=R . 二、单项选择题(每小题3分,共15分): 1.设σσd )(,d )(3221⎰⎰⎰⎰+=+=D D y x I y x I ,其中D 是由两条坐标轴及直线1=+y x 所围的平面闭区域,则( ) (A) 21I I ≥ ; (B) 21I I ≤; (C) 21I I = ; (D) 无法比较二者大小. 2.设{})0(),(222>≤+=a a y x y x D ,πσ32d 222=--⎰⎰D y x a ,则=a ( ) (A) 321; (B) 1; (C) 32; (D)2. 3.函数x C y sin -=(其中C 为任意常数)是微分方程x x y sin d d 22=的( ) (A) 通解; (B) 特解; (C)解,但既不是通解,也不是特解; (D)不是解. 4.一阶线性非齐次微分方程)()(x Q y x P y =+'的通解为( ). (A) ]d e )([e d )(d )(C x x Q y x x P x x P +⎰⎰=⎰;年级:2017 专业:经管类专业 课程号:K110100645第 4 页 (共 6 页) (B)]d e )([e d )(d )(C x x Q y x x P x x P +⎰⎰=⎰-;(C)]d e )([e d )(d )(C x x Q y x x P x x P +⎰⎰=⎰-; (D)]d e )([e d )(d )(C x x Q y x x P x x P +⎰⎰=⎰--. 5.若n n n u u u S u +++=≥ 21,0,则数列}{n S 有界是级数∑∞=1n n u收敛的( )(A )充分条件;(B )必要条件;(C )充要条件;(D )既非充分也非必要条件.三、解答题(每小题7分,共21分):1.求⎰⎰+Dy x σd )23(,其中D 是由两条坐标轴及直线2=+y x 所围闭区域;2.把二次积分⎰⎰-+ax ax y y x x 2020222d 1d (0>a )化为极坐标形式,并计算积分值;3.利用极坐标求以xOy 面上的圆域{}1),(22≤+=y x y x D 为底,圆柱面122=+y x 为侧面,抛物面222y x z --=为顶的曲顶柱体的体积.四、解答题(每小题8分,共24分):1.求微分方程y x y -='2e 满足初值条件0)0(=y 的特解;2.求微分方程x x y sin +=''的通解;3.求微分方程x y y y e 2=-'+''的一个特解.五、解答题(每小题6分,共18分):1.判别级数∑∞=1n 3!n n 的收敛性; 2.判别级数∑∞=--1n 11)1(n n 的收敛性,若收敛,是绝对收敛还是条件收敛? 3.求幂级数∑∞=⋅12n n nnx 的收敛域.六、(7分)设微分方程x y y y e γβα=+'+''的一个特解为x x x y e )1(e2++=,试确定常数γβα,,的值.。

第二学期高等数学期末考试试卷及答案3

第二学期高等数学期末考试试卷及答案3

第二学期高等数学期末考试试卷及答案3第二学期高等数学期末考试试卷(B 卷)答案一.填空题(本题满分30分,共有10道小题,每道小题3分),请将合适的答案填在空中.1. 设向量AB 的终点坐标为()7,1,2-B ,它在x 轴、y 轴、z 轴上的投影依次为4、4-和7,则该向量的起点 A 的坐标为___________________________.2. 设a 、b 、c 都是单位向量,且满足0 =++c b a ,则=?+?+?ac c b b a_____________________________. 3. 设()()xy xy z 2cos sin +=,则=??yz_____________________________. 4. 设yx z =,则=yx z2___________________.5. 某工厂的生产函数是),(K L f Q =,已知⑴. 当20,64==K L 时,25000=Q ;(2)当20,64==K L 时,劳力的边际生产率和投资的边际生产率为270='Lf ,350='K f 。

