第五章地理信息系统-空间数据模型分析

合集下载

5地理信息系统的数据模型与空间数据库

5地理信息系统的数据模型与空间数据库
29
关系模型
属性 实体 E1 E2

A1
V11 V12

A2
V21 V22

A3
V31 V32


… …
An
Vn1 Vn2

E3
V13
V23
V33

Em
V1m
V2m
V3m


Vn3
Vnm
30
关系1:边界关系 多边形 边号 (P) Ⅰ Ⅰ Ⅰ Ⅱ Ⅱ Ⅱ 边 号 (E) a b e b c d 边 长 (L) 30 40 30 40 25 28
为“一对一联系”,记为“1:1”。例如省—省会。
一对多联系 如果实体集E1中每个实体与实体集E2中任意个(零 个或多个)实体有联系,而E2中每个实体至多和E1 中一个实体有联系,那么称E1和E2的联系为“一对
多联系”,记为“1:N”。例如省和湖泊。
17
多对多联系 如果实体集E1中每个实体与实体集E2中任意个( 零个或多个)实体有联系,反之亦然,那么称E1 和E2的联系为“多对多联系”,记为“M:N”。 例如地块—弧段。 关系数据库很难表达多对多联系,这时候必需进 行分解。
24
1) 层次模型
层次层次模型所表达的基本联系是一对多的关 系,它把数据按其自然的层次关系组织起来,以反 应数据之间的隶属关系。 层次模型的优点是模型层次分明、结构清晰, 较容易实现。尽管每个记录只有一个双亲,当从子 女查找双亲,只有唯一的结果,但查找比较麻烦, 需要大量的索引文件,而且某种属性值可能要重复 多次,导致数据冗余度增加,当对层次模型进行修 改时,只有当新记录有上属记录时才能插入。删除 一个记录其所有下属记录也同时被删除。

地理信息系统原理-空间数据模型与数据结构

地理信息系统原理-空间数据模型与数据结构

面对象 Class
属性
属性
体 3-Complex
面 2-Complex
线对象 Class
属性
线 1-Complex
点对象 Class
属性
点 0-Complex
三角形 2-simplex
线段 1-simplex
节点 0-simplex
33
空间地物
复杂地物
13 类空间对象
复杂
柱状地物
体状地物
数字立体模型
部分
节点 0-simplex
X,Y,Z
31
三维对象的拓扑数据模型
体状对象
面状对象
线状对象
点状对象
1 BodyID
1 SurfaceID
1
LineID
1 PointID
N
体1
N
4
5

1
6
N
3 4

1
1
2 结点
ElementID
FaceID
EdgeID
NodeID
X
Y
Z
32
三维复杂实体的逻辑模型
体对象 Class
• 模型:
• 时间作为属性(time stamp)
• 序列快照模型( Sequent Snap shots) • 基态修正模型(Base State with Amendments) • 时空复合模型( Space - time Composite) • 时空立方体模型( Space - time Cube)
表示形成三维空间目标表示,其优点是便于显示和数据更新, 不足之 处是空间分析难以进行。 (2)体模型(Volume model)

地理信息系统中的空间数据管理与分析方法

地理信息系统中的空间数据管理与分析方法

地理信息系统中的空间数据管理与分析方法地理信息系统(Geographic Information System,简称GIS)是一种以地理信息为基础,具有数据抽象、空间数据管理、空间分析和空间可视化等功能的计算机辅助系统。

在现代社会中,GIS已经广泛应用于地理领域的研究和应用中,为地理信息的管理和分析提供了强大的工具和技术支持。

而在GIS中,空间数据的管理和分析方法是关键的环节,本文将对地理信息系统中的空间数据管理和分析方法进行探讨。

一、空间数据管理空间数据管理是地理信息系统中的核心要素,它涉及到如何有效地对地理信息进行保存、组织和维护的方法与技术。

常见的空间数据管理方法主要包括数据模型、数据结构和数据存储。

1. 数据模型数据模型是空间数据管理的基础,它定义了描述地理现象和地理实体的方式和规则。

常见的数据模型包括层次模型、关系模型和对象模型。

其中,层次模型以树状结构表示空间对象之间的关系;关系模型以表格形式表示空间对象之间的关系;对象模型以对象的属性和几何信息描述空间对象。

2. 数据结构数据结构是指在空间数据管理中,将地理实体和属性存储在计算机中的组织方式。

常见的数据结构包括邻接列表、拓扑关系和网格结构等。

其中,邻接列表通过记录对象的相邻关系描述空间图形的连接关系;拓扑关系通过表示图形元素的接触或覆盖关系描述地理实体的关系;网格结构是将地理区域划分成规则网格,每个网格单元存储与之相关的空间数据。

