晶体结构与空间点阵

合集下载

固体无机化学-晶体学基础2

固体无机化学-晶体学基础2
ree- four- three-index system four-index system
l) (h k l) l) (h k i l) i = - h+k ) (
[U V W] [u v t w] U = u - t, V = v - t, W = w 1 1 u = [2U - V], v = [2V - U], t = -(u + v), w = W 3 3
(Miller Indices of Crystallographic Direction and Planes) 前已指出,任何阵点的位置可由矢量ruvw和该点阵的坐标u,v,w来确定。 同样晶向OP可沿a,b,c三个方向分解为三个矢量,即 1.阵点坐标 op = xa + yb + zc 2.晶向指数(Orientation index)
宏观对称要素— 宏观对称要素—回转对称轴
二维晶胞的密排图形
宏观对称要素— 宏观对称要素—对称面
1 晶体通过某一平面作 镜像反映而能复原, 则该平面称为对称面 或镜面。 2 对称面用符号 m 表示。
宏观对称要素宏观对称要素-对称中心
1 如果位于晶体中心O点一边 的每点都可在中心的另一边 得到对应的等同点,且每对 点子的连线均通过O点并被 它所等分,则此中心点称为 晶体的对称中心 对称中心。或称为反 对称中心 演中心。即晶体的每一点都 可借以O点为中心的反演动 作而与其对应点重合。 2 对称中心用符号 z 表示。
1 对称要素构成一些动作,即晶体经过这些动作 之后所处的位置与其原始位置完全重合,也就 是晶体上每一点的新旧位置都完全重合。 2 晶体的对称要素可分为宏观和微观两类。宏观 对称要素反映出晶体外形和其宏观性质的对称 性。而微观对称要素与宏观对称要素配合运用 就能反映出晶体中原子排列的对称性。

第2章晶体结构和空间点阵

第2章晶体结构和空间点阵
点阵是一组无限的点,点阵中每个点都具有 完全相同的周围环境。在平移的对称操作下,(连 结点阵中任意两点的矢量,按此矢量平移),所有 点都能复原,满足以上条件的一组点称为点阵。
(a) (b)
(c) (d) 一维周期排列的结构及其点阵(黑点代表点阵点) (a) Cu , (b) 石墨 , (c) Se , (d) NaC l
晶体结构的基本重复单位是晶胞,整个晶体 就是晶胞在三维空间周期地重复排列堆砌而成 的。只要将一个晶胞的结构剖析透彻,整个晶 体结构也就掌握了。
晶胞有两个要素: ⑴ 晶胞的大小和形状,由晶胞参数
a , b , c , α , β , γ 规定; ⑵晶胞内部各个原子的坐标位置,由原子坐标 参数 (x , y , z )规定。
第2章 晶体结构和空间点阵
➢ 内容
✓ 晶体结构的周期性与空间点阵。 ✓ 晶胞、晶列、晶面和晶面指数。 ✓ 倒易点阵 ✓ 晶体的对称性。 ✓ 7个晶系和14种Bravias空间格子。 ✓ 晶体缺陷
➢ 教学目标
通过本章学习,掌握晶体所具有的周期性结构与它的 点阵表示,倒易点阵,了解晶体对称性与空间群。
材料科学与工程
ห้องสมุดไป่ตู้
▪ 体心点阵,I
除8个顶点外,体 心上还有一个阵点, 因此,每个阵胞含 有两个阵点,000, 1/2 1/2 1/2
• 面心点阵。F
除8个顶点外,每 个面心上有一个 阵点,每个阵胞 上有4个阵点,其 坐标分别为000, 1/2 1/2 0, 1/2 0 1/2, 0 1/2 1/2
2. 2 晶体的周期性,晶胞
晶体结构(晶格) = 点阵 + 结构基元
原胞和晶胞
• 原胞(primitive cell):最小的重复单元。 • 晶胞(unit cell):体现所有对称性的最

材料科学基础第二章

材料科学基础第二章


y

[111]
x
[111]

例:画出晶向
[112 ]
2.立方晶系晶面指数
晶面指数的确定方法
(a)建立坐标系,结点为原点, 三棱为方向,点阵常数为单位 (原点在标定面以外,可以采 用平移法); (b)晶面在三个坐标上的截距a1 a2 a3 ; (c)计算其倒数 b1 b2 b3 ; (d)化成最小、整数比h:k:l ; 放在圆方括号(hkl),不加逗号, 负号记在上方 。
3.六方晶系晶面和晶向指数
三指数表示六方晶系晶面和晶向的缺点:晶体学上等价的 晶面和晶向不具有类似的指数。 例:
晶面指数

(11 0)
(100)
[010] [100]
从晶面指数上不能明确表示等同晶面,为了克服这一缺点, 采用a1、a2、a3及c四个晶轴, a1、a2、a3之间的夹角均 为120º ,晶面指数以(hkil)表示。 根据立体几何,在三维空间中独立的坐标轴不会超过三 个可证明 : i= - (h+k) 或 h+k+i=0
六方晶系
d hkl
h k l a b c
2 2 2
d hkl
a h2 k 2 l 2
1 l c
2
4 h 2 hk k 2 3 a2
注:以上公式是针对简单晶胞而言的,如为复杂晶胞, 例如体心、面心,在计算时应考虑晶面层数增加的影 响,如体心立方、面心立方、上下底(001)之间还有 一层同类型晶面,实际
[1 00 ]