如果工厂计划扩大投入到24,69==K L ,则产量的近似增量为_______________6. 交换积分顺序,有()=??--221,y y ydx y x f dy_____________________________.7. 设级数∑∞=1n nu收敛,且u un n=∑∞=1,则级数()=+∑∞=+11n n n u u __________.8. -p 级数∑∞=11n p n 在p 满足_____________条件下收敛. 9. 微分方程x x y sin +=''的通解为=y ______________________.10. 对于微分方程x e y y y -=+'+''23,利用待定系数法求其特解*y 时,应设其特解=*y ______________________ (只需列出特解形式,不必具体求出系数).答案: 1. ()0,3,2-A ;2. 23-; 3. ()()()xy xy x xy x sin cos 2cos -; 4. ()x y x y ln 11+-; 5. 2750单位; 6.()()----+1111012,,x xdy y x f dxdy y x f dx ;7. 02u u -; 8. 1>p ; 9.213sin 61C x C x x ++-; 10. xAxe y -=*.二.(本题满分8分)求过点()3,2,10-P ,且与两平面12=+z x 和23=-z y 平行的直线方程.解:所求直线l 过点()3,2,10-P ,设其方向向量为s,由于l 平行于平面12=+z x 和23=-z y ,所以其方向向量s 同时垂直于向量{}2,0,11=n 与{}3,1,02-=n .因此,方向向量s可取为,k j i kj i s n s++-=-=?=32310201 .从而所求直线方程为:13221-=-=-+z y x .三.(本题满分8分)设函数??=x y x z F x u k ,,其中k 是常数,函数F 具有连续的一阶偏导数.试求zu z y u y x u x+??+??.解:-??? ??'+??? ??-??? ??'+??? ??=??-22211,,,x y x y xz F x x z x y x z F x x y x zF kx x u kkk ??'-??? ??'-??? ??=---x y xz F yx x y x z F zx x y xz F kxk k k ,,,22121'=???? ??'=??-x y x z F x x x y x z F x y u k k ,1,212'=???? ??'=??-x y xz F x x x y xz F x z u k k ,1,111 所以, zz y u y x u x+??+?? ??'-??? ??'-??? ???=---x y xz F yx x y x z F zx x y xzF kxx k k k ,,,22121'?+??? ??'?+--x y xz F x z x y x z F xy k k ,,1121=x y x z F kx k , 四.(本题满分8分)计算二重积分??≤++=42222y x y xdxdy e I 的值.解:作极坐标变换:θθsin ,cos r y r x ==,则有==≤++220422222rdr e d dxdy eI r y x y x πθ()1212422-=?=e e rππ.五.(本题满分8分)某工厂生产两种型号的机床,其产量分别为x 台和y 台,成本函数为xy y x y x c -+=222),( (万元)若市场调查分析,共需两种机床8台,求如何安排生产,总成本最少?最小成本为多少?解:即求成本函数()y x c ,在条件8=+y x 下的最小值构造辅助函数 ())8(2,22-++-+=y x xy y x y x F λ解方程组=-+='=++-='=+-='080402y x F y x F y x F y x λλλ解得 3,5,7==-=y x λ这唯一的一组解,即为所求,当这两种型号的机床分别生产5台和3台时,总成本最小,最小成本为: 2835325)3,5(22=?-?+=c (万)六.(本题满分10分)⑴. 将()21ln arctan x x x x f +-=展开为x 的幂级数;⑵. 指出该幂级数的收敛域;⑶. 