2016分子生物学复习重点

合集下载

医学分子生物学复习重点

医学分子生物学复习重点

分子生物学需要掌握的重点一、DNA、RNA、蛋白质、质粒、基因、端粒、聚合酶、密码子、突变、变性的概念或结构、性质及特点;二、复制、转录、逆转录、翻译、加工修饰、靶向输送的主要过程及特点;三、癌基因的概念、原癌基因产物的类型及细胞定位、癌基因活化致癌的主要机制;四、常用分子生物学技术的原理、主要步骤、酶学及特点;五、基因表及其调控的原理、主要过程或步骤,乳糖操纵子的正、负调节机制;六、常用的基因诊断及基因治疗技术;七、基因克隆、基因诊断、基因治疗、管家基因、抑癌基因、Klenow片段、核蛋白体、限制性内切核酸酶、人类基因组计划、原位杂交的概念;八、双脱氧末端终止法DNA测序、重组DNA技术的主要步骤;九、结构基因、顺式作用元件、启动子、遗传密码、反式作用因子、氨基酰-tRNA、基因组文库、DNA多态性、转位因子、探针、Tm值、DNA微阵列、DNA甲基化的概念、性质;十、核酸分子杂交的主要类型、PCR的主要步骤及引物设计;十一、DNA、RNA及多肽链的合成方向;十二、真核细胞转染的基本方法;十三、细胞周期的主要调控点;十四、DNA损伤及修复的主要类型和机制;十五、基因文库筛选的主要方法及原理。

名词解释●质粒——是细菌细胞内携带的染色体外的DNA分子,是共价闭合的环状DNA分子,能独立进行复制。

质粒只有在宿主细胞内才能够完成自己的复制。

●基因——指贮存有功能的蛋白质多肽链或RNA序列及表达这些信息所需的全部核苷酸序列,是核酸分子中贮存遗传信息的遗传单位。

●癌基因——是细胞内控制细胞生长和分化的基因,具有潜在的诱导细胞恶性转化的特性,它的结构异常或表达异常,可以引起细胞癌变。

●基因克隆——是指把一个生物体的遗传信息(基因片段)转入另一个生物体内进行无性繁殖,得到一群完全相同的基因片段,又称DNA克隆。

●抑癌基因——是指存在于正常细胞内的一大类可抑制细胞生长并具有潜在抑癌作用的基因,当这类基因在发生突变、缺失或失活时可引起细胞恶性转化而导致肿瘤发生。

分子生物学 复习提纲

分子生物学  复习提纲

分子生物学复习提纲免责声明:本资料仅供临床医学10级学习交流使用,基本覆盖上课重点。

由于课程的特殊性,特列成专题形式,个专题中重复部分在相应专题中都会覆盖。

凡应只使用本资料应试而造成的一切不良后果,均由使用者承担,本人不承担任何责任。

第一讲基因表达调控(转录水平的调节是基因表达调控的关键)分子生物学:是以生物大分子为研究对象,从分子水平去研究并解释一切生物学现象并在分子水平上改造和利用生物的一门新兴科学。

基因:编码RNA或蛋白质的全部核苷酸序列,包括结构基因和调控基因。

基因组:细胞或生物体中一套完整单倍体的遗传物质的总和,包括所有的基因和基因间区。

结构基因:编码RNA或蛋白质的核苷酸序列。

(原核:多顺反子、无内含子;真核:单顺反子、有内含子)转录单位:从启动子到转录终止子之间的DNA节段。

基因表达:是指DNA携带的遗传信息通过转录传递给RNA,mRNA通过翻译将基因的遗传信息在细胞内得以表达,合成具有生物功能的各种蛋白质的过程。

基因表达调控:是指对基因组中某一基因或一些功能相近的基因表达开启、关闭和表达强度的直接调节。

遗传密码:mRNA上按5’到3’方向排列的每三个核苷酸称遗传密码。

内含子:DNA或RNA中的非编码序列。

外显子:DNA或RNA中的编码序列。

多顺反子:一个结构基因转录产生一条mRNA ,编码几条功能相关的多肽链。

单顺反子:一个结构基因转录产生一条mRNA ,编码一条多肽链的生成。

启动子:是转录开始时RNA聚合酶识别、结合并开始转录起始所需的一段DNA序列。

终止子:提供转录终止信号的一段DNA序列。

增强子:能加强其上游或下游基因转录的DNA序列。

SD序列:mRNA5’端在起始密码子AUG 上游3~11bP处,含A-G 短序列,容易与16S r RNA3’-端含U-C 序列互补配对,称为SD 序列,它对mRNA与核糖体的有效结合并翻译至关重要。