[0 1 0]

[010]
[1 00]
y
[100]
x

[00 1]

02-2晶体结构参数

02-2晶体结构参数

对称轴及其垂直该轴切面的示意图
3/16/2014 2:01 PM 27
洛阳师范学院
(4)旋转反伸轴Sn(倒转轴)
● 概念:过晶体中心一假想直线,晶体绕此直线旋转一定 角度,再对对称中心反伸,可使相等部分重复出现。 ● 对称操作是旋转+反演的复合操作。 ● 轴次只有: 1, 2, 3, 4, 6
● 各类倒转轴中,只有 4 次倒转轴是一个独立的基本对称 操作,其他 4 种倒转轴都可以表示为对称中心、对称面、旋 转轴的组合。
3/16/2014 2:01 PM 19
洛阳师范学院
对称性举例说明 (1) 吊扇中的叶片以中心线为对称轴,三个叶片之间可以围 绕这个对称轴每旋转120重复一次。
对称操作:绕对称轴旋转120度 对称要素:旋转轴
(2) 左右手
对称操作:镜子的反映 (注意这是一个虚拟操作) 对称要素:镜子构成的对称面
3/16/2014 2:01 PM 8
洛阳师范学院
例 1: 如图晶面hkl,在X、Y、Z轴上的截距分别为2a、3b
、6c ,截距系数为2、3、6 ,其倒数比1/2:1/3:1/6 ,
化整得3:2:1 ,去掉比号并以小括号括起来,(321)即 为该晶面的所求米勒指数。
晶面符号图解
3/16/2014 2:01 PM 9
洛阳师范学院
例2:
• 晶面A:r、s、t =1、1、1,其倒数为1、1、1,则晶面指数 记为(111); • 晶面B,r、s、t=1、2、,其倒数为1、1/2和0,化为互质 的整数比为2:1:0,则晶面指数记为(210); • 晶面C:晶面过原点(0,0,0),沿y轴平移一个晶格参数 (平移后代表同一晶面)使其在y轴截距为-1,则r、s和t分 别为、-1和,其倒数为0、-1和0,则晶面指数记为 (0 1 0), 其中的负号写在数字上面。

第2章 材料中的晶体结构

第2章 材料中的晶体结构

b. 已知两不平行晶向[u1v1w1]和[u2v2w2 ],由其决定的 晶面指数(hkl)为:
h v1 w 2 v 2 w 1 , k w 1u 2 w 2 u 1, l u 1 v 2 u 2 v1
补充
cos
2
(对于立方晶系)
两个晶面(h1k1l1)与(h2k2l2)之间的夹角φ
h h
1 2

k k
1 2
2

2
ll
1
2 2 2
(h1
k
2 1

l1 )
(h 2
k

l
2 2
)
两个晶向[u1v1w1]与[u2v2w2]之间的夹角θ
cos
2
u u
1
2

vv
1 2
2

w w
1 2
2
(u 1
v
2 1

w1)
(u 2
v
2 2

w
2 2
)
晶面(hkl)与晶向[uvw]之间的夹角ψ
晶向指数用[uvtw] 来表示。其中 t =-(u+v)
120° 120°
晶面指数的标定
1.求晶面与四个轴的截距
2.取倒数
3.再化成简单整数
4.用圆括号括起来(h k i l)
六方系六个侧面的指数分别为:
(1 1 00),(01 1 0),(10 1 0),(1 100),(0 1 10),(1 010)
(210)
(012)
(362)
注意
选坐标原点时,应使其位于待定晶面以外,防止 出现零截距。 已知截距求晶面指数,则指数是唯一的;而已知 晶面指数,画晶面时,这个晶面就不是唯一的。

晶体的微观结构

晶体的微观结构
第二节 晶体的微观结构
晶体的微观结构
晶体的粒子在空间呈现出周期性的无限排列(长程、有序)
(最小)重复单元
重复规则
基元
基矢
格点、空间点阵
初级原胞、惯用原胞
2-1 空间点阵学说
一、导论: 历史上,关于晶体微观结构的学说
十八世纪,阿羽依认为:方解石是由一些坚实的、 相同的、平行六面体的“小基石”有规则地重复堆集而 成的。
的数学表达
a1
3 ai 1 aj 22
a2
3 ai 1 aj 22
a:原子间最小距离,晶格常数
基矢
2. 原胞
原胞---以一个格点为顶点,选取三个独立的方向,以这 三个独立方向上的周期为边长,做一个平行六 面体,以这样一个平行六面体为重复单元来概括 晶体结构,这样的一个平行六面体被称为原胞。
周期性和对称性的原胞称为惯用原胞。
格点也并不都处在原胞的顶角上,还可以处在体 心、面心、底心以及晶胞中的其他位置。
1.既体现晶体的周期性,又体现晶体的对称性; 2.体积是最小体积的整数倍; 3.至少含一个格点。
表示方法:
基矢: a 3ai b aj a:原子间最小距离(单位nm)
a/b / c 表示惯用原胞基矢,称为轴
1
>=1
1
>=1
a1/a2 / a3
a/b / c
Rl l1a1 l2 a2 l3a3 Rn ma nb lc
重复规则 基矢
初级原胞、惯用原胞
方向:最近邻 对称性最高
模量:重复周期
NaCl晶体 c
a 惯用原胞
a2 a3
b a1
初级原胞
基元 空间点阵
a2 a3