求级数()()∑∞=--1121n nn n 的和.解:⑴. 因为()()∑∞=-=+='22111arctan n nn x x x ()1<="" p="" ,且00arctan=",所以,"> =+∞=∞=+-=-=??? ??-=01200200212111arctan n n nn xnn xn n n x n dt t dt t x()11≤<-x而 ()()∑∞=-=+=+12221211ln 211ln n n nx nx x ()11≤≤-x所以, ()21ln arctan x x x x f +-=()()∑∑∞=∞=+--+-=12012121121n nnn n nx nxn x()()()()∑∑∞=+∞=++--+-=012022121121n n n n n nx n xn ()∑∞=+??+-+-=222211211n n n x n n ()()()∑∞=+++-=02222121n n nx n n ()11≤≤-x⑵. 幂级数()()()∑∞=+++-02222121n n n x n n 的收敛域为[]1,1-.⑶. 令1=x ,则有()()()()∑∑∞=∞=--=--1112212121n n n n n n n n ()()-=+-?==2ln 214211ln 1arctan 12122πf2ln 2-=π.七.(本题满分10分)求微分方程()1ln ln +=+'x x y x y x 的通解.解:该方程为一阶线性微分方程xx y x x y ln 1ln ln 1+=+' 因此,()x x x P ln 1=, ()xx x Q ln 1ln +=.代入一阶线性微分方程的求解公式,有+?+?=?-C dx e x x e y dx x x dx x x ln 1ln 1ln 1ln ??+?+=C x d x x x x ln ln 1ln ln 1 ()()C dx x x ++=1ln ln 1()C x x x+=ln ln 1所以,原方程的通解为 ()xC x C x x x y ln ln ln 1+=+=八.(本题满分10分)讨论级数()∑∞=+-11ln1n nnn 的绝对收敛性与条件收敛性.解:⑴. 因为级数()∑∞=+-11ln 1n nnn 为交错级数,nn u n 1ln+=.由于, ()()0122ln 12ln 1ln 12ln 2221<+++=++=+-++=-+n n nn n n n n n n n u u n n 所以数列{}n u 单调减少而且01 lnlim lim =+=∞→∞→nn u n n n .因此由Leibniz 判别法知,级数()∑∞=+-11ln 1n nnn 收敛.⑵. 讨论级数()∑∑∞=∞=+=+-111ln1ln 1n n nn n n n .其前n 项部分和为∑=+=nk n k k s 11ln ()()()()[]n n ln 1ln 3ln 4ln 2ln 3ln 1ln 2ln -+++-+-+-= ()∞→+=1ln n ()∞→n所以,级数()∑∑∞=∞=+=+-111ln1ln 1n n nn n n n 发散.综上所述知,级数()∑∞=+-11ln 1n nnn 条件收敛.九.(本题满分8分)设函数()u f 具有二阶连续的导函数,而且()y e f z xsin =满足方程z e yzx z x 22222=??+??,试求函数()u f .解:设y e u x sin =,则有()y e u f x z x s i n '=??,()y e u f yz x cos '=?? 所以,()()y e u f y e u f x z xx sin sin 2222'+''=??()()y e u f y e u f xzx x s i n c o s 2222'-''=?? 代入方程 z e yz x z x22222=??+??,得,()()()()z e y e u f y e u f y e u f y e u f x x x x x 22222sin cos sin sin ='-''+'+''即,()()xx e u f e u f 22=''由此得微分方程 ()()0=-''u f u f 解此二阶线性微分方程,得其通解为 ()uueC e C u f -+=21 (1C 与2C 为任意常数)此即为所求函数.。

