理论力学课后答案4

合集下载

理论力学第四章习题答案

理论力学第四章习题答案

理论力学第四章习题答案理论力学第四章习题答案在理论力学的学习过程中,习题是非常重要的一部分。

通过解答习题,我们可以巩固理论知识,加深对概念和原理的理解,并培养解决实际问题的能力。

本文将为大家提供理论力学第四章习题的详细答案,希望能够对大家的学习有所帮助。

1. 一个质点在力F作用下做直线运动,已知力的大小与时间的关系为F = kt,其中k为常数。

求质点的速度与时间的关系。

解答:根据牛顿第二定律F = ma,将力的大小与时间的关系代入,得到ma = kt。

由于质点做直线运动,所以速度的变化率等于加速度,即v = ∫a dt。

将上式代入,得到v = ∫(kt/m) dt = (k/m)∫t dt = (k/m)(t^2/2) + C。

其中C为积分常数。

因此,质点的速度与时间的关系为v = (k/m)(t^2/2) + C。

2. 一个质点在力F作用下做直线运动,已知力的大小与位置的关系为F = -kx,其中k为常数。

求质点的加速度与位置的关系。

解答:根据牛顿第二定律F = ma,将力的大小与位置的关系代入,得到ma = -kx。

由于质点做直线运动,所以加速度的变化率等于速度的变化率,即a =dv/dt。

将上式代入,得到dv/dt = -kx/m。

将变量分离,得到dv = (-kx/m) dt。

对两边同时积分,得到∫dv = ∫(-kx/m) dt。

积分后得到v = (-kx^2/2m) + C1,其中C1为积分常数。

再次对上式积分,得到∫v dx = ∫((-kx^2/2m) + C1) dx。

积分后得到x = (-kx^3/6m) + C1x + C2,其中C2为积分常数。

因此,质点的加速度与位置的关系为a = (-kx/m)。

3. 一个质点在势能函数U(x) = kx^2/2下做直线运动,已知质点的质量为m。

求质点的速度与位置的关系。

解答:根据势能函数U(x) = kx^2/2,可以求得力的大小与位置的关系为F = -dU(x)/dx = -kx。

理论力学第4版习题答案

理论力学第4版习题答案

理论力学第4版习题答案理论力学是物理学中的一门基础课程,它研究物体运动的规律和力的作用关系。

而理论力学第4版习题是帮助学生巩固和应用所学知识的重要工具。

本文将为读者提供一些理论力学第4版习题的答案,以帮助他们更好地理解和掌握这门学科。

1. 题目:一个质量为m的物体以初速度v0沿着水平面上的直线运动,受到一个与速度成正比的阻力F=-kv作用。

求物体的速度随时间的变化关系。

答案:根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。

由于物体只受到阻力和重力两个力的作用,因此有F=mg-kv。

代入牛顿第二定律的公式,得到ma=mg-kv,即m(dv/dt)=mg-kv。

整理后得到mdv/(mg-kv)=dt,两边同时积分得到ln|mg-kv|=-(k/m)t+C,其中C为积分常数。

通过指数函数的性质,可以得到mg-kv=Ae^(-kt/m),其中A为常数。

解出v后,即可得到物体的速度随时间的变化关系。

2. 题目:一个质量为m的物体以初速度v0沿着竖直方向上的直线运动,受到一个与速度平方成正比的阻力F=-kv^2作用。

求物体的速度随时间的变化关系。

答案:同样根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。

由于物体只受到阻力和重力两个力的作用,因此有F=mg-kv^2。

代入牛顿第二定律的公式,得到ma=mg-kv^2,即m(dv/dt)=mg-kv^2。

整理后得到mdv/(mg-kv^2)=dt,两边同时积分得到(1/v0-1/v)=kt/m,其中k为常数。

解出v后,即可得到物体的速度随时间的变化关系。

3. 题目:一个质量为m的物体沿着半径为R的圆周上的轨道做匀速圆周运动。

求物体受到的向心力大小和方向。

答案:根据牛顿第二定律,物体的加速度a等于受到的合力F除以质量m。

在圆周运动中,物体受到的合力只有向心力Fc。

由于物体做匀速圆周运动,所以加速度a的大小为v^2/R,其中v为物体的速度。

将这个加速度代入牛顿第二定律的公式,得到Fc=mv^2/R。

理论力学习题答案

理论力学习题答案

理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。

( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。

( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。

( × ) 力的可传性只适用于刚体,不适用于变形体。

( ∨ ) 两点受力的构件都是二力杆。

( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。

( × ) 力的平行四边形法则只适用于刚体。

( × ) 凡矢量都可以应用平行四边形法则合成。

( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。

( × ) 凡是平衡力系,它的作用效果都等于零。

( × ) 合力总是比分力大。

( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。

( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。

( ∨ )当软绳受两个等值反向的压力时,可以平衡。

( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。

( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。

( ∨ )凡是两端用铰链连接的直杆都是二力杆。

( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。

( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。

对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。

哈尔滨工业大学 第7版 理论力学 第4章 课后习题答案

哈尔滨工业大学 第7版 理论力学 第4章 课后习题答案

解 (1)方法 1,如图 4-6b 所示,由已知得
Fxy = F cos 60° , Fz = F cos 30°
F = F cos 60°cos 30°i − F cos 60°sin 30° j − F sin 60°k = 3 i − 1 Fj − 3 Fk 44 2
41
理论力学(第七版)课后题答案 哈工大.高等教育出版社
A
F
β
MA
C
MB
F
10 N
β M θ − 90° C
MB
(a)
(b)
(c)
图 4-11
解 画出 3 个力偶的力偶矩矢如图 4-11b 所示,由力偶矩矢三角形图 4-11c 可见
MC =
M
2 A
+
M
2 B
=
3 0002 + 4 0002 = 5 000 N ⋅ mm
由图 4-11a、图 4-11b 可得
3 = 250 N 13
FRz = 100 − 200 ×
1 = 10.6 N 5
M x = −300 ×
3 × 0.1 − 200 × 1 × 0.3 = −51.8 N ⋅ m
13
5
M y = −100 × 0.20 + 200 ×
2 × 0.1 = −36.6 N ⋅ m 13
M z = 300 ×
z
F45° F3 F3′ B
F2A
E
F1
C
F5
F6
F F4 45°
D
y
K x
M
(a)
(b)
图 4-9
解 (1) 节点 A 为研究对象,受力及坐标如图 4-9b 所示

理论力学习题及答案(全)

理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

陈世民理论力学简明教程(第二版)课后答案

陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。

在理论力问题的简单处理中,一般只需近似到三阶以内。

二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。

2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。

非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。

解出特解为1λ,2λ。

*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。

理论力学课后习题及答案解析

理论力学课后习题及答案解析

理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。

解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。

习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。

解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。

其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。

(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。

其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。

习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。

理论力学课后习题答案 第4章 运动分析基础

理论力学课后习题答案 第4章  运动分析基础

(b)第4章 运动分析基础4-1 小环A 套在光滑的钢丝圈上运动,钢丝圈半径为R (如图所示)。

已知小环的初速度为v 0,并且在运动过程中小环的速度和加速度成定角θ,且 0 < θ <2π,试确定小环A 的运动规律。

解:Rv a a 2nsin ==θ,θsin 2R v a =θθtan cos d d 2tR v a tv a ===,⎰⎰=t v v t R vv 02d tan 1d 0θ t v R R v t s v 00tan tan d d -==θθ⎰⎰-=t s t t v R R v s 0000d tan tan d θθtv R R R s 0tan tan ln tan -=θθθ4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的 1.⎪⎩⎪⎨⎧-=-=225.1324tt y tt x , 2.⎩⎨⎧==t y t x 2cos 2sin 3解:1.由已知得 3x = 4y (1) ⎩⎨⎧-=-=t y t x3344 t v 55-=⎩⎨⎧-=-=34y x5-=a 为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。