(完整版)结构化学 第七章

(完整版)结构化学 第七章

D16 2h

p
21 n
21 m
21 aC 52hP21 c空间群属单斜晶系
7个晶系
14种空间点阵型式 32个点群(宏观对称性) 230个空间群(微观对称性)
§7.4 晶体的X射线衍射
当X射线与原子中束缚较紧的内层电子相撞时,光子把能 量全部转给电子,电子将在其平衡位置发生受迫振动, 不断被加速或被减速,而且振动频度与入射X射线的相同。 这个电子本身又变成了一个新电磁波源,向四周辐射电 磁波,形成X射线波。这些散射波之间符合振动方向相同, 频率相同,位相差恒定的光的干涉条件, 可以发生干涉 作用,故称之为相干散射。
金刚石滑移面(d)与对角线滑移面(n)的滑移方向相同, 只是 滑移量不同而已。
1/2a
++
+
0
1
2
+a +
(b)
轴线滑移面a
5
4
a
3
aa
2

1
(a) 轴线滑移面 a
b
b
(b) 对角滑移面 n (c) 菱形滑移面d
虚线圈表示不存在
虚线圈表示在镜面下方 虚线圈表示在镜面下方
§ 7.2.3 晶胞
1. 晶胞: 晶体结构的基本重复单元称为晶胞
32个点群符号的说明:(见P276 表8.2.4)
SchÖnflies记号 国际记号 简化记号 对应的三个位
C4v
4mm
4mm
c a a+b
D2h
222 m m m 2/mmm a b c
Oh
432
m3m
a a+b+c a+b
mm
在某一方向出现的旋转轴或反轴是指与这一方向平行的旋 转轴或反轴, 而在某一方向出现的镜面则是指与该方向垂 直的镜面, 如果在某一方向同时出现旋转轴或反轴与镜面 时, 国际记号中用分数形式来表示,将n或n 记在分子位置, 将m记在分母位置。

1 空间点阵与晶体结构的异同

1  空间点阵与晶体结构的异同

1 空间点阵与晶体结构的异同空间点阵晶体结构人为的、抽象的几何图形客观的具有具体的物质内容,其基本的单元是结构单元(原子或离子)组成空间点阵的结点是没有物质内容的几何点结构单元与结点在空间排列的周期是一致的,或者说它们具有同样的T矢量;抽象的空间点阵不能脱离具体的晶体结构而单独存在,所以它不是一个无物质基础的纯粹的几何图形。

这种抽象能更深入地反映事物的本质与规律,因此是一个科学的抽象。

空间点阵只是一个几何图形,它不等于晶体内部具体的格子构造,是从实际晶体内部结构中抽象出来的无限的几何图形。

虽然对于实际晶体来说,不论晶体多小,它们所占的空间总是有限的,但在微观上,可以将晶体想象成等同点在三维空间是无限排列的。

2 在同一行列中结点间距是相等的;在平行的行列上结点间距是相等的;不同的行列,其结点间距一般是不等的(某些方向的行列结点分布较密;另一些方向行列结点的分布较疏。

)3 面网密度:面网上单位面积内结点的数目面网间距:任意2个相邻面网的垂直距离相互平行的面网的面网密度和面网间距相等面网密度大的面网其面网间距也大4 宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互之间的组合关系(1)对称变换的集合——对称变换群(2)对称要素的集合——对称要素群合称对称群在宏观晶体中所存在的对称要素都必定通过晶体的中心,因此不论对称变换如何,晶体中至少有一个点是不变的,所以将对称型称为点群,该点称为点群中心5 点阵几何元素的表示法☆坐标系的确定任一点阵结点------------坐标原点单位平行六面体的三个互不平行的棱---坐标轴点阵常数a、b、c所代表的三个方向---x、y、z轴坐标单位:a、b、c ☆结点的位置表示法以它们的坐标值来表示的。

6 晶向的表示法晶向—空间点阵中由结点连成的结点线和平行于结点线的方向晶向指数uvw—通过原点作一条直线与晶向平行,将这条直线上任一点的坐标化为没有公约数的整数。