高数c下学期期末考试试题及答案

高数c下学期期末考试试题及答案

高数c下学期期末考试试题及答案一、选择题(每题5分,共30分)1. 若函数f(x)在点x=a处可导,则以下说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A2. 极限lim(x→0)(sin x/x)的值为:A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^3-6x^2+11x-6的导数为:A. 3x^2-12x+11B. x^3-6x^2+11C. 3x^2-12x+6D. 3x^2-6x+11答案:A4. 定积分∫(0,1)x^2dx的值为:A. 1/3B. 1/2C. 1D. 2答案:B5. 若级数∑(n=1 to ∞)(1/n^2)收敛,则以下级数收敛的是:A. ∑(n=1 to ∞)(1/n)B. ∑(n=1 to ∞)(1/n^3)C. ∑(n=1 to ∞)(1/n^4)D. ∑(n=1 to ∞)(1/n^5)答案:C6. 函数y=e^x的不定积分为:A. e^x + CB. ln(x) + CC. x * e^x + CD. 1/e^x + C答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^2-4x+4的最小值为________。

答案:02. 曲线y=x^3在x=1处的切线斜率为________。

答案:33. 定积分∫(0,2)x dx的值为________。

答案:44. 若函数f(x)=ln(x),则f'(x)=________。

答案:1/x三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x+1在x=2处的导数。

答案:f'(x)=3x^2-3,所以f'(2)=9。

2. 计算定积分∫(1,2)(2x-1)dx。

答案:[(2x^2-x)](1,2) = (2*2^2-2) - (2*1^2-1) = 4。

3. 求级数∑(n=1 to ∞)(1/n^2)的和。

高等数学下期末试题(七套附答案)

高等数学下期末试题(七套附答案)

x1 y 2 z3
x2
1、 求过直线 L1 : 1
0
1 且平行于直线 L 2 : 2
z
z
2、 已知 z f ( xy2 , x2 y) ,求 x , y
D
3、 设
{( x, y) x2
y2
4} ,利用极坐标求
x2dxdy
D
C. (ax b) cex
y1 z 1 1 的平面方程
1 / 22
4、 求函数 f (x, y) e2x ( x y2 2 y) 的极值
1 1x
x0
1 1 ex 1
2
x0
f (x
求0
x 2 及 y2 x 所围图形的面积;
1)dx (6 )
( 2)求所围图形绕 x 轴旋转一周所得的体积。 (6 )
高等数学(下)模拟试卷四
一. 填空题 (每空 3 分,共 15 分)
1 y
1 x2
1、 函数
x
的定义域为
.
e axdx, a 0
2、 0=Fra bibliotek.z
3 .已知 z
e xy ,则
(1,0 )
x

4 .设 L 为 x2
y 2 1 上点 1,0 到
1,0 的上半弧段,则
2ds
L

e
ln x
dx f ( x, y)dy
5 .交换积分顺序 1
0

( 1) n
6 . 级数 n 1 n 是绝对收敛还是条件收敛?

7 .微分方程 y sin x 的通解为

二.选择题 (每空 3 分,共 15 分)
x
2
d 2y
1、已知 y 1 t ,求 dx2

高数下册期末考试题及答案

高数下册期末考试题及答案

高数下册期末考试题及答案一、选择题(每题2分,共10分)1. 函数 \( f(x) = \ln(x^2 + 1) \) 的导数是:A. \( 2x/(x^2 + 1) \)B. \( 2x/x^2 + 1 \)C. \( 2x/(x^2 - 1) \)D. \( 2x/(x^2 + 1)^2 \)答案:A2. 已知 \( e^x \) 的泰勒展开式为 \( 1 + x + x^2/2! + x^3/3! + \cdots \),那么 \( e^{-x} \) 的泰勒展开式是:A. \( 1 - x + x^2/2! - x^3/3! + \cdots \)B. \( 1 + x - x^2/2! + x^3/3! - \cdots \)C. \( 1 - x - x^2/2! + x^3/3! - \cdots \)D. \( 1 + x + x^2/2! - x^3/3! + \cdots \)答案:A3. 若 \( \int_0^1 x^2 dx = \frac{1}{3} \),则 \( \int_0^1 x^3 dx \) 的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{5} \)C. \( \frac{1}{6} \)D. \( \frac{1}{7} \)答案:A4. 曲线 \( y = x^3 - 3x^2 + 2x \) 在 \( x = 2 \) 处的切线斜率是:A. 0B. 1C. 2D. -1答案:B5. 若 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{x} \) 等于:A. 1B. 2C. 4D. 8答案:B二、填空题(每题3分,共15分)6. 若 \( f(x) = x^3 - 2x^2 + x \),则 \( f'(x) = \) ________。