3. 数据存储数据存储是指将地理信息以适当的方式存储在计算机系统中。

常用的数据存储方式有矢量数据存储和栅格数据存储。

矢量数据存储以点、线、面等几何图元和属性表的方式存储地理信息;而栅格数据存储则以像元矩阵的方式存储地理信息。

二、空间数据分析空间数据分析是GIS的重要应用之一,它通过对地理信息的处理和加工,提取出地理信息的有用特征和关系,为决策制定和问题解决提供科学依据。

常见的空间数据分析方法主要包括空间查询、空间统计和空间建模等。

地理信息系统原理第五章 空间分析与建模5.2

地理信息系统原理第五章 空间分析与建模5.2
(1)每个区域单元的LISA,是描述该区域单元周围 显著的相似值区域单元之间空间集聚程度的指标;
(2)所有区域单元LISA的总和与全局的空间联系指 标成比例。
星蓝海学习网
LISA包括局部Moran指数(local Moran index) 和局部Geary指数(local Geary index),下面重 点介绍和讨论局部Moran指数。
i
j
星蓝海学习网
✓对统计量的检验与局部Moran指数相似,其检验值为
Z
Gi ) VAR(Gi )
✓显著的正值表示在该区域单元周围,高观测值的区域单元趋 于空间集聚,而显著的负值表示低观测值的区域单元趋于空 间集聚,与Moran指数只能发现相似值(正关联)或非相似性 观测值(负关联)的空间集聚模式相比,具有能够探测出区域 单元属于高值集聚还是低值集聚的空间分布模式。
为什么要用空间统计分析?
✓空间统计分析,其核心就是认识与地理位置相关的数据间的空间 依赖、空间关联或空间自相关,通过空间位置建立数据间的统计 关系。
✓空间统计分析的任务,就是运用有关统计方法,建立空间统计模 型,从凌乱的数据中挖掘空间自相关与空间变异规律。
星蓝海学习网
为什么要用空间统计分析?
空间数据分析与传统统计分析主要有两大差异:
Tobler, W. R. (1970). "A computer movie simulating urban growth in the Detroit region". Economic Geography, 46(2): 234-240.
Waldo Tobler(born in 1930) receiving a plaque for his contributions to geography. On the event of his November 2000 birthday.

第5章 GIS中的数据

第5章 GIS中的数据

第二节 数据的测量尺度
比例数据或间隔数据比较容易转变成次序或命名数据,命名 比例数据或间隔数据比较容易转变成次序或命名数据, 数据则不能被转化成次序、间隔数据或比例数据。 数据则不能被转化成次序、间隔数据或比例数据。
图5-3:各种数据测量尺度以及其制图表现
第三节 空间数据的质量
空间数据是GIS系统的血液,空间数据质量的优劣, 空间数据是GIS系统的血液,空间数据质量的优劣,决定着系统分析质量 GIS系统的血液 以及整个应用的成败。 以及整个应用的成败。 一、数据质量的基本概念 衡量数据质量的标准: 衡量数据质量的标准: 准确性(Accuracy) 1、准确性(Accuracy) 即一个记录值(测量或观察值)与它的真实值之间的接近程度。 即一个记录值(测量或观察值)与它的真实值之间的接近程度。依赖于 测量的类型和比例尺,用误差(Error)来衡量。 测量的类型和比例尺,用误差(Error)来衡量。 一般而言, 一般而言,单个的观察量或测量量的准确性的估价仅仅通过与可获得的 最准确的测量量进行比较。 最准确的测量量进行比较。 精度(Precision) 2、精度(Precision) 即对现象描述的详细程度。如对同样的两点, 即对现象描述的详细程度。如对同样的两点,精度低的数据并不一定准 确度也低。 确度也低。 空间分辨率(Spatial 3、空间分辨率(Spatial Resolution) 分辨率是两个可测量数值之间最小的可辩识的差异。 分辨率是两个可测量数值之间最小的可辩识的差异。空间分辨率可以看 作记录变化的最小距离,通常由最小线的宽度来确定(0.1mm的宽度)。在一 的宽度)。 作记录变化的最小距离,通常由最小线的宽度来确定(0.1mm的宽度)。在一 个图形扫描仪中最细的物理分辨率从理论上讲是由设施的像元之间的分离来 确定的,像素的边长。 确定的,像素的边长。

空间数据模型

空间数据模型

空间数据模型空间数据模型可以分为三种:场模型:用于描述空间中连续分布的现象;要素模型:用于描述各种空间地物;网络模型:可以模拟现实世界中的各种网络;在各种模型中,又介绍了相关的概念,如空间划分,空间关系,以及拓扑关系的形式化描述——9交模型等。

最后讲述了普通的二维数据模型在空间上和时间上的扩展,时间数据模型和三维数据模型。

值得注意的是,本章谈到的场模型和要素模型类同于后面提及的栅格数据和矢量数据,但是前者是概念模型;后者是指其在信息系统中的实现。

1.空间数据模型的基本问题人类生活和生产所在的现实世界是由事物或实体组成的,有着错综复杂的组成结构。

从系统的角度来看,空间事物或实体的运动状态(在特定时空中的性状和态势)和运动方式(运动状态随时空变化而改变的式样和规律)不断发生变化,系统的诸多组成要素(实体)之间又存在着相互作用、相互制约的依存关系,表现为人口、物质、能量、信息、价值的流动和作用,反映出不同的空间现象和问题。