2.由已知,得2arccos 213arcsin y x =化简得轨迹方程:2942x y -=(2)轨迹如图(b ),其v 、a 图像从略。

4-3 点作圆周运动,孤坐标的原点在O 点,顺钟向为孤坐标的正方向,运动方程为221Rt sπ=,式中s 以厘米计,t 以秒计。

轨迹图形和直角坐标的关系如右图所示。

当点第一次到达y 坐标值最大的位置时,求点的加速度在x 和y 轴上的投影。

解:Rt s v π== ,R v a π==t ,222n Rt Rv a π==y 坐标值最大的位置时:R Rt s 2212ππ==,12=∴tR a a x π==t ,R a y 2π-=4-4 滑块A ,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。

理论力学第七版课后习题答案

理论力学第七版课后习题答案

理论力学第七版课后习题答案第一章: 引言习题1-11.问题描述:给定物体的质量m=2kg,加速度a=3m/s^2,求引力F。

2.解答:根据牛顿第二定律F=ma,其中m表示物体的质量,a表示物体的加速度。

代入已知值,可求得F=6N。

习题1-21.问题描述:给定物体的质量m=5kg,引力F=20N,求加速度a。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=4m/s^2。

第二章: 运动的描述习题2-11.问题描述:一个物体以恒定速度v=10m/s匀速直线运动,经过t=5s,求物体的位移。

2.解答:位移等于速度乘以时间,即s=vt。

代入已知值,可得s=50m。

习题2-21.问题描述:一个物体以初始速度v0=5m/s匀加速直线运动,加速度a=2m/s^2,经过t=3s,求物体的位移。

2.解答:由于物体是匀加速直线运动,位移可以通过公式s=v0t+0.5at^2计算。

代入已知值,可得s=(53)+(0.52*3^2)=45m。

第三章: 动力学基础习题3-11.问题描述:一个物体质量为m=4kg,受到的力F=10N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2.5m/s^2。

习题3-21.问题描述:一个物体质量为m=3kg,受到的力F=6N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。

第四章: 动力学基本定理习题4-11.问题描述:一个物体质量为m=8kg,受到的力F=16N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。

习题4-21.问题描述:一个物体质量为m=6kg,受到的力F=12N,求物体的加速度。

2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。

以上是理论力学第七版课后习题的答案。

希望能对你的学习有所帮助!。

理论力学课后习题及答案

理论力学课后习题及答案

应按下列要求进行设计(D )A.地震作用和抗震措施均按8度考虑B.地震作用和抗震措施均按7度考虑C.地震作用按8度确定,抗震措施按7度采用答题(共38分)1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分)震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分)地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。

(2分)震级的大小一般用里氏震级表达(1分)地震烈度是根据地震烈度表,即地震时人的感觉、器物的反应、建筑物破坏和地表现象划分的。

(1分)D.地震作用按7度确定,抗震措施按8度采用4.关于地基土的液化,下列哪句话是错误的(A)A.饱和的砂土比饱和的粉土更不容易液化B.地震持续时间长,即使烈度低,也可能出现液化C.土的相对密度越大,越不容易液化D.地下水位越深,越不容易液化5.考虑内力塑性重分布,可对框架结构的梁端负弯矩进行调幅(B )A.梁端塑性调幅应对水平地震作用产生的负弯矩进行B.梁端塑性调幅应对竖向荷载作用产生的负弯矩进行C.梁端塑性调幅应对内力组合后的负弯矩进行D.梁端塑性调幅应只对竖向恒荷载作用产生的负弯矩进行6.钢筋混凝土丙类建筑房屋的抗震等级应根据那些因素查表确定( B )A.抗震设防烈度、结构类型和房屋层数B.抗震设防烈度、结构类型和房屋高度C.抗震设防烈度、场地类型和房屋层数D.抗震设防烈度、场地类型和房屋高度7.地震系数k与下列何种因素有关( A )A.地震基本烈度B.场地卓越周期一、 C.场地土类1.震源到震中的垂直距离称为震源距(×)2.建筑场地类别主要是根据场地土的等效剪切波速和覆盖厚度来确定的(√)3.地震基本烈度是指一般场地条件下可能遭遇的超越概率为10%的地震烈度值(×)4.结构的刚心就是地震惯性力合力作用点的位置(×)5.设防烈度为8度和9度的高层建筑应考虑竖向地震作用(×)6.受压构件的位移延性将随轴压比的增加而减小C.地震作用按8度确定,抗震措施按7度采用答题(共38分)1、什么是震级什么是地震烈度如何评定震级和烈度的大小(6分)震级是表示地震本身大小的等级,它以地震释放的能量为尺度,根据地震仪记录到的地震波来确定(2分)地震烈度是指某地区地面和各类建筑物遭受一次地震影响的强弱程度,它是按地震造成的后果分类的。