复旦大学高数考试题及答案

复旦大学高数考试题及答案

复旦大学高数考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,在x=0处不可导的是()。

A. y = x^2B. y = |x|C. y = sin(x)D. y = e^x答案:B2. 二次方程x^2 + ax + b = 0有一个根为0,那么b的值是()。

A. 0B. aC. -aD. 1答案:A3. 函数f(x) = 1/x在区间(-∞,0)∪(0,+∞)上是()。

A. 单调递增B. 单调递减C. 有界D. 无界答案:D4. 定积分∫₀^(π/2) sin(x)dx的值是()。

A. 1B. 2C. π/2D. π答案:A5. 微分方程y'' - y' - 6y = 0的特征方程是()。

A. r^2 - r - 6 = 0B. r^2 - r - 6 = rC. r^2 - 6 = 0D. r^2 - r - 6 = r^2答案:A6. 利用洛必达法则求解极限lim (x->0) [sin(x)/x]的正确步骤是()。

A. 直接代入x=0B. 计算分子的导数C. 计算分母的导数D. 计算分子和分母的导数答案:D7. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是()。

A. n > 1B. n ≥ 1C. n = 1D. n < 1答案:C8. 曲线y = x^3在点(1,1)处的切线斜率是()。

A. 0B. 1C. 2D. 3答案:D9. 函数f(x) = ln(x)的泰勒展开式在x=1处的余项是()。

A. R_2(x) = (x-1)^2/2B. R_3(x) = (x-1)^3/3C. R_2(x) = (x-1)^3/3D. R_3(x) = (x-1)^2/2答案:C10. 利用分部积分法计算定积分∫₀^(π/2) x sin(x)dx,得到的结果是()。

A. π/2B. πC. 2D. 1答案:B二、填空题(每题4分,共20分)11. 若函数f(x)在点x=a处的导数为3,则lim (x->a) [f(x) -f(a)]/(x-a) = ____。

复旦大学《高等数学C(下)》2017-2018学年第二学期期末试卷A卷

复旦大学《高等数学C(下)》2017-2018学年第二学期期末试卷A卷

复旦大学数学科学学院2017~2018学年第二学期期末考试试卷A 卷课程名称:___高等数学C (下) _ ___ 课程代码:_ MATH120006开课院系:__数学科学学院__________ 考试形式:闭卷题号 1 2 3 4 5 6 7 总分得分一、(本题满分48分,每小题8分)计算下列各题:1、计算2(,)(0,0)sin()(1)lim 11y x y xy x e xy . 2、设sin x x z e y ,求x xy z z 1,(2,). 姓名:学号:专业::我已知悉学校对于考试纪律的严肃规定,将秉持诚实守信宗旨,严守考试纪律,不作弊,不剽窃;若有违反学校考试纪律的行为,自愿接受学校严肃处理。

签名:年月日)3、计算二重积分D x dxdy ysin(),其中D 是由直线y x ,y 2和曲线x y 3所围成的闭区域。

4、判别级数n n n n211ln 1的敛散性。

5、设函数()f x ,()g x 满足()()f x g x ,()2()x g x e f x ,且f g (0)0,(0)2,求()f x .6、将信息分别编码为X 和Y 后传递出去,接收站接收时,X 被误收为Y 的概率0.02,而Y 被误收为X 的概率0.01,信息X 与信息Y 传递的频率程度之比为2:1. 若接收站收到的信息是X ,问(1) 接收站收到的信息是X 的概率是多少?(2) 原发信息也是X 的概率是多少?二、(6分)设z z x y (,)是由方程xy z e z e 20所确定的二元函数,求dz .三、(8分)求两直线21y xz x 与3y x z x 之间的最短距离。

四、(8分)计算22[1]Dx y x y dxdy ,其中D x y x y x y22{(,)2,0,0},22[1]x y 表示不超过221x y 的最大整数。

五、(10分)设函数1()arctan1xf xx,(1)将()f x展开成x的幂级数,并求收敛域;(2) 利用展开式求(101)(0)f.六、(10分)已知()n f x 满足1()()n x n n f x f x x e (n 为正整数),且(1)n e f n ,求函数项级数n n f x 1()的和。