开放阅读框ORF:始于起始密码子并终于终止密码子的一串密码子所组成的核苷酸序列。

分子生物学知识点归纳

分子生物学知识点归纳

分子生物学知识点归纳分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。

2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。

3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。

4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。

甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。

真核生物中的DNA甲基化则在基因表达调控中有重要作用。

真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。

“CG”岛特点是G+C含量高以及大部分CG 二核苷酸缺乏甲基化。

6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。

(2)DNA双链是右手螺旋结构。

螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA双链说形成的螺旋直径为2 nm。

每个碱基旋转角度为36度。

DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。

(3)疏水力和氢键维系DNA双螺旋结构的稳定。

DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA 和5种组蛋白H1,H2A,H2B,H3和H4共同构成。

各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。

核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。

8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。

9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。

分子生物学知识点汇总

分子生物学知识点汇总

分子生物学知识点汇总一1、分子生物学:研究核酸等生物大分子的功能、形态结构等特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动的适应自然界转向主动地改造和重组自然界的基础学科2、基因:是合成一种功能蛋白或RNA分子所必需的全部DNA序列。

一个典型的真核基因包括:编码序列-外显子;含子;5’端和3’端非翻译区UTR;调控序列3、基因组:某一特定生物体的整套遗传物质的综合。

基因组的大小用全部的DNA的碱基对总数表示5、分子生物学发展史1869年Miesher首次从莱茵河鲑鱼精子中提取了DNA。

1910年,德国科学家Kossel第一个分离了腺嘌呤、胸腺嘧啶和组氨酸。

1953年,Watson和Crick提出DNA反向平行双螺旋结构模型,为充分解释遗传信息的传递规律铺平了道路。

1961年,法国科学家Jacob和Monod提出并证实了操纵子作为调节细菌细胞代的分子机制。

此外,他们还首次提出存在一种与染色体DNA序列相互补、能将编码在染色体DNA上的遗传信息带到蛋白质合成场所并翻译产生蛋白质的信使核糖核酸。

这一学说对分子生物学的发展起到了十分重要的作用。

1968年,美国科学家Nirenberg由于在破译DNA遗传密码方面的贡献,与Holley 和Khorana等人分享了诺贝尔生理医学奖。

Holley的功绩在于阐明了酵母丙氨酸tRNA的核苷酸序列,并证实所有tRNA具有相似结构,而Khorana第一个合成了核苷酸分子,并且人工复制了酵母基因6、中心法则容DNA是自身复制的模板DNA通过转录作用将遗传信息传递给中间物质RNARNA通过翻译作用将遗传信息表达成蛋白质在某些病毒中,RNA也可以自我复制,并且还发现在一些病毒蛋白质的合成过程中,RNA可以在逆转录酶的作用下合成DNA.7、分子生物学的3条基本原理:构成生物体各类有机大分子的单体在不同生物中都是相同的;生物体一切有机大分子的构遵循共同的规则;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。

分子生物学复习资料

分子生物学复习资料

分子生物学复习资料分子生物学熊曹杨一、名词解释1.分子杂交:不同来源或不同种类生物分子间相互特异识别而发生的结合。

如核酸(DNA、RNA)之间、蛋白质分子之间、核酸与蛋白质分子之间、以及自组装单分子膜之间的特异性结合。

2.基因家族:基因组中存在的许多来源于同一个祖先,结构和功能相似的一组基因。

同一家族的这些基因的外显子具有相关性,可在基因组内集中或分散分布3. SD序列:信使核糖核酸(mRNA)翻译起点上游与原核16S 核糖体RNA或真核18S rRNA3′端富含嘧啶的7核苷酸序列互补的富含嘌呤的3~7个核苷酸序列(AGGAGG),是核糖体小亚基与mRNA结合并形成正确的前起始复合体的一段序列。