《理论力学》课后习题解答(赫桐生版)

《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

哈尔滨工业大学理论力学课后习题答案

哈尔滨工业大学理论力学课后习题答案

----------------------------------------理论力学(第七版)课后题答案哈工大 . 高等教育出版社--------------------------------第 1章静力学公理和物体的受力分析1-1 画出下列各图中物体 A ,ABC 或构件 AB ,AC 的受力图。

未画重力的各物体的自重不计,所有接触处均为光滑接触。

FN1 APFN 2(a)(a1)FTAPFN(b)(b1)A FN1P BFN 3FN 2(c)(c1)FTBFAyP1AP2F Ax(d) (d1)FA FBFA B (e) (e1)1理论力学(第七版)课后题答案哈工大 . 高等教育出版社qFFAy F BA FAxB(f) (f1)FBC F CF A A(g)(g1)FAy FCCA FAx BP1 P2(h)(h1)BFCF CDFAxAF Ay(i) (i 1)(j)(j1)BF B FCPF AyF AxA(k)(k1) 2理论力学(第七版)课后题答案哈工大 . 高等教育出版社FCA FABCF ACAF ABFACBA PFBA(l) (l1)(l2) (l3) 图1-11-2 画出下列每个标注字符的物体的受力图。

题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。

B F N1C FN 2F N P2(a)(a1)F N1BFN1C F N 2FNP2PP1FAyF Ay1FAxFAxA A(a2)(a3)FN1APBFN31P2FN 2 (b)(b1)F NA B FN3P2PF N F N 21(b2) (b3)3理论力学(第七版)课后题答案哈工大 . 高等教育出版社(c)FTDFN2 BP1F N1(c2)(d)F AyA FAxCD FN2B P2P1FN1(c1)F AyA FAxF TP 2(c3)F AyFBqAF Ax C DBFC(d1)FAy FDyqqF BDB F FDxDy (d3)(e)FC(d2)F AyqFAxA BFCyPC FCx(e1)(f)F AyFAxAF1FAyA FBqBxB FBx FCxC PFByFBy FCy(e2) (e3)CF2 FByFAx FBxB(f1)4理论力学(第七版)课后题答案哈工大 . 高等教育出版社F1FAyAFAyF AxAFCxCFCyF Ax(f2)(g)FTD CFCx(g2)CFCyFAyA FAxF BBDF 1FCxF2F ByFBxB(f3)F BCBP(g1)F CyF TC FCxP(g3)F Cy FB(h)FAyAF BBFAx(h1)AF AxFAyCF2FCx B(h2)(i)FCyFCx CF CyA F EFOyF FOxC DFCx EO B(i1) (i2)5理论力学(第七版)课后题答案 哈工大 . 高等教育出版社A AF AxFF AyF E E C DFOyFBy FB yO FOxFBx F BxB B(i3) (i4)FAyD EFCxA F Ax CC FBy F TH FBy FCy BPBFBxFB x(j )(j1) (j2)FAy F DyFDF T2F T 2 E FAx CF C x EyF Dx F Ex A D FDx E FF T1F Ey F T3ExF Dy F (j3)(j4)(j5)CyEF F B D CEF CxB F CyF(k1)DE(k)FF BFCBFCxE CFCy90FD D DEFAy AyFA FAx A FAx(k2) (k3)6理论力学(第七版)课后题答案哈工大 . 高等教育出版社AF A(l)(l1) F2F D DEFE(l3)或F 1 F B FDy F Dy F 2F DxB D F Dx DC EF ExFC F Ey(l2) ’(l3) ’F AD(m)F ADDE HF B F1FF DBBB DCF C(l2)F1 F2DBA C EFA FC FE(l4)F1F2DBAC E FExF A F C F Ey(l4) ’AFCyFCxCF1B(m1)FADF2AF E FH D FAD(m2) (m3)7理论力学(第七版)课后题答案哈工大 . 高等教育出版社A FN AF kFOyO (n)FN1B D qF BF N 2FN3(n2)BF AA(o)BFN B FOx B(n1)FD FFCFEF GG C E(o1)FB DF BD FA FA F BF CFD C(o2) (o3)图 1-2F ED F F F(o4)E8理论力学(第七版)课后题答案 哈工大 . 高等教育出版社 第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心 A , B 和 C 处受 3 个力作用,如图 2-1a 所示。