复旦大学《高等数学(II)》试题

复旦大学《高等数学(II)》试题

向为逆时针方向。
5
6. (本题满分 8 分)计算曲面积分 ( xz 2 sin y)dydz ( x 2 y z )dzdx y 2 zdxdy ,其
ห้องสมุดไป่ตู้
中 为上半球面 x 2 y 2 z 2 4 ( z 0 )的上侧。
7. (本题满分 8 分)求级数
( 1) n (n 2 n 1) 的和。 2n n 0
D
1
(3)求椭圆抛物面 z 1
x2 y2 ( a , b 0 )与平面 z 0 所围立体的体积。 a2 b2
x cos t t sin t , (4)计算曲线积分 ( x 2 y 2 )ds ,其中 L 是曲线 ( 0 t 2 ) 。 y sin t t cos t L
y2 1 上的最大值和最小值。 求 f 在椭圆域 D ( x, y ) | x 2 4
1 2 2 2 x 2 y z 1 0, x y z , 3. (本题满分 8 分)求过直线 L : 且与曲线 C : 2 x y 2z 3 0 x y 2z 4
复旦大学数学科学学院 2010~2011 学年第二学期期末考试试卷 A卷
数学科学学院
( 装 订 线 内 不 要 答 题 )
1.(本题满分 42 分,每小题 7 分)计算下列各题: y z (1)设方程 z x arctan 确定隐函数 z z ( x, y) ,求 。 zx x
(2)计算二重积分 x 2 y 2 dxdy ,其中 D 是圆 x 2 y 2 2 y 所围的有界闭区域。
7

6
2 dy x y 2 , 8. (本题满分 10 分)设 y n ( x) 是定解问题 dx 。 n 的解( n 1, 2, ) y ( 0) 0

高数下期末考试题及答案

高数下期末考试题及答案

高数下期末考试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3在区间[0, 6]上的值域是:A. [2, 9]B. [3, 9]C. [1, 9]D. [2, 12]答案:C2. 若f(x)=3x^2+2x-5,求f(-1)的值:A. -12B. -8C. -4D. -2答案:A3. 曲线y=x^3-6x^2+9x在点(1, 4)处的切线斜率是:A. 0B. 1C. 2D. 3答案:D4. 根据定积分的性质,∫[0, 1] x dx等于:A. 0B. 1/2C. 1D. 2答案:B5. 若函数f(x)在区间[a, b]上连续,且∫[a, b] f(x) dx = 5,那么∫[a, b] 2f(x) dx等于:A. 10B. 5C. 2D. 1答案:A6. 函数y=sin(x)在区间[0, π]上的原函数是:A. -cos(x) + CB. cos(x) + CC. sin(x) + CD. 2sin(x) + C答案:A7. 若∫[0, 1] f(x) dx = 3,且f(x) = 6x - 2,求∫[0, 1] x(6x -2) dx的值:A. 7B. 8C. 9D. 10答案:C8. 曲线y=x^2与直线y=4x在点(2, 4)处的切线相同,求该点处的切线方程:A. y = 4x - 4B. y = 8x - 12C. y = 4xD. y = x^2答案:A9. 若f(x)=x^3-3x^2+2x,求f'(x)的值:A. 3x^2-6x+2B. x^2-6x+2C. 3x^2-9xD. x^3-3x答案:A10. 若f(x)=e^x,求f'(x)的值:A. e^xB. x*e^xC. e^-xD. 1答案:A二、填空题(每题2分,共20分)11. 若f(x)=x^2-4x+3,则f'(x)=________。