4. 顺式作用元件: DNA、RNA或者蛋白质中的一些特殊的核酸或氨基酸残基序列,只作用于与其连接在一起的靶,而不作用于不与其相连的靶。

5. RNA编辑:在初级转录物上增加、删除或取代某些核苷酸而改变遗传信息。

6. 复制叉:DNA在复制原点解开成单链并分别作为模板,各自合成其互补链,产生两个由未解链的DNA母链和新复制的DNA子链形成的叉子状区域。

7. 同工tRNA:能接受和携带相同氨基酸、但分子结构上有差异的转移核糖核酸(tRNA)。

对应一种氨基酸的同工tRNA数目不等,有的可多至5~6种。

8.DNA变性: DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。

9. 内含子:真核生物细胞DNA中的间插序列。

这些序列被转录在前体RNA中,经过剪接被去除,最终不存在于成熟RNA分子中。

10. PCR:聚合酶链式反应,体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。

11. 反式作用因子:通过直接结合或间接作用于DNA、RNA等核酸分子,对基因表达发挥不同调节作用(激活或抑制)的各类蛋白质因子。

分子生物学复习资料精选全文

分子生物学复习资料精选全文

可编辑修改精选全文完整版分子生物学复习资料名词解释:复制叉:复制时,双链DNA要解开成两股链分别进行,所以,这个复制起点呈现叉子的形式,被称为复制叉。

复制子:单独复制的一个DNA单元被称为一个复制子,是一个可移动的单位。

一个复制子在任何一个细胞周期只复制一次。

Klenow片段:用枯草杆菌蛋白酶处理大肠杆菌DNA聚合酶而从全酶中除去5’-3’外切酶活性的肽段后的大片段肽段。

外切酶:是一类能从多核苷酸链的一端开始按序催化水解3、5-磷酸二酯键,降解核苷酸的酶。

内切酶:是一种能催化多核苷酸的链断裂的酶,只对脱氧核糖核酸内一定碱基序列中某一定位置发生作用,把这位置的链切开。

前导链:在DNA复制过程中,与复制叉运动方向相同,以5'-3'方向连续合成的链。

冈崎片段:在DNA复制过程中,前导链连续合成,而滞后链只能是断续的合成5’-3’的多个短片段,这些不连续的片段称为冈崎片段。

端粒:是真核生物线性基因组DNA末端的一种特殊结构,它是一段DNA序列和蛋白质形成的复合体。

端粒酶:是负责染色体末端(端粒)复制,是由 RNA 和蛋白质组成的核糖核蛋白.其中的 RNA 成分是端粒复制的模板.(因此端粒是逆转录酶) 作用:维持端粒长度.DNA复制参与的酶和蛋白:拓扑异构酶,解链酶,单链结合蛋白(SSB蛋白),引发酶,DNA聚合酶,DNA连接酶。

线性DNA末端复制方式:1)环化;2)末端形成发卡结构;3)某些蛋白质的启动。

DNA修复的方式:错配修复,切除修复,重组修复,DNA直接修复,SOS反应。

AP位点:所有细胞中都带有不同类型、能识别受损核酸位点的糖苷水解酶,它能特异性切除受损核苷酸上的N-β糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。

AP修复:DNA分子中一旦产生了AP位点,AP核酸内切酶就会把受损核苷酸的糖苷-磷酸键切开,并移去包括AP位点核苷酸在内的小片段DNA,由DNA聚合酶Ⅰ合成新的片段,最终由DNA连接酶把两者连成新的被修复的DNA链。