为了控制和调节空间系统的物质流、能量流和人流等,使之转移到期望的状态和方式,实现动态平衡和持续发展,人们开始考虑对其中诸组成要素的空间状态、相互依存关系、变化过程、相互作用规律、反馈原理、调制机理等进行数字模拟和动态分析,这在客观上为地理信息系统提供了良好的应用环境和重要发展动力。

1.1概念地理数据也可以称为空间数据(Spatial Data)。

地理空间是指物质、能量、信息的存在形式在形态、结构过程、功能关系上的分布方式和格局及其在时间上的延续。

地理信息系统中的地理空间分为绝对空间和相对空间两种形式。

绝对空间是具有属性描述的空间位置的集合,它由一系列不同位置的空间坐标值组成;相对空间是具有空间属性特征的实体的集合,由不同实体之间的空间关系构成。

在地理信息系统应用中,空间概念贯穿于整个工作对象、工作过程、工作结果等各个部分。

空间数据就是以不同的方式和来源获得的数据,如地图、各种专题图、图像、统计数据等,这些数据都具有能够确定空间位置的特点。

第五章:GIS数据获取讲解

第五章:GIS数据获取讲解

二、地图扫描数字化
原图预处理及扫描 图像编辑、去除噪音
图像配准、编辑 要素矢量化 编辑、检查
入库
属性数据输入 建立拓朴关系
拼图 切边与接边
坐标转换
二、地图扫描数字化
(1)地图扫描
由于扫描仪扫描幅面一般小于地图幅面,因此大的纸 地图需先分块扫描,然后进行相邻图对接
当显示终端分辨率及内存有限时,拼接后的数字地图 还要裁剪成若干个归一化矩形块
地理信息编码
使数据简化 方便信息分类、校核、汇总、检索 包括:空间数据编码和属性数据编码
编码原则
唯一性 可扩充性 易识别 简单 完整
代码类型
数字 字母 数字和字母组合
§5.2 分类与编码
GIS编码的种类
分类码:标识要 素的类别,如: 污染源类别等
二、地图扫描数字化
(3)要素矢量化
②设置编辑环境及工具
添加已配准的影像图层 添加新建的图层
编辑图层中要素的属性:
属性字段可以在创建图层时, 也可以在ArcMap中添加
字段名称:field name 数据类型:data type 字段宽度:width 精度:decimal precision 在编辑器中,点击“开始编 辑”,并在目标图层中选中要 编辑的图层
b)线要素的编辑
悬挂功能 修改线段的形状(编辑顶点) 分割线要素、公共顶点的编辑 合并线要素 封闭线段
二.数字化仪跟踪数字化 三.扫描数字化 四.摄影测量与遥感数据处理 五.野外调查 六.现有数据资源共享
§5.3 空间数据采集
数字化设备:数字化仪、扫描仪、摄影测量设备

点:范围大,速度快

空间数据结构

空间数据结构
20
2)双重独立编码结构/DIME(Dual Independent Map Encoding)码
9i
1j
10 线号 左多边形
a
I
h
7
f
Ⅲ5
ed
a
2Ⅰ
k
b c d
I I II
6
b
3

c
e
II
f
II
g
0
8 g 4 l 11
h i
0 0
j
0
k
0
l
0
线文件
右多边形
II II II III III III II II II II II II
相同; 拓扑空间数据结构的共同的特点是:点是相互独立的,点连成线, 线构成面;每条线始于起始结点,止于终止结点,并与左右多边形相 邻接。 拓扑空间数据结构主要有: ①索引式 ②双重独立编码结构 ③链状双重独立编码结构等。
1)索引式拓扑空间数据结构
11
15
c 10
12 14
16
A
B
C
D
9
B
d 13
桥梁
空间数据结构是数据逻辑模型与数据文件格式间的桥梁
选择一种数据逻辑模型 对空间数据进行描述
一种数据结构 对该模型进行表达
一种适合记录该结构的 文件格式
一、空间数据结构要描述的内容
数据结构即指数据组织的形式,是适合于计算机存储、管理和处 理的数据逻辑结构。是地理实体的空间排列方式和相互关系的抽象描 述。
② 岛只作为一个单图形,没有建立与外界多边形的联系。 ③ 每个多边形自成体系,缺少多边形的邻域信息和图形
的拓扑关系; ④ 难以检查多边形边界的拓扑关系正确与否,如是否存

地理信息系统中的空间数据分析方法与使用教程

地理信息系统中的空间数据分析方法与使用教程

地理信息系统中的空间数据分析方法与使用教程地理信息系统(Geographic Information System,简称GIS)是一种将地理空间数据与属性数据进行整合、管理、分析和展示的工具。

在GIS中,空间数据分析是一项重要的功能,它可以帮助用户在研究和决策过程中更好地理解和利用地理空间数据。

本文将介绍地理信息系统中常用的空间数据分析方法和使用教程。

一、空间数据分析方法1. 空间查询和空间关联分析:空间查询是GIS中最基础的分析方法之一,可以根据用户设定的条件查询地理空间数据,例如查询某个区域范围内的地块、建筑物或其他地理要素。