理论力学第三版(周衍柏)全部习题答案

理论力学第三版(周衍柏)全部习题答案
由加速度的微分形式我们可知
代入得
对等式两边同时积分
可得 :
( 为常数)
代入初始条件: 时, ,故

又因为
所以
对等式两边同时积分 ,可得:
1.6 解 由题可知质点的位矢速度

沿垂直于位矢速度
又因为 , 即

(取位矢方向 ,垂直位矢方向 )
所以

即 沿位矢方向加速度
垂直位矢方向加速度
对③求导
对④求导
把③④⑦⑧代入⑤⑥式中可得
时, 得 ,故

同理,把⑦代入⑤可以解出
把⑦代入⑤
代入初条件 时, ,得 .所以

1.23证 (a)在1.22题中, 时,则电子运动受力 电子的运动微分方程
①-②-③
对②积分

对④再积分


( 为一常数)
此即为抛物线方程.
当 时
则电子受力
则电子的运动微分方程为
①-②-③
同1.22题的解法,联立①-②解之,得
理论力学第三版周衍柏全部习题答案理论力学第三版周衍柏周衍柏理论力学答案理论力学周衍柏理论力学教程周衍柏理论力学周衍柏pdf理论力学第三版答案理论力学课后习题答案理论力学复习题及答案理论力学习题答案
第一章 质点力学
第一章习题解答
1.1 由题可知示意图如题1.1.1图:
设开始计时的时刻速度为 ,由题可知枪弹作匀减速运动设减速度大小为 .

所以 ,代入 的表达式中可得:
此即为子弹击中斜面的地方和发射点的距离 的最大值
1.21 解 阻力一直与速度方向相反,即阻力与速度方向时刻在变化,但都在轨道上没点切线所在的直线方向上,故用自然坐标比用直角坐标好.

理论力学静力学第四章习题答案

理论力学静力学第四章习题答案

a tan
zC
3.在平衡位置,不破坏约束的前提下,假定杆 AB 逆时针旋转一个微小的角度 ,则质心 C 的虚位移:
a l cos tan 2

zC
4.由虚位移原理
a sin
2

l sin 2
W ( Fi ) 0 有:
a sin
2
W ( Fi ) 0 有:
(1)
FB rB cos 450 M F2 y2 cos 1500 F3 y3 0
各点的虚位移如下:
rB 6 2
代入(1)式整理可得:
y2 9
y3 3
(6 FB M
9 3 F2 3F3 ) 0 2
δθ δ rA δ rD δ rE δ rB δ rC
rA O A , rB O B , rC O1C
rD O1D , rB rC , rD rE
代入可得: rA 30rE 4.由虚位移原理
W ( Fi ) 0 有:
3.在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,如上图所示。 由虚位移原理
W ( Fi ) 0 有:
(2)
M A F 1 y1 F2 y2 F3 y3 M 0
有几何关系可得各点的虚位移如下:
R sin R l cos 杆的质心坐标可表示为: zC sin 2
坐标。由几何关系可知: z A 3.在平衡位置,不破坏约束的前提下,假定杆 AB 顺时针旋转一个微小的角度 ,则质心 C 的虚位移:
zC
4.由虚位移原理