空间点阵与晶体结构的关系

空间点阵与晶体结构的关系

空间点阵与晶体结构的关系一、引言晶体是物质的一种特殊形态,其具有高度有序的结构和周期性的排列。

而晶体结构的基础则是空间点阵,它们密切相关并相互影响。

本文将探讨空间点阵与晶体结构之间的关系。

二、空间点阵的概念空间点阵是指在三维空间中由一组平移对称操作所得到的离散点集合。

它们是无限延伸的,具有无穷多的点,且点之间的间距是相等的。

在空间点阵中,每个点都具有相同的环境。

三、晶体结构的定义晶体结构是指晶体中原子、离子或分子的排列方式。

晶体结构可以分为晶体格点和晶胞两个层次。

晶体格点是指晶体中原子、离子或分子所占据的点阵位置,而晶胞则是晶体中最小的重复单元。

四、空间点阵与晶体结构的关系空间点阵是晶体结构的基础,晶体结构的形成离不开空间点阵的存在。

具体而言,晶体中的原子、离子或分子将占据空间点阵的各个位置,形成有序的排列。

晶体结构的类型和特性取决于所采用的空间点阵。

5、常见的空间点阵与晶体结构类型(1)立方晶系:立方晶系的空间点阵有简单立方格点、面心立方格点和体心立方格点。

这些格点所形成的晶体结构分别是简单立方结构、面心立方结构和体心立方结构。

(2)六方晶系:六方晶系的空间点阵只有一种,即六方最密堆积格点。

该格点所形成的晶体结构是六方密堆积结构。

(3)四方晶系:四方晶系的空间点阵有简单四方格点和体心四方格点。

这些格点所形成的晶体结构分别是简单四方结构和体心四方结构。

(4)正交晶系:正交晶系的空间点阵有简单正交格点、面心正交格点和体心正交格点。

这些格点所形成的晶体结构分别是简单正交结构、面心正交结构和体心正交结构。

(5)单斜晶系:单斜晶系的空间点阵有简单单斜格点和底心单斜格点。

这些格点所形成的晶体结构分别是简单单斜结构和底心单斜结构。

(6)菱面晶系:菱面晶系的空间点阵有简单菱面格点和体心菱面格点。

这些格点所形成的晶体结构分别是简单菱面结构和体心菱面结构。

六、空间点阵与晶体结构的重要性空间点阵为晶体结构的研究和理解提供了基础。

空间点阵与晶体结构的区别与联系

空间点阵与晶体结构的区别与联系

空间点阵与晶体结构的区别与联系示例文章篇一:哎呀!同学们,你们知道吗?空间点阵和晶体结构这两个概念可把我绕晕了好久呢!咱先来说说空间点阵吧。

就好像咱们在操场上排队做体操,每个人都站在规定好的位置上,这些位置就像是空间点阵里的点。

这些点可不是随便乱排的,它们有规律,有秩序,整整齐齐的。

那晶体结构又是什么呢?这就好比是一个用积木搭成的城堡。

每一块积木就像是组成晶体的原子、分子或者离子,它们按照特定的方式组合在一起,形成了美丽又独特的城堡,也就是晶体结构。

你说空间点阵和晶体结构难道没有相似的地方吗?那肯定有呀!它们就像一对双胞胎兄弟,都有着内在的规律和秩序。

空间点阵是晶体结构的基础,没有空间点阵那些有规律的点,哪来晶体结构中原子、分子、离子的有序排列呢?比如说,氯化钠晶体,它的结构不就是钠离子和氯离子按照一定的规律排排站嘛!这和空间点阵不就有着密切的关系吗?再想想看,要是没有空间点阵来指引,晶体结构能那么规整漂亮吗?肯定不能啊!那它们就没有区别啦?当然不是!空间点阵只是抽象的点的排列,可没有实际的物质存在。

而晶体结构呢,那可是实实在在的原子、分子或者离子组合在一起的呀!老师上课讲这些的时候,我就在想,这多像我们班级的座位排列和整个班级的组成呀!座位排列就像是空间点阵,有规矩,而我们每个同学就像是组成班级这个“晶体”的一份子,共同构成了一个独特的集体。

所以说呀,空间点阵和晶体结构既有联系又有区别,它们就像一对相互依存又各自独特的好伙伴,共同构成了奇妙的物质世界。

怎么样,同学们,你们是不是也像我一样搞清楚啦?示例文章篇二:哇塞!今天老师给我们讲了空间点阵和晶体结构,一开始我还一头雾水呢,这俩家伙到底是啥?又有啥区别和联系呀?先来说说空间点阵吧。

就好像我们排队做操一样,每个人都站在规定好的位置上,整整齐齐的。

空间点阵里的那些点,就跟我们做操的位置一样,是有规律地排列着的。

晶体结构呢,就像是一座超级漂亮的城堡。

第二章 晶体结构ppt课件

第二章 晶体结构ppt课件

1-1 晶向指数 [u v w]
建立步骤: ①建立坐标系。以某一阵点为坐标原点,三个棱边为 坐 标轴,并以点阵常数(a、b、c)作为各个坐标轴的单位长度; ②作 OP // AB ; ③确定P点的三个坐标值(找垂直投影); ④将坐标值化为互质的最小整数,并放入到[ ] 中,则 [uvw]即为所求;
1.晶体结构与空间点阵(续)
1-4 晶胞 ①定义:在空间点阵中,能够代表晶格中原子排列特征的最小单元体。 晶胞通常是平行六面体,将晶胞作三维的重复堆砌就构成了空间点 阵。 ②晶胞的选取原则:
几何形状与晶体具有同样的对称性; 平行六面体内相等的棱与角的数目最多; 当平行六面体棱间有直角时,直角数目最多; 在满足上述条件下,晶胞的体积应最小。
o o a a a c , 9 0 , 1 2 0 1 2 3