空间关联分析则是通过比较两个或多个地理要素之间的空间关系来进行分析,例如判断某个地块是否位于某个行政区域内。

2. 空间插值和空间推测:空间插值技术可以根据已知点的属性值,推断未知点的属性值,从而实现空间数据的补全和预测。

例如,在气象领域中,可以通过插值方法预测某个地区的气温和降雨量。

空间推测则是通过已知要素的空间分布模式来推断其他地理要素的分布模式。

3. 空间统计和空间模型分析:空间统计方法用于分析地理要素之间的空间关系,并进行统计计算。

例如,利用空间统计分析可以研究疾病的空间聚集现象,了解其在不同地理区域的分布特点。

空间模型分析则是利用数学模型来描述和解释地理要素之间的空间关系,例如地理回归模型可以用于分析地理要素之间的因果关系。

4. 空间多目标决策分析:在GIS中,空间多目标决策分析是一种辅助决策的方法,可以根据用户设定的目标和约束条件,通过空间分析方法来评估和比较不同方案的优劣。

例如,在城市规划中,可以利用空间多目标决策分析来评估不同用地方案对城市环境和社会经济的影响。

二、空间数据分析的使用教程1. 数据准备:在进行空间数据分析之前,首先需要准备好所需的地理空间数据,包括矢量数据和栅格数据。

矢量数据包括点、线、面等要素的坐标和属性信息,栅格数据则是由像素组成的网格数据。

地理信息系统中的空间数据处理和分析

地理信息系统中的空间数据处理和分析

地理信息系统中的空间数据处理和分析地理信息系统(GIS)是一种运用计算机技术进行地理空间数据采集、存储、处理、分析、查询、管理和应用的工具。

它能够将空间数据以图形、表格、文字、图像等多种形式进行呈现和分析,为地理学、资源管理、环境保护、城市规划、农业、林业、水利等领域的决策和研究提供了重要的支持。

在GIS中,空间数据处理和分析是核心和关键环节。

它们不仅直接决定着GIS 的应用效果和价值,也涉及到GIS技术的发展和创新。

一、空间数据处理空间数据处理是将采集到的地理空间数据进行预处理、拓扑建模、数据转换、数据完整性检查、错误纠正和优化等一系列操作,以提高数据的精度、准确度、可用性和操作性。

空间数据处理方法包括:数据预处理、拓扑建模、数据转换、空间数据压缩和数据完整性检查等。

1、数据预处理数据预处理是指对采集到的数据进行清理、筛选、格式转换等一系列数据预处理工作。

由于数据来源广泛、数据格式复杂、数据质量不一、数据量大等原因,导致采集到的数据存在很多问题,如重复、缺失、不一致、错误、格式不规范等。

为了保证数据的质量和正确性,需要进行预处理。

2、拓扑建模拓扑是指地图要素之间的空间位置关系,如相邻、重叠、包含等。

拓扑建模就是根据地图要素之间的空间位置关系建立拓扑结构,以便进行空间分析和处理。

拓扑建模的方法主要有节点模型、边界模型和区域模型三种。

3、数据转换数据转换是指将不同格式、不同坐标系、不同精度、不同性质的数据进行转换,以便在同一地图上进行比较和分析。

常见的数据转换方法有坐标转换、投影转换、格式转换等。

4、空间数据压缩空间数据压缩是指将空间数据进行压缩,以减小数据存储空间和提高数据传输效率。

常见的空间数据压缩方法有空间数据压缩算法、压缩尺度选择、压缩误差控制、贪心算法等。

5、数据完整性检查数据完整性检查是指对空间数据进行一系列检查,以保证数据的完整性和正确性。

数据完整性检查中包括了缺失检查、重复性检查、一致性检查、逻辑检查等工作。

《地理信息系统》第五章空间数据处理

《地理信息系统》第五章空间数据处理
在城市发展、气候变化、 人口迁移等领域有广泛应 用,为政策制定和规划提 供决策支持。
05
空间数据处理应用案例
城市规划与设计
城市规划方案评估
通过空间数据处理,对城市规划 方案进行环境影响评估,确保规 划方案符合可持续发展要求。
城市交通规划
利用空间数据处理技术,分析城 市交通流量、路网结构等信息, 优化城市交通布局和道路设计。
异常值处理
识别并处理异常值,如缺失、 异常大或异常小的数据。
格式转换
将不同格式的数据统一转换为 GIS可识别的格式,如 Shapefile、GeoJSON等。
坐标系转换
将数据从一种坐标系转换到另 一种坐标系,以适应不同的地
理环境和应用需求。
数据转换
投影转换
将地理数据从一种投影方式转换为另 一种投影方式,如从地理坐标系转换 为墨卡托投影。
将不同时间点的数据进行融合,以获得时 间序列数据或动态数据。
空间数据融合
特征提取与融合
将不同空间范围或不同分辨率的数据进行 融合,以提高空间数据的覆盖范围和精度 。
从多源数据中提取共同特征并进行融合, 以实现特征匹配和识别。
数据压缩与编码
数据压缩
通过算法减少数据的大小,以节省存储空间 和提高传输效率。
编码参数设置
根据实际情况调整编码参数,以获得最佳的 压缩效果和精度。
编码方式选择
根据数据的性质和应用需求选择合适的编码 方式,如矢量编码、栅格编码等。
解压缩与解码
对压缩后的数据进行解压缩和解码,以恢复 原始数据。
03
空间数据基本处理
地图数字化
地图数字化是将纸质或实物地 图转换为数字格式的过程,便 于计算机处理和地理信息系统