理论力学第三版课后习题答案

理论力学第三版课后习题答案

理论力学第三版课后习题答案【篇一:理论力学教程思考题答案第三版.doc】2r?.。

这表示质点的径向与横向运动在相互影响,它们一起才?2,a??rar??r??r?能完整地描述质点的运动变化情况1.3答:内禀方程中,an是由于速度方向的改变产生的,在空间曲线中,由于a恒位于密切面内,速度v总是沿轨迹的切线方向,而an垂直于v指向曲线凹陷一方,故an总是沿助法线方向。

质点沿空间曲线运动时,ab?0,fb?0z何与牛顿运动定律不矛盾。

因质点除受作用力f,还受到被动的约反作用力r,二者在副法线方向的分量成平衡力fb?rb?0,故ab?0符合牛顿运动率。

有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。

有人也许还会问:某时刻若fb与rb大小不等,ab就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来ab所在的方位,又有了新的副法线,在新的副法线上仍满足fb?rb?0即ab?0。

这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。

1.4答:质点在直线运动中只有a?而无an,质点的匀速曲线运动中只有an而无a?;质点作变速运动时即有at又有an。

1.5而dr即反应位矢r大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,dtdrdr?j而dr?r?i?r??。

在直线运动中,?r只表示r大小的改变。

如在极坐标系中,dtdtdt规定了直线的正方向后,drdrdrdr。

且的正负可表示的指向,二者都可表示质点dtdtdtdt的运动速度;在曲线运动中drdrdrdr?,且也表示不了的指向,二者完全不同。

dtdtdtdtdvdv表示质点运动速度的大小,方向的改变是加速度矢量,而只是质点运动速度大小dtdtdvdvaan,而?a?。

dtdt的改变。

在直线运动中规定了直线的正方向后,二者都可表示质点运动的加速度;在曲线运动中,二者不同,1.6答:不论人是静止投篮还是运动投篮,球对地的方向总应指向篮筐,其速度合成如题1.6v球对人v人对地题1-6图图所示,故人以速度v向球网前进时应向高于篮筐的方向投出。

理论力学习题册答案精品

理论力学习题册答案精品

【关键字】活动、情况、方法、条件、动力、空间、质量、地方、问题、系统、密切、主动、整体、平衡、保持、提升、合力、规律、位置、支撑、作用、结构、水平、速度、关系、分析、简化、倾斜、满足、带动、支持、方向、推动、推进、中心第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

a(球A )b(杆AB)d(杆AB、CD、整体)c(杆AB、CD、整体)f(杆AC、CD、整体)e(杆AC、CB、整体)四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

a(球A、球B、整体)b(杆BC、杆AC、整体)第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体 )e (杆CE 、AH 、整体)f (杆AD 、杆DB 、整体 )g (杆AB 带轮及较A 、整体)h (杆AB 、AC 、AD 、整体 第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = - F ’,所以力偶的合力等于零。

( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

理论力学(金尚年-马永利编著)课后习题答案详解

理论力学(金尚年-马永利编著)课后习题答案详解

高等教育出版社,金尚年,马永利编著理论力学课后习题答案第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.解:设s为质点沿摆线运动时的路程,取=0时,s=0XYF Nmg sinφmgmg cosφφS== 4 a (1)设为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。

该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m 的小球做任一角度0θ的单摆运动运动微分方程为θθθF r r m =+)2( θθsin mg mr = ①给①式两边同时乘以d θ θθθθd g d r sin = 对上式两边关于θ积分得 c g r +=θθcos 212 ② 利用初始条件0θθ=时0=θ 故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ-•=lg 上式可化为dt d lg=⨯-•θθθ0cos cos 2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121 由于上面算的过程只占整个周期的1/4故⎰-==0222sin 2sin 124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin 2cos 0=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin022θ=K 通过进一步计算可得glπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K n n K K1.5zp点yx解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度 g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加 ,R2=R+ ,此时总质量不变,仍为M,此时表面的重力加速度可求:④e өe tөy由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。