菱方:简单菱方 o a b c , 9 0

单斜:简单单斜 底心单斜
a b c ,
9 0
o
三斜:简单三斜
a b c ,
9 0
第二章 晶体结构
第一节 晶体的特征
各项异性 晶体由于具有按照一定几何规律排列的内 部结构,空间不同方向上原子排列的特征不同, 如原子间距及周围环境,因而在一般情况下, 单晶体的许多宏观物理量(如弹性模量、电阻 率、热膨胀悉数、折射率、强度及外表面化学 性质等)的大小是随测试方向的不同而改变的, 这个性质称为各项异性。晶体断裂的解理性就 是晶体具有各项异性的最明显例子。
晶体具有确定的熔点
熔点是晶体物质的结晶状态与非结晶状态互相转 变的临界温度,晶体熔化时发生体积变化。 晶体有一些其他共同特征:晶体中存在不完整性, 晶体内原子排列并不是理想的有序排列,而是有 缺陷的;晶体的原子周期排列促成晶体有一些共 同的性质,如均匀性、自限性和对称性等。

晶体学基础

晶体学基础

0.25A-1 020 120 220
b (110)
010 110 210
(100) b* H110
H 210
(210)
100
c
a
c* 000
a*
200
晶体点阵
倒易点阵
立方晶系晶体及其倒易点阵
第三章 X射线衍射方向
自伦琴发出X射线后,许多物理学家都在积极地研究和探索,1905年 和1909年,巴克拉曾先后发现X射线的偏振现象,但对X射线究竟是一 种电磁波还是微粒辐射,仍不清楚。1912年德国物理学家劳厄发现了 X射线通过晶体时产生衍射现象,证明了X射线的波动性和晶体内部结 构的周期性,发表了《X射线的干涉现象》一文。
cosa0 H cos0 K
衍射线
1' X
1
显然,当X射线照射二 维原子网时,X、Y晶轴 方向上的那些同轴的圆 锥面上的衍射线要能够 加强,只有同时满足劳 厄第一和第二方程,才 能发生衍射。
衍射线只能出现在沿X晶轴方向及Y晶轴方向的两系列 圆锥簇的交线上。如果照相的底片平行于原子网,圆 锥在底片上的迹线为双曲线。每对双曲线的交点即为 衍射斑点,也相当于圆锥的交线在底片上的投影。不 同的H,K值,可得到不同的斑点。
劳厄的文章发表不久,就引起英国布拉格父子的关注,他们都是X射 线微粒论者,年轻的小布拉格经过反复研究,成功地解释了劳厄的实 验事实。他以更简结的方式,清楚地解释了X射线晶体衍射的形成, 并提出著名的布拉格公式:nX=2dsino这一结果不仅证明了小布拉格的 解释的正确性,更重要的是证明了能够用X射线来获取关于晶体结构 的信息。老布拉格则于1913年元月设计出第一台X射线分光计,并利 用这台仪器,发现了特征X射线。小布拉格在用特征X射线与其父亲合 作,成功地测定出了金刚石的晶体结构,并用劳厄法进行了验证。金 刚石结构的测定完美地说明了化学家长期以来认为的碳原子的四个键 按正四面体形状排列的结论。这对尚处于新生阶段的X射线晶体学来 说用于分析晶体结构的有效性,使其开始为物理学家和化学家普遍接 受。

材料科学基础-2

材料科学基础-2
[111 ]
[ 1 11]
[1 1 1]
[1 1 1]
[11 1 ]
[1 1 1]
[1 1 1]
[1 1 1]
例:在一个面心立方晶胞中画出[012]、[123] 晶向。
晶面:通过空间点阵中任一组阵点的平面代表晶 体中的原子平面,称为晶面 晶面指数:表示晶体中点阵平面的指数,由晶面 与三个坐标轴的截距值所决定。 晶面指数的标定步骤: 建坐标:所定晶面不应通过原点; 求截距:求出待定晶面在三个坐标轴上的截距, 如果该晶面与某坐标轴平行,则其截距为∞; 取倒数:取三个截距值的倒数; 化整并加圆括号:将三个截距的倒数化为最小 整数h、k、l,并加圆括号,即(hkl),如果截距 为负值,则在负号标注在相应指数的上方。
正交
三、晶向指数与晶面指数(Miller指数)
晶向:空间点阵中各阵点列的方向代表晶体中原子排列的 方向,称为晶向,即空间点阵中任意两阵点的连接矢量。 晶向指数:表示晶体中点阵方向的指数。 晶向指数的确定步骤:
z
[ 1 11]
[112] • 建立坐标系; • 确定坐标值:在待定晶向上确定 [1 1 1] [1 1 0] 距原点最近的一个阵点的三个坐标值; • 化整并加方括号:将三个坐标值化为最小 [001] [111] 整数u、v、w,并加方括号。如有负值,在 [010] o 该数值上方标负号。 [100] [110]
• 在立方晶系中,具有相同指数的晶面和晶向 必定相互垂直。不适合其它晶系。 如: [121] (121) 即:晶向 [121] 为晶面 (121)的法向量。 ★ 因此,晶面指数可作为向量进行运算。
例:在一个面心立方晶胞中画出(102)、 (223) 晶面。
六方晶系的晶向指数和晶面指数