分子生物学复习提纲

分子生物学复习提纲

分子生物学一、名词解释1. 中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。

也可以从DNA传递给DNA,即完成DNA的复制过程。

2. 半保留复制是亲代的两条链解开,每条链作为新链的模板,从而形成两个子代DNA分子,每一个子代DNA分子包含一条亲代链和一条新合成的链。

3. 重组除了被复制之外,细胞DNA还能发生重排,产生具有不同架设甚至新基因的新分子。

这一性质被泛称为重组。

4. 突变DNA序列中可遗传的改变称为突变。

5. 等位基因同源染色体含有以相同顺序出现的相同基因,这些基因不一定完全相同,他们在序列和功能上可能有少许差异,这些基因被称为等位基因6. 同源染色体在二倍体生物中对等的染色体叫做同源体或同源染色体。

二、选择题1. RNA聚合酶核心酶α、β和β’ 亚基一起构成了RNA聚合酶核心。

2. 碱基比例计算①双链DNA分子中,两互补碱基相等;任意两个不互补碱基之和恒等,各占碱基总数的50%,且不互补碱基之和的比值等于1.②双链DNA分子中A+T/G+C等于其中任何一条链的A+T/G+C③双链DNA分子中,互补的两条链中A+G/T+C互为倒数.即两不互补碱基之和的比值等于另一互补链中这一比值的倒数.④双链的DNA分子中,A+T占整个DNA分子碱基总数的百分比等于其中任何一条链中A+T 占该链碱基总数的比例3. PCR程序设定长的引物,非常容易引起发夹结构,或者其他互补情况,最后形成二聚体,引物CG含量到55%会稳定很多。

PCR聚合酶链式反应,用于体外扩增所需要的目的片段。

①DNA一般为双链。

首先,我们需要把它进行解链,从而产生两条单链,让引物结合上去。

达到复制的目的。

一开始我们设置的高温,刚好能够使得DNA双链解体。

约94~98℃,用3到5min即可。

此反应中我们用的TAQ酶,嗜热杆菌中提取的DNA聚合酶,也是高温启动的,初始的高温适合其开始在体系中的活性,但是约15分钟的高温会导致其半衰期,从而失去活性,使得反应效率降低,所以高温的时间不宜过长。

分子生物学重点知识总结

分子生物学重点知识总结

分子生物学重点知识总结分子生物学一、名词解释1.ORF答:ORF是XXX的缩写,即开放阅读框架。

在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。

2.结构基因答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。

3.断裂基因答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或RNA的核酸序列,还包括保证转录所必需的调控序列、位于编码区5'端与3'端的非编码序列和内含子。

真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。

4.选择性剪接答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中经由过程不同的剪接体式格局(选择不同的剪接位点组合)发生不同的mRNA剪接异构体的过程,而终究的蛋白产物会表现出不同大概是相互拮抗的功能和布局特征,大概,在相同的细胞中由于表达程度的不同而招致不同的表型。

5.C值答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。

6.生物大分子答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。

常见的生物大分子包括蛋白质、核酸、脂类、糖类。

7.酚抽提法答:酚抽提法最初于1976年由Stafford及其同事提出,经由过程改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破裂细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,按照不同需要进行透析或沉淀处理获得所需的DNA样品。

8.凝胶过滤层析答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。

《分子生物学》知识要点汇总

《分子生物学》知识要点汇总

《分子生物学》知识要点汇总1. 基因表达:转录+翻译。

2. 时间特异性、空间特异性,管家基因(组成性表达)3. 转录起始(基本控制点)4. 原核与真核区别:基因表达原核真核启动子o 因子识别-35 区TTGACA-10 区TATAAT -25 区TATA 盒TF- ⅡD 决定了聚合酶识别特异性特点操纵子模型具有普遍性顺式作用原件具有普遍性机制主要是负性调节(阻遏调节)主要是正性调节(诱导调节)结果转录衰减染色体结构改变原核生物:单复制子,多顺反子真核生物:多复制子,单顺反子1. 得:染色体分离、化学合成、基因组文库、cDNA 法、PCR 法。