地理信息系统中的数据模型和空间分析算法研究

地理信息系统中的数据模型和空间分析算法研究

地理信息系统中的数据模型和空间分析算法研究一、引言地理信息系统(Geographic Information System,简称GIS)是一种集成地理数据管理、地理数据分析和空间信息可视化等功能于一体的技术系统。

在地理信息系统中,数据模型和空间分析算法是两个重要的组成部分。

本文将分别介绍地理信息系统中的数据模型和空间分析算法的研究进展。

二、地理信息系统中的数据模型1. 传统的地理信息系统数据模型传统的地理信息系统数据模型主要有栅格模型、矢量模型和影像模型。

栅格模型是将地理空间数据离散化为像元网格,适合表达连续型数据;矢量模型则以点、线、面等几何元素来描述地理对象,适合表达几何型数据;影像模型则是利用遥感影像数据来描述地理现象和地物特征。

2. 面向对象的地理信息系统数据模型面向对象的地理信息系统数据模型(Object-Oriented GIS Data Model,简称OOGIS)是基于面向对象技术构建的地理信息系统数据模型,具有良好的扩展性和灵活性。

OOGIS将地理对象抽象为对象类,并通过类与类之间的继承关系和关联关系来描述地理现象和地物特征。

3. 地理语义数据模型地理语义数据模型(Geospatial Semantic Data Model,简称GSDM)是一种在地理信息系统中集成地理语义信息的数据模型,能够更准确地表达地理对象的语义信息。

GSDM通过构建地理本体库、推理机制和查询语言等方式,实现地理语义信息的存储、查询和分析。

三、地理信息系统中的空间分析算法1. 空间距离计算算法空间距离计算算法是地理信息系统中常用的空间分析算法之一,用于计算地理对象之间的距离或接近程度。

常用的空间距离计算算法包括欧氏距离算法、曼哈顿距离算法和最短路径算法等。

2. 空间插值算法空间插值算法是用于通过已知的离散点数据推算未知位置的值的空间分析算法。

常用的空间插值算法包括反距离加权插值算法、克里金插值算法和样条插值算法等。

地理信息系统中常用的空间数据模型有哪些?

地理信息系统中常用的空间数据模型有哪些?

地理信息系统中常⽤的空间数据模型有哪些?之前在百度知道上看到了这个问题——“地理信息系统中常⽤的空间数据模型有哪些?”今天就针对这个问题做了⼀些整理,看看能不能帮到⼤家。

空间数据模型是指利⽤特定的数据结构来表达空间对象的空间位置、空间关系和属性信息;是对空间对象的数据描述。

空间数据模型是地理信息系统的基础,它不仅决定了系统数据管理的有效性,⽽且是系统灵活性的关键。

⽬前,与GIS设计有关的空间数据模型主要有⽮量模型,栅格模型,数字⾼程模型,⾯向对象模型,⽮量和栅格的混合数据模型等。

前⾯四种模型属于定向性模型,在模型设计时只包括与应⽤⽬标有关的实体及其相互关系,⽽混合模型的设计则包括所有能够指出的实体及其相互关系。

就⽬前的应⽤现状⽽⾔,⽮量模型、栅格模型、数字⾼程模型相当成熟(⽬前成熟的商业化GIS主要采⽤这三类模型),⽽其它模型,特别是混合模型则处于⼤⼒发展之中。

⼀、⽮量模型(vector model)⽮量模型是利⽤边界或表⾯来表达空间⽬标对象的⾯或体要素,通过记录⽬标的边界,同时采⽤标识符(Identifier)表达它的属性来描述空间对象实体。

⽮量模型能够⽅便地进⾏⽐例尺变换、投影变换以及图形的输⼊和输出。

⽮量模型处理的空间图形实体是点(point)、线(line)、⾯(area)。

⽮量模型的基本类型起源于“Spaghetti”模型。

在Spaghetti模型中,点⽤空间坐标对表⽰,线由⼀串坐标对表⽰,⾯是由线形成的闭合多边形。

CAD等绘图系统⼤多采⽤Spaghetti模型。

GIS的⽮量数据模型与Spaghetti模型的主要区别是,前者通过拓扑结构数据来描述空间⽬标之间的空间关系,⽽后者则没有。

在⽮量模型中,拓扑关系是进⾏空间分析的关键。

在GIS的拓扑数据模型中,与点、线、⾯相对应的空间图形实体主要有结点(node)、弧段(arc)、多边形(polygon),多边形的边界被分割成⼀系列的弧和结点,结点、弧、多边形间的空间关系在数据结构或属性表中加以定义。