固体物理复习资料情况总结

固体物理复习资料情况总结

第一章 晶体结构1、试说明空间点阵和晶体结构的区别。

答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,它是由几何点在三维空间理想的周期性规则排列而成,由于各阵点的周围环境相同,它只能有14种类型。

晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。

当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。

2、证明体心立方格子和面心立方格子互为倒格子证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩rr r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r213422()()4a b i j k i j k a aππ∴=⨯⨯-++=-++r r rr r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

所以,面心立方的倒格子是体心立方。

(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2aa i j kaa i j kaa i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩rr rrrr rrrr rr由倒格子基矢的定义:1232()b a aπ=⨯Ωr r r3123,,222(),,2222,,222a a aa a a aa a aa a a-Ω=⋅⨯=-=-r r rQ,223,,,,()2222,,222i j ka a a aa a j ka a a⨯=-=+-rr rrrr r213222()()2ab j k j ka aππ∴=⨯⨯+=+r r rr r同理可得:232()2()b i kab i jaππ=+=+r rrr r r即体心立方的倒格子基矢与面心立方的正格基矢相同。

固体物理实验方法课]第1章_晶体学基础

固体物理实验方法课]第1章_晶体学基础

1.2 晶体结构与空间点阵
1.2.5 晶向、晶面及晶向、晶面指数
晶向指数的确定
1. 建立坐标系,结点为原点,三棱为方向,点阵 常数为单位 ; 2. 在晶向上任两点的坐标(x1 , y1 , z1) (x2 , y2 , z2)。 ( 若平移晶向或坐标,让在第一点在原点则下 一步更简单); 3. 4. 5. 计算x2 - x1 : y2 - y1 : z2 - z1 ; 化成最小、整数比 u:v:w ;
其中,a 、b、 c;α、β、γ 为正点阵参数
1.3 倒易点阵
1.3.3 倒易点阵参数的大小和方向
(1) a* b a* c b* a b* c c* a c* b 0
因此,倒易点阵的基本矢量垂直于正点阵中异名矢量构成的平面。 a*垂直于b与c两个矢量构成的平面。同样b*(或c*)垂直于a与c(a与b) 两个矢量构成的平面。
倒易点阵是晶体结构周期性在傅立叶空间中的数学抽象。 如果把晶体点阵本身理解为周期函数,则倒易点阵就是晶体点 阵的傅立叶变换,反之晶体点阵就是倒易点阵的傅立叶逆变换。
所以,倒易点阵只是晶体点阵在不同空间 ( 波矢空间 ) 的
反映。
1.3 倒易点阵
1.3.4 倒易矢量
1、定义: 从倒易点阵原点向任一倒易阵 点所连接的矢量叫倒易矢量,表示为: r* = Ha* + Kb* + Lc*
晶包大小与形状
1.2 晶体结构与空间点阵
1.2.2 基本矢量与晶包
同一个点阵可以由不同的平行六面体晶胞 叠成。即可以任意选择不同的坐标系与基本矢 量来表示。 为了表达最简单,应该选择最理想、最适 当的基本矢量作为坐标系统。即是以结点作为 坐标原点,( 1 )选取基本矢量长度相等的数 目最多、( 2 )其夹角为直角的数目最多,且 ( 3 )晶胞体积最小。这样的基本矢量构成的 晶胞称为布拉菲(BRAVAIS)晶胞。