答案:2x-412. 曲线y=x^3-2x^2+x在x=1处的导数为________。

【经典试卷】2017-2018学年度高中数学期末质量检测选修2.doc4

【经典试卷】2017-2018学年度高中数学期末质量检测选修2.doc4

【经典试卷】2017-2018学年第二学期期末考试高二数学试题(理科)一、填空题:1.5)121(+x 的二项展开式中x 3的系数为____▲_____.2.已知{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是___▲___. 3.已知幂函数αkx x f =)(的图象过点)22,21(,则=+αk ____▲_____. 4.有5件不同的产品排成一排,其中A 、B 两件产品排在一起的不同排法有___▲___种.5.三个数60.7,0.76,log 0.76中,最大的数是____▲_____. 6.已知x xf x f 3)1(2)(=+,则=)2(f ____▲_____. 7.定义)(21),(b a b a b a F -++=,若2)(,)(2+-==x x g x x f ,则 ))(),((x g x f F 的最小值为____▲_____. 8.已知,0>x 则xx y 22+=的最小值为____▲_____. 9.方程012=+-mx x 的两根为βα,,且1,12αβ<<<,则实数m 的取值范围是 ____▲_____.10.已知)(x f 12-=x的定义域为],[b a ,值域为]21,0[,则a b -的最大值为___▲___.11.已知}0log {2=+∈x x x a ,则)32(log )(2--=x x x f a 的增区间为____▲_____. 12.已知函数)(x f xx+=1,若0)1()s i n (>-+m f m f θ对]2,0[πθ∈恒成立,则实数m的取值范围是____▲_____.13.已知映射B ,A f →:,,R B R A ==+xx y x f 1ln +=→:,若,B k ∈且k 在A 中没有原象,则k 的取值范围是____▲_____.14.函数)(x f b a x x -++=2的图象上存在点))(,(11x f x P 对任意]3,1[-∈a 都不在x轴的上方,则b 的最小值为____▲_____.二、解答题:15.已知二阶矩阵A 的属于特征值-1的一个特征向量为13⎡⎤⎢⎥-⎣⎦,属于特征值3的一个特征向量为11⎡⎤⎢⎥⎣⎦,求矩阵A .16.若两条曲线的极坐标方程分别为1=ρ与⎪⎭⎫ ⎝⎛+=3cos 2πθρ,它们相交于B A ,两点,求线段AB 的长.17.设p 为常数,函数)(x f )1(log )1(log 22x p x ++-=为奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复旦大学数学科学学院
2017~2018学年第二学期期末考试试卷
A 卷
课程名称:___高等数学C (下) _ ___ 课程代码:_ MATH120006 开课院系:__数学科学学院 __________ 考试形式: 闭卷
一、 (本题满分48分,每小题8分)计算下列各题:
1、 计算 2
(,)lim y x y →.
2、 设 sin x x z e y -=,求x xy
z z 1
,(2,)π
''' .
姓 名: 学 号: 专 业:
:我已知悉学校对于考试纪律的严肃规定,将秉持诚实守信宗旨,严守考试纪律,不作弊,不剽窃;若有违反学校考试纪律的行为,自愿接受学校严肃处理。

签名: 年 月 日 )
3、 计算二重积分
D
x dxdy y ⎰⎰sin(),其中D 是由直线 y x =,y =2和曲线x y =3
所围成的闭区域。

4、 判
别级数n ∞
=⎛
+ ⎝∑21ln 1 的敛散性。

5、 设函数()f x ,()g x 满足()()f x g x '=,()2()x g x e f x '=-,且
f g (0)0,(0)2==,求()f x .
6、 将信息分别编码为X 和Y 后传递出去,接收站接收时,X 被误收为Y 的概率
0.02,而Y 被误收为X 的概率0.01,信息X 与信息Y 传递的频率程度之比为2:1. 若接收站收到的信息是X ,
问 (1) 接收站收到的信息是X 的概率是多少?(2) 原发信息也是X 的概率是多少?
二、 (6分)设z z x y (,)=是由方程xy z e z e 20--+=所确定的二元函数,求dz .
三、 (8分)求两直线21y x z x =⎧⎨=+⎩与 3
y x z x =+⎧⎨=⎩之间的最短距离。

四、 (8分)计算22[1]D
x y x y dxdy ++⎰⎰,其中
D x y x y x y 22{(,)0,0}=+≤≥≥, 22[1]x y ++表示不超过221x y ++的最大整数。

相关文档
最新文档