2. 选:克隆载体(质粒、自我复制),表达载体(大肠杆菌)3. 接:DNA 连接酶,黏性末端连接准确性最高。

4. 转:重组质粒导入宿主细胞为转化,重组噬菌体导入大肠杆菌为转染。

5. 筛:载体遗传标志、标志补救、序列特异性(分子杂交、PCR、测序、RE 酶切)、亲和筛选1. RE:细菌产生,识别回文结构,切割双链DNA 得到黏性末端。

2. DNA 连接酶:目的基因+载体重组。

2. DNApol I 的大片段(Klenow):cDNA→dsDNA,标记3´-端。

3. 逆转录酶:mRNA→cDNA。

5. 多聚核苷酸激酶:5´-OH 末端磷酸化作标记探针。

6. 末端转移酶:3´-OH 末端加尾。

7. 碱性磷酸酶:切除末端磷酸基团。

1. 正常。

2. 获得启动子或增强子、染色体易位、基因扩增、点突变。

3. 产物:类别名称生长因子(本质是多肽)sis(过度表达)、int-2生长因子受体(本质蛋白质) fms、kit、her-2/erb-b2 (扩增)、EGFR/erb-b1细胞信号转导蛋白膜结合酪氨酸激酶src、abl(转位)细胞内酪氨酸激酶TRK细胞内丝/苏氨酸激酶 raf膜GTP 结合蛋白ras(点突变)转录因子fos、jun、myc(转位)细胞周期蛋白cyclin D4. 与肿瘤相关。

分子生物学复习资料-绝对重点

分子生物学复习资料-绝对重点

分子生物学复习资料(第一版)一名词解释1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。

是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。

二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。

2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。

均为真核生物基因中的转录调控序列。

顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。

反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA 聚合酶、转录因子、转录激活因子、抑制因子。

3VNTR / STR—可变数目串联重复序列 / 短串联重复。

均为非编码区的串联重复序列。

前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。

(参考第7题)4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。

病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。

正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。

当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。

第1 页/共16 页5 ORF / UTR—展开阅读框 / 非翻译区。

均指在mRNA中的核苷酸序列。

前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参加翻译起始调控,为前者的多肽链序列信息改变为多肽链所必须。

分子生物学复习总结

分子生物学复习总结

分子生物学复习总结第一篇:分子生物学复习总结分子生物学一.绪论1.分子生物学研究的主要内容包括:1)DNA重组技术;2)基因表达调控的研究;3)生物大分子的结构功能研究;4)基因组、功能基因组与生物信息学研究。

P112.分子生物学研究的三大理论和两大技术保证:1)40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;2)50年代提出了DNA分子的双螺旋结构模型和半保留复制机制,解决了基因的自我复制和世代交替问题;3)50年代末至60年代,相继提出了“中心法则”和操纵子学说,成功地破译了遗传密码,充分认识了遗传信息的流动和表达。

两大技术保证:1)DNA的体外切割和连接;2)DNA的核苷酸序列分析技术。

二.染色体与DNA3.核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。

八聚体在中间,DNA分子盘绕在外,而H1则是在核小体的外面。

每个核小体只有一个H1。

核小体的形成是染色体中DNA压缩的第一个阶段。

4.原核生物DNA的主要特征:1)原核生物中一般只有一条染色体,且大都带有单拷贝基因,只有少数基因(如rRNA基因)是以多拷贝形式存在的;2)整个染色体DNA几乎全部由功能基因与调控序列所组成;3)几乎每个基因序列都与它所编码的蛋白质序列成线性对应状态。

5.真核细胞染色体具有如下特征:1)分子结构相对稳定;2)能够自我复制,使亲、子代之间保持连续性;3)能够指导蛋白质的合成,从而控制整个生命过程;4)能够产生可遗传的变异。

6.染色体上的蛋白质包括组蛋白和非组蛋白。

组蛋白是染色体的结构蛋白,它与DNA形成核小体。

7.组蛋白具有如下特性:1)进化上的极端保守性;2)无组织特异性;3)肽链上氨基酸分布的不对称性,碱性氨基酸集中分布在N端的半条链上;4)组蛋白的修饰作用,包括甲基化、乙酰化、磷酸化及ADP核糖基化等;5)富含赖氨酸的组蛋白H5,H5的磷酸化在蛋白质的失活过程中起重要作用。