晶体结构 空间点阵

晶体结构 空间点阵

晶体结构空间点阵晶体结构与空间点阵晶体结构是指晶体中原子、离子或分子的排列方式和规律。

而空间点阵则是描述晶体结构的数学模型,用于表示晶体中原子或离子的位置和排列规律。

本文将探讨晶体结构与空间点阵之间的关系,并介绍几种常见的空间点阵类型。

一、晶体结构的基本概念晶体是由原子、离子或分子按照一定的规律排列而成的固体物质。

晶体结构的研究对于理解物质的性质和应用具有重要意义。

晶体结构的基本概念包括晶胞、晶格和晶体结构。

晶胞是晶体中最小的重复单元,它由一组原子、离子或分子组成。

晶胞的形状可以是立方体、正交体、六角柱等。

晶格是由一系列平行于晶胞边的点构成的空间点阵,用于描述晶体中原子或离子的位置和排列规律。

晶体结构则是指晶体中原子、离子或分子的具体排列方式和规律。

二、空间点阵的分类空间点阵是用于描述晶体结构的数学模型,它由一系列平行于晶胞边的点构成。

常见的空间点阵类型包括简单立方点阵、面心立方点阵和体心立方点阵。

1. 简单立方点阵简单立方点阵是最简单的空间点阵类型,它由一系列位于晶胞角上的点构成。

每个晶胞角上只有一个原子、离子或分子。

简单立方点阵的晶胞形状为立方体,晶胞边长为a。

简单立方点阵常见于一些金属元素的晶体结构中。

2. 面心立方点阵面心立方点阵是一种更为紧密的排列方式,它由一系列位于晶胞角和晶胞面心的点构成。

每个晶胞角上有一个原子、离子或分子,每个晶胞面心也有一个原子、离子或分子。

面心立方点阵的晶胞形状仍为立方体,晶胞边长为a。

面心立方点阵常见于一些金属元素的晶体结构中。

3. 体心立方点阵体心立方点阵是一种更为紧密的排列方式,它由一系列位于晶胞角、晶胞面心和晶胞中心的点构成。

每个晶胞角上有一个原子、离子或分子,每个晶胞面心也有一个原子、离子或分子,晶胞中心也有一个原子、离子或分子。

体心立方点阵的晶胞形状仍为立方体,晶胞边长为a。

体心立方点阵常见于一些金属元素的晶体结构中。

三、晶体结构与空间点阵的关系晶体结构与空间点阵之间存在着密切的关系。

材料科学基础名词解释

材料科学基础名词解释

阵点:点阵中的各个点,称为阵点。
晶胞:晶胞 能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元。
晶向指数、晶面指数:为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶
向指数与晶面指数。
晶向族:原子排列情况相同在空间位向不同(即不平行)的晶向统称为晶向族。
不对称倾斜晶界:如果倾斜晶界的界面绕x轴转了一角度φ,则此时两晶粒之间的位向差仍为θ角,但此时晶界的界面对于两个晶粒是 倾斜晶界不对称的,故称不对称倾斜晶界(unsymmetrical tilt boundary)。
扭转晶界:扭转晶界(twist boundary)是小角度晶界的一种类型。它可看成是两部分晶体绕某一轴在一个共同的晶面上相对扭转一个θ角所构成的,扭转轴垂直于这一共同的晶面。该晶界的结构可看成是由互相交叉的螺型位错所组成 。
柯肯达尔效应(kirkendall effect):原来是指两种扩散速率不同的金属在扩散过程中会形成缺陷,现已成为中空纳米颗粒的一种制备方法。可以作为固态物质中一种扩散现象的描述。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时,就会发生表面扩散。
粘流态:当温度高于粘流化温度Tf并继续升高时,高聚物得到的能量足够使整个分子链都可以自由运动,从而成为能流动的粘液,其粘度比液态低分子化物的粘度要大得多,所以称为粘流态。
弹性形变:弹性形变是指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。
弹性模量:材料在弹性变形阶段内,正应力和对应的正应变的比值。
晶面族:立方晶系中,由于原子的排列具有高度的对称性,往往存在有许多原子排列完全相同但在空间位向不同(即不平行)的晶面,这些晶面总称为晶面族。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cu , NaCl Sn , SnO2 I2 , HgCl2 Bi , Al2O3
Mg , AgI S , KClO3 CuSO4·5H162O
晶系
立方晶系 六方晶系 四方晶系 三方晶系
正交晶系
单斜ห้องสมุดไป่ตู้系 三斜晶系
七个晶系及有关特征
特征对称元素
晶胞特点
4个按立方体对 角线取向的3重
旋转轴 6重对称轴
点阵点
点阵点是代表结构基元在空间重复排列方式的抽 象的点。如果在晶体点阵中各点阵点位置上,按同一 种方式安置结构基元,就得整个晶体的结构。
所以可简单地将晶体结构示意表示为:
晶体结构 = 点阵 + 结构基元
CHENLI
4
2.1.2 基本矢量与晶胞
一个结点在空间三 个方向上,以a, b, c重 复出现即可建立空间 点阵。重复周期的矢 量a, b, c称为点阵的基 本矢量。
学习要点
⑴ 晶体结构周期性与点阵。 ⑵ 7个晶系和14种Bravias空间格子。 ⑶ 晶胞,晶带,晶向,晶面,晶面间距,晶面夹角。 (4) 倒易点阵
学时安排
学时----- 2学时
CHENLI
2
2.1、晶体结构与空间点阵
2.1.1 空间点阵(Space Lattice)
晶体结构的几何特征是其结构基元(原
空间点阵型式
简单立方 立方体心 立方面心
简单六方
简单四方 体心四方 简单六方 R心六方 简单正交 C心正交 体心正交 面心正交
简单单斜 C心单斜 简单单斜17
2.2、晶向、晶面及晶向、晶面指标
《晶体学中阵点平面与阵点直线的空间取向分别用晶面指数与晶向指数来表示。》
2.2.1 晶向与晶向指标
任意两结点的结点列称为晶向。与此晶向相对应,一定有
CHENLI
10
◆简单点阵 (P)
只在晶胞的顶 点上有阵点, 每个晶胞只有 一个阵点,阵 点坐标为000
CHENLI
11
◆体心点阵,I
除8个顶点外,体 心上还有一个阵点, 因此,每个阵胞含 有两个阵点,000, 1/2 1/2 1/2
CHENLI
12
◆面心点阵。F
除8个顶点外,每个面心 上有一个阵点,每个阵 胞上有4个阵点,其坐标 分别为000,1/2 1/2 0, 1/2 0 1/2, 0 1/2 1/2
•简单(P) •体心(I) •面心(F) •底心(C)
阵点坐标的表示方法:
以晶胞的任意顶点为坐标原点,以与原点相交的
三个棱边为坐标轴,分别用点阵周期(a, b, c)
为度量单位。
CHENLI
9
晶胞中的原子计数
在晶胞不同位置的原子由不同数 目的晶胞分享: • 顶角原子: 1/8 • 棱上原子:1/4 • 面上原子:1/2 • 晶胞内部: 1
4重对称轴
3重对称轴
2个互相垂直的 对称面或3个互 相垂直的2重对
称轴
a=b=c α=β=γ=90
°
a=b≠c α=β=90°,γ=
120°
a=b≠c α=β=γ=90°
a=b=c α=β=γ≠90
°
a≠b≠c α=β=γ=90°
2重对称轴或对 称面