地理信息系统中的空间数据建模与分析

地理信息系统中的空间数据建模与分析

地理信息系统中的空间数据建模与分析地理信息系统(Geographic Information System,简称GIS)是一种以地理位置为基础,用于捕捉、存储、处理、分析和显示与地理相关的数据的计算机工具。

在GIS中,空间数据建模与分析是其中重要的环节,它涉及到对现实世界中的地理要素进行建模,并通过特定的空间分析方法来描述和解释这些要素之间的空间关系。

空间数据建模是将现实世界中的地理要素以适合计算机处理的方式进行抽象和表达的过程。

在GIS中使用的主要空间数据模型有两种:矢量模型和栅格模型。

矢量模型采用点、线、面等几何要素来描述地理现象的空间属性。

点状模型用于表示离散的地理要素,如城市的位置;线状模型用于表示线状地理要素,如道路、河流;面状模型用于表示面状地理要素,如湖泊、森林。

矢量模型可以准确地表示地理要素之间的拓扑关系,但对于连续的地理要素,由于数据量庞大,会导致存储和计算的难度增加。

栅格模型将地理空间划分为规则的网格单元,并使用离散的栅格单元来表示地理要素。

栅格模型的优势在于能够更好地处理连续的地理要素,对于大规模区域的数据处理也比较高效。

但同时,栅格模型也会导致空间分辨率的损失,并且不易处理复杂的拓扑关系。

空间数据分析是GIS中的关键环节,它通过一系列的算法和方法对空间数据进行处理和分析,并从中提取有用的地理信息。

常见的空间数据分析方法包括空间查询、空间统计、空间插值、空间推理等。

空间查询是根据一定的空间关系来询问和检索地理要素。

常见的空间查询包括点查询、线查询、面查询以及范围查询等。

通过空间查询,可以快速定位到需要的地理要素,并获取其属性信息。

空间统计是对空间数据进行统计分析和空间模式识别的过程。

它可以帮助我们理解地理要素之间的空间分布规律和相关性。

常用的空间统计方法包括空间自相关、核密度分析、热点分析等。

空间插值是基于已知的离散地理要素数据来推测未知位置的属性值。

在GIS中,空间插值常用于构建等值线图、制作栅格图等,并用于分析地理现象的分布和变化趋势。

第五章空间查询与空间分析

第五章空间查询与空间分析

2)TIN 法
TIN表示法利用所有采样点取得的离散数据,按照优化组合的原则,把这 些离散点(各三角形的顶点)连接成相互连续的三角面(在连接时,尽可能地 确保每个三角形都是锐角三角形或是三边的长度近似相等--Delaunay)。
因为TIN可根据地形的复杂程度来确定采样点的密度和位置,能充分表示 地形特征点和线,从而减少了地形较平坦地区的数据冗余。
SELECT name FROM Cities WHERE temperature is high
SELECT name FROM Cities WHERE temperature >= 33.75
这种查询方式只能适用于某个专业领域的地理信息系统,而不能作为地理信 息系统中的通用数据库查询语言。
第2节空间数据的统计分析
b) 如不改变格网大小,则无法适用于起伏 程度不同的地区; c) 对于某些特殊计算如视线计算时,格 网的轴线方向被夸大; d) 由于栅格过于粗略,不能精确表示地 形的关键特征,如山峰、洼坑、山脊等;
3、DEM 特点
与传统地形图比较,DEM作为地形表面的一种数字表达形式有如下特点:
1)容易以多种形式显示地形信息。地形数据经过计算机软件处理过后, 产生多种比例尺的地形图、纵横断面图和立体图。而常规地形图一经制 作完成后,比例尺不容易改变或需要人工处理。 2)精度不会损失。常规地图随着时间的推移,图纸将会变形,失掉原有 的精度。而DEM采用数字媒介,因而能保持精度不变。另外,由常规的地 图用人工的方法制作其他种类的地图,精度会受到损失,而由DEM直接输 出,精度可得到控制。 3)容易实现自动化、实时化。常规地图要增加和修改都必须重复相同的 工序,劳动强度大而且周期长,而DEM由于是数字形式的,所以增加和修 改地形信息只需将修改信息直接输入计算机,经软件处理后即可得各种 地形图。

地理信息系统空间数据分析与模型构建

地理信息系统空间数据分析与模型构建

地理信息系统空间数据分析与模型构建地理信息系统(Geographic Information System,简称GIS)是一种用于捕捉、存储、管理、分析和显示地理数据的技术工具。