哈尔滨工业大学第7版理论力学第4章课后习题答案_图文(精)

哈尔滨工业大学第7版理论力学第4章课后习题答案_图文(精)
−=z F m N 8.513.05
12001.013
3300⋅−=××
−××
−=x M
m N 6.361.013
220020.0100⋅−=××+×−=y M m
N 6.1033.05
22002.013
3300⋅=××
+××=z M主矢N 4262R 2R 2R R =++=x y z F F F F ,N
z B
β
A
C
θ
β
F
1
F
2
F
(a(b
图4-5
解将力F分解为F1,F2,F1垂直于AB而与CE平行,F2平行于AB,如图4-5b所示,这2个分力分别为:
α
sin
1
F
F=,α
cos
2
F
F=
(
(
(
2
1
F
M
F
M
F
M
AB
AB
AB
+
=0
sin
1
+


a

αsin
sin
Fa
=
4-6水平圆盘的半径为r,外缘C处作用有已知力F。力F位于铅垂平面内,且与C处圆盘切线夹角为60°,其他尺寸如图4-6a所示。求力F对x,y,z轴之矩。
350×
×
+
×
×

×
×

×
×
×
=
z
M
m
N
4.
19
mm
N
400
19⋅

=

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章
习题4-1.用图示三脚架ABCD和绞车E从矿井中吊起重30kN的30的重物,△ABC为等边三角形,三脚架的三只脚及绳索DE均与水平面成60o角,不记架重;求当重物被匀速吊起时各叫所受的力。

解:铰链D为研究对象,坐标系如图示,受力分析为一空间汇交力系,O为D在水平面上的投影。

平衡方程为:
习题4-2.重物M放在光滑的斜面上,用沿斜面的绳AM与BM拉住。

已知物重W=1000N,斜面的倾角α=60o,绳与铅垂面的夹角分别为
β=30o和γ=60o。

如物体尺寸忽略不记,求重物对于斜面的压力和两
绳的拉力。

解:重物M为研究对象,坐标系如图示,受力分析为一空间汇交力系,平衡方程为:
习题4-3.起重机装在三轮小车ABC上,机身重G=100kN,重力作用线在平面LMNF之内,至机身轴线MN的距离为;已知AD=DB=1m,CD=,
CM=1m;求当载重P=30kN,起重机的平面LMN平行于AB时,车轮对轨
迹的压力。

解:起重机为研究对象,坐标系如图示,受力为一空间平行力系,平衡方程为:
习题4-4.水平轴上装有两个凸轮,凸轮上分别作用已知P力=800N和未知力F;如轴平衡,求力F和轴承反力。

解:取凸轮与轴为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为:
习题4-5.水平轴上装有两个带轮C和D,轮的半径r
1
=20cm,
r
2=25cm,轮C的胶带是水平的,共拉力T
1
=2t
1
=5000N,轮D的胶带与
铅垂线成角α=30o,其拉力T
2=2t
2
;不计轮、轴的重量,求在平衡情况
下拉力T
2和t
2
的大小及轴承反力。

解:取带轮与轴为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为:
习题4-6.手摇钻由支点B、钻头A和一个弯曲手柄组成,当在B 处施力P并在手柄上加力F后,即可带动钻头绕轴转动而切削(支点
B不动)。

已知力P的垂直分量Pn=50N, F =150N,求材料对钻头的
阻抗作用力及力P在轴x和y方向的分量Px、Py之值。

解:取手摇钻为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为:
习题4-7.匀质长方形板ABCD重G=200N,用球铰链A和蝶形铰链B固定在墙上,并用绳EC维持在水平位置;求绳的拉力和支座的
反力。

解:取ABCD为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为:。

相关文档
最新文档