CHENLI
a≠b≠c α=β=90°≠
γ a≠b≠c a≠b≠c≠90°
由基本矢量构成的
平行六面体称为点阵 的单位晶胞。
CHENLI
5
布拉菲晶胞
同一个点阵可以由不同的平行六面体晶胞 叠成。即可以任意选择不同的坐标系与基本矢 量来表示。
为了表达最简单,应该选择最理想、最适 当的基本矢量作为坐标系统。即是以结点作为 坐标原点,(1)选取基本矢量长度相等的数 目最多、(2)其夹角为直角的数目最多,且 (3)晶胞体积最小。这样的基本矢量构成的 晶胞称为布拉菲(BRAVAIS)晶胞。
子、离子、分子或其它原子集团)一定周期
性的排列。通常将结构基元看成一个相应的
几何点,而不考虑实际物质内容。
这样就可以将晶体结构抽象成一组无限
多个作周期性排列的几何点。这种从晶体结
构抽象出来的,描述结构基元空间分布周期
性的几何点,称为晶体的空间点阵。几何点
为阵点。
CHENLI
3
结构基元
在晶体的点阵结构中每个阵点所代表的具体内容, 包括原子或分子的种类和数量及其在空间按一定方式 排列的结构,称为晶体的结构基元。结构基元是指重 复周期中的具体内容。
第二章 晶体学基础
1、晶体结构与空间点阵 2、晶向、晶面及指标 3、晶面间距 4、晶面族 5、倒易点阵
燕山大学材料科学与工程学院 材料现代CH分EN析L测I 试方法课程教学团队 王利民教授/1博导
教学目标
通过本章学习,掌握表达晶体周期性结构与它的点阵的 各种概念;掌握晶面指数与晶向指数的标定,晶面间距 与晶面夹角的表达;倒易点阵。
按点阵参数可将晶体点阵CH分EN为LI 七个晶系。
15
晶系 立方 四方 正交 三方
六方 单斜 三斜
七个晶系及有关特征
边长
夹角
晶体实例
a=b=c a=b≠c a≠b≠c a=b=c a=b≠c a=b≠c a≠b≠c a≠b≠c
α=β=γ=90° α=β=γ=90° α=β=γ=90° α=β=γ≠90° α=β=90°γ=120° α=β=90°γ=120° α=γ=90°β=120° CHαE≠NβLI≠γ≠90°
CHENLI
13
◆底心点阵,C
除八个顶点上有阵点外, 两个相对的面心上有阵 点,面心上的阵点为两 个相邻的平行六面体所 共有。因此,每个阵胞 占有两个阵点。阵点坐 标为000,1/2 1/2 0
CHENLI
14
2.1.4 点阵常数
平行六面体的三个棱长a、b、c和及其夹 角α、β、γ,可决定平行六面体尺寸和 形状,这六个量亦称为点阵常数。
每一个点阵只有一个最理想的晶胞即布拉菲晶胞。
CHENLI
6
2.1.3 布拉菲点阵
法国晶体学家A. Bravais研究表明,按 照上述三原则选取的晶胞只有14种,称 为14种布拉菲点阵。
14种布拉菲点阵分属7个晶系中。
CHENLI
7
14 种 空 间 点 阵 形 式
CHENLI
8
按晶胞中阵点位置的不同可将14种布拉菲 点阵分为四类:
一组相互平行而且具有同一重复周期的结点列。
晶向的表示方法:
取其中通过原点的一根结点列,求该列最近原点的结点的 指数,u, v, w, 并用方括号标记[uvw]。
或者:(1)在一族相互平行的阵点直线中
引出过坐标原点的阵点直线。
(2)在该直线上任取一点,量出坐标,并
用点阵周期a, b, c表示。
(3)将三个坐标值用同一个数乘或除,划
相关文档
最新文档