地理信息系统可以处理来自不同来源的空间数据,并将其转化为有关地理现象和空间关系的可视化信息。

在地理信息系统中,空间数据分析和模型构建是非常重要的任务。

通过对各种地理数据进行分析和建模,可以帮助我们更好地理解和解释地球表面上的变化和特征。

一、空间数据分析空间数据分析是地理信息系统中的核心任务之一,它涉及对地理数据进行处理、转换和分析的过程。

空间数据分析可以帮助我们发现地理现象之间的关联性、趋势和规律。

1. 空间查询空间查询是一种基本的空间数据分析方法,它可以帮助我们从地理数据集中提取出符合某种条件的数据。

通过将空间查询与属性查询相结合,我们可以获得更为精确的查询结果。

2. 空间关系分析空间关系分析是通过对地理现象之间的空间关系进行分析,来探索它们之间的相互作用和联系。

常见的空间关系分析方法包括邻近分析、叠置分析和缓冲区分析等。

3. 空间插值空间插值是将已知的点数据或线数据转换为具有连续性的表面数据的方法。

通过空间插值,我们可以根据有限的样本点数据推断出整个研究区域的数值分布情况,从而更好地理解地理现象的空间变化规律。

二、模型构建在地理信息系统中,模型构建是指利用地理数据进行数学或统计模型的建立和验证,以实现对地理现象的模拟、预测和优化。

1. 空间统计模型空间统计模型是一种基于地理数据的统计方法,通过分析和建模地理现象的空间变异性,可以揭示地理现象的分布规律和影响因素。

常见的空间统计模型有地理加权回归模型、地理随机场模型等。

2. 地形模型地形模型是用于描述地球表面形态和地理特征的数学模型。

地形模型可以通过对高程数据进行分析和建模,生成数字高程模型(Digital Elevation Model,简称DEM),从而实现对地理地形的可视化和分析。

GIS(地理信息系统)空间分析课件

GIS(地理信息系统)空间分析课件

总结词
研究人口分布与经济活动的空间 关联性,分析经济发展对人口分 布的影响,为区域经济发展提供 决策支持。
4. 成果应用
将分析结果应用于区域经济发展 规划、城市规划和人口管理等领 域。
自然灾害风险评估与应急响应案例
1. 数据准备
收集地质、气象、历史灾害等 数据,建立灾害数据库。
3. 应急响应
根据风险评估结果,制定应急 预案和救援措施,优化资源配 置。
叠加分析
将不同图层进行叠加,通过比较 和组合不同图层的属性信息,进 行分类、统计和综合评价。
统计分析
利用统计学原理和方法,对空 间数据进行处理和分析,挖掘 空间数据的内在规律和特征。
03
空间数据查询与可视化
空间数据查询
空间数据检索
01
根据地理坐标、属性信息等条件,快速定位和获取相关空间数
据。
多源数据融合
栅格数据
混合数据
同时包含矢量数据和栅格数据的空间 数据类型,兼具矢量数据和栅格数据 的优点,能够更好地满足复杂空间分 析的需求。
以网格形式表示地理空间,每个网格 单元代表一定地理区域,数据结构简 单,易于处理和分析。
空间分析基本概念
01
02
03
空间关系
指地理实体之间的相对位 置关系、拓扑关系、距离 关系等,是空间分析的基 础。
在空间自相关分析中,需要构建空间权重矩阵,以描述区 域单元之间的空间关系,常用的空间权重矩阵包括邻接矩 阵、距离矩阵等。
空间分布特征分析
空间分布类型
空间分布特征分析用于描述地理现象的空间分布类型,包括集中 型、分散型、均衡型等,以揭示地理现象的空间分布规律。
空间分布指数
通过计算各种空间分布指数,如集中度、分散度、均衡度等,对地 理现象的空间分布特征进行定量描述。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.基于要素的空间分析 4.1空间关系的基本概念
(5)线——面关系 线面相邻:线是面的部分或全部边界; 线面相交:一条线部分或全部穿过一个面 线面相离:线与面相互隔离 线面包含:一条线完全落入一个面里 线面不存在重合关系 6)面—面关系 面面相邻:两个面至少有段共同的边界; 面面相交:一个面与另一个面部分相交 面面相离:两个面完全不相交 面面包含:一面完全被另外一个面包含 面面重合:两个面的边界完全相同
4.基于要素的空间分析 4.1空间关系的基本概念
4.基于要素的空间分析 4.1空间关系的基本概念
(1)点——点关系 相合:两个点坐标重合 分离:两个点不在同一个位置; 点与点不存在邻接、相交和包含关系 (2)点——线关系 点线相邻:一个点恰好落线的端点; 点线相交:点在线上 点线相离:点为在线上 点线包含:等同于点线相交 点线不存在重合
在边数从3到N的规则覆盖(Regular Tesselations)中, 方格、三角形和六角形是空间数据处理中最常用的。三 角形是最基本的不可再分的单元,根据角度和边长的不 同,可以取不同的形状,方格、三角形和六角形可完整 地铺满一个平面 。