分子生物学复习资料.doc

分子生物学复习资料.doc

1:操纵子:在细菌基因组中,编码一组在功能上相关的蛋白质的几个结构基因,与共同的控制位点组成一个基因表达的协同单位,称为操纵子。

操纵基因:是操纵子中的控制基因,是阻遏蛋白的结合部位。

2:阻遏蛋白:是负调控系统中由调节基因编码的调节蛋白。

3:RNA病毒:基因组的是核酸是RNA的病毒。

病毒是最简单的生物,外壳蛋白包裹着里面的遗传物质核酸。

4:诱导物:诱导(induction)--可诱导基因在特定环境信号刺激下表达增强的过程。

在可诱导的操纵子中产生诱导作用的小分子物质就叫做诱导物(inducer)。

例如大肠杆菌的乳糖操纵子。

5:Tm(melting temperature):是使DNA双螺旋链解开一半时的温度。

DNA Tm 一般在70—85℃之间。

6:重叠基因:一段核酸序列可以编码多于一个多肽链。

7:内含子:在编码区能够编码蛋白质的序列。

8:外显子:在编码区不能够编码蛋白质的序列。

9:DNA损伤(DNA damage):是指在生物体生命过程中DNA双螺旋结构发生的任何改变。

10:DNA的转座,或称移位(transposition),是由可移位因子(transposable element)介导的遗传物质重排现象。

11:转座:从DNA到DNA的转移过程称转座。

12:反转座:从DNA到RNA再到DNA的转移过程叫反转座。

后者为经RNA介导的转座过程。

反转座仅发生于真核生物中。

13:转录( transcription ):是在DNA指导的RNA聚合酶催化下,按照碱基配对的原则,以四种NTP为原料,合成一条与DNA互补的RNA链的过程。

14:启动子:是RNA聚合酶特异性识别和结合的DNA序列。

15:终止子(terminator) :能提供转录终止信号的DNA序列称为终止子。

16:顺式作用元件(cis—acting element)是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因17:反式作用因子:与顺式作用元件相互作用的蛋白因子就称为反式作用因子(转录因子)。

分子生物学考试重点汇总(完善篇)

分子生物学考试重点汇总(完善篇)

分子生物学考试重点汇总(完善篇)1、基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位。

2、基因组:细胞或生物体的一套完整单倍体的遗传物质的总和。

3、端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。

该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。

4、操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。

5、顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。

包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。

6、反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。

7、启动子:是RNA聚合酶特异性识别和结合的DNA序列。

8、增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。

它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。

9、基因表达:是指生物基因组中结构基因所照顾的遗传信息颠末转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功用和生物学效应的全过程。

10、信息分子:调治细胞生命活动的化学物质。

个中由细胞分泌的调治靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内通报信息调控旌旗灯号的化学物质称为细胞内信息分子。

11、受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。

12、分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和繁殖,以取得该DNA分子的大量拷贝。

13、蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子生物学1.Poly (A)尾巴:①大多数真核mRNA的3’端有多聚腺苷酸序列;②poly(A)序列不是DNA编码,是转录后被poly(A)聚合酶加上去的;③mRNA初进入细胞质时,其poly(A)尾长度大致与核中长度相同,随后逐渐缩短;④单poly(A) 尾长短并不影响其功能,poly(A)尾常结合了一约78,000道尔顿的蛋白质分子。

⑤组蛋白mRNA不含poly(A) 结构。

(2)功能①保护mRNA,增强mRNA的稳定性②增强mRNA的翻译能力2.帽子结构:①mRNA转录完成后,前提mRNA进行加帽,帽子为7-甲基鸟苷,与5’第一个核苷酸以5’-5’三磷酸键相连②合成:A、RNA焦磷酸酶将前提mRNA末端的磷酸基团去除B、鸟苷转移酶在此末端加上GMPC、两个甲基转移酶分别将鸟苷的第七位的N和倒数第二个核苷2’-羟基甲基化功能:1)增加mRNA稳定性;2)增强mRNA的翻译能力3)增强mRNA从细胞核到细胞质的转运4)提高mRNA剪接效率3.回文序列回文序列是双链DNA中含有的结构相同、方向相反的序列,当该序列的双链被打开后,可形成发夹结构,这两个反向重复序列不一定是连续的。