1. 场模型 1.2栅格数据模型
三角形
四边形
基于栅格的空间 模型把空间看作 像元(Pixel) 的划分 (Tessellatio n),每个像元 都与分类或者标 识所包含的现象 的一个记录有关。
2. 要素模型 2.1欧氏空间和欧氏空间中的三类地物要素
(一)点对象
点是有特定的位置,维数为零的物体 。
(二)线对象
线对象是GIS中非常常用的维度为1的空间组分,表示对象和它们边界 的空间属性,由一系列坐标表示,并有实体长度和方向性特征。
(三)面对象
面状实体也称为多边形,是对湖泊、岛屿、地块等一类现象的描述。 通常在数据库中由一封闭曲线加内点来表示,并有面积范围、周长等 特征。
(a)
(b)
图3.1:Konigsberg Park中的图形理论模型
3.网络模型 3.2网络要素
在网络模型中,地物被抽象为链、节点等对象。网状 模型的基本特征是,结点数据间没有明确的从属关系, 一个结点可与其它多个结点建立联系。网状模型将数 据组织成有向图结构。结构中结点代表数据记录,连 线描述不同结点数据间的关系。有向图(Digraph)的 形式化定义为: Digraph = (Vertex,{Relation}) 其中Vertex为图中数据元素(顶点)的有限非空集合; Relation是两个顶点(Vertex)之间的关系的集合。
2. 要素模型 2.1欧氏空间和欧氏空间中的三类地物要素
3.网络模型 3.1网络空间
网络拓扑系统研究的创始人被公认为数学家Leonard Euler, 他在1736年解决了当时一个著名的问题,叫做Konigsberg桥 问题。图3.1显示了该桥的一个概略的路线图。该问题就是找 到一个循环的路,该路只穿过其中每个桥一次,最后返回到 起点。一些实验表明这项任务是不可能的,然而,从认为没 有这样的路线到说明它的步骤并不是这样容易的。
物流信息管理
大连海事大学
第五章 地理信息系统
空间数据模型
本章描述的是整个GIS理论中最为核心的内容。为了能够 利用信息系统工具来描述现实世界,并解决其中的问题, 必须对现实世界进行建模。对于地理信息系统而言,其结 果就是空间数据模型。空间数据模型可以分为三种:
场模型(Field):用于描述空间中连续分布的现象; 要素模型(Feature):用于描述各种空间地物; 网络模型(Network):可以模拟现实世界中的各种网络;
六角形
1. 场模型 1.2栅格数据模型
由于像元具有固定的尺寸和位置, 所以栅格趋向于表现在一个“栅 格块”中的自然及人工现象。因 此分类之间的界限被迫采用沿着 栅格像元的边界线。一个栅格图 层中每个像元通常被分为一个单 一的类型。这可能造成对现象的 分布的误解,其程度则取决与所 研究的相关的像元的大小。
1. 场模型
对于模拟具有一定空间内连续分布特点的现象来说,基于场 的观点是合适的。
例如,空气中污染物的集中程度、地表的温度、土壤的湿度 水平以及空气与水的流动速度和方向。根据应用的不同,场 可以表现为二维或三维。一个二维场就是在二维空间中任何 已知的地点上,都有一个表现这一现象的值;而一个三维场 就是在三维空间中对于任何位置来说都有一个值。一些现象, 诸如空气污染物在空间中本质上讲是三维的,但是许多情况 下可以由一个二维场来表示。
4.基于要素的空间分析 4.1空间关系的基本概念
在地理信息系统中集中存储了以下的内容:
➢空间分布位置信息
➢属性信息
➢拓扑空间关系信息。
由此可见,空间位置、关系与度量的描述在GIS中起着举足轻重 的作用。 地理要素之间的空间区位关系可抽象为点、线(或弧)、多边 形(区域)之间的空间几何关系,其关系如下图。 空间关系包含三种基本类型,即拓扑关系、方向关系、度量关 系
4.基于要素的空间分析 4.1空间关系的基本概念
(3)点——面关系 点面相邻:点落在面的边界上; 点面相交:与上述相同; 点面相离:点远离一个面; 点面包含:点落在面内; 点面不存在重合。 (4)线——线关系 线线相邻:两个线有公共结点 线线相交:两条线立体或平面相交; 线线相离:两条线没有交点和汇合点; 线线包含:一条线是另一条线的一部分 线线重合:一条线完全与另一条线重合
1. 场模型 1.1场的特征
(一)空间结构特征和属性域 (二)连续的、可微的、离散的 (三)与方向无关的和与方向有关的(各向同性和各向异 性) (四)空间自相关
1. 场模型 1.2栅格数据模型
栅格数据模型是基于连续覆盖的,它是将连续空间离散 化,即用二维覆盖或划分覆盖整个连续空间。
➢规则覆盖
➢不规则覆盖
点—点
邻接
点—线
点—面
线—线
线—面
面—面
相交
相离
包含
重合
4.基于要素的空间分析 4.2拓朴空间关系分析
拓朴属性 拓扑学是几何学的一个分支,它研究在拓扑变换下能够保 持不变的几何属性——拓扑属性。欧氏平面上实体对象所 具有的拓扑和非拓扑属性 :
相关文档
最新文档