这种结构中脱氧核苷酸的排列在DNA两条链中顺读与倒读其意义是一样的,脱氧核苷酸的排列对于一个假象的轴成180°旋转对称,这种结构称为回文结构。

4. 反向重复序列在同一多核苷酸链内下游存在着与上游某一段序列的互补序列反向的序列,如GTGCTAA和TTAGCAC构成反向重复序列。

在双链DNA中反向重复可能引起十字形结构的形成。

5.不依赖于p因子的终止子结构特点:1.终止位点上游一般存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡式结构。

2.在终止位点前面有一端由4—8个A组成的序列,所以转录产物的3’端为寡聚U,这种结构特征的存在决定了转录的终止。

6.依赖于p因子的终止子的结构特点:1.转录的RNA也具有发夹结构,但发夹结构后无poly(U)。

2.形成的发夹结构较疏松,茎环上不富含GC。

3.终止需要ρ因子的参与。

4.与不依赖于ρ因子的终止一样,终止信号存在于新生的RNA链上而非DNA链上过程。

7. 原核、真核生物释放因子的作用(1)原核:RF1识别终止密码子UAA、UAG;RF2识别UAA、UGA;RF3是GTP结合蛋白,能促进RF1和RF2与核糖体的结合。

(2)真核:eRF1识别三个终止密码子;eRF3是一种核糖体依赖性GTP酶,帮助eRF1释放翻译成熟的肽链。

8. 细菌转录机制的转换模式细菌RNA聚合酶全酶由核心酶和σ因子组成,核心酶是基本的转录装置,σ因子指导核心酶转录特异的基因。

转录起始:RNA聚合酶结合在DNA上形成闭合启动子复合体,σ因子促使聚合酶由闭合启动子复合体转变为开放启动子复合体。

转录延伸:聚合酶合成一段初生RNA产物后,聚合酶的启动子清除,核心酶转换为延伸特异构象,σ因子与聚合酶核心酶解离,由核心酶单独执行延伸功能,σ因子可被不同的核心酶再利用。

是核心酶决定了RNA 聚合酶全酶对利福平的抗性或敏感性。

)噬菌体感染细菌后,其基因转录以时序模式进行:早期基因先转录,然后是中期基因,最后是晚期基因.这种转换由噬菌体编码的一系列σ因子来调控。

这些σ因子与宿主核心聚合酶结合,从而改变对早、中、晚期基因启动子识别的特异性。

早期转录:特异性因子为宿主σ因子,指导早期基因的转录,产生早期蛋白gp28中期转录:特异性因子为gp28,指导中期基因的转录,产生中期蛋白gp33和gp34晚期转录:特异性因子为gp33和gp34,,指导晚期基因的转录,产生晚期蛋白。

9. λ噬菌体对大肠杆菌的感染(一)裂解繁殖在裂解模式下,λ噬菌体利用大肠杆菌的RNA聚合酶进行转录,几乎所有的噬菌体基因都转录并且翻译,同时噬菌体DNA复制形成子代噬菌体,然后裂解宿主细胞。

噬菌体处于颗粒状态时,DNA为线性,感染宿主菌后,由于线性基因两端有cos位点,会形成环形DNA。

转录分为三个时期:1.极早期:极早期基因为Cro和N,Cro位于右向启动子PR的下游,N位于左向启动子PL的下游。

在极早期,没有阻遏物与这些启动子的操纵基因(OR‘与OL‘)结合,转录过程不受阻遏。

Cro基因产物是阻遏物,结合CⅠ基因,阻止λ阻遏物蛋白的产生。

N基因产物是N蛋白,是抗终止子,可使RNA聚合酶忽略早期基因末端的终止子而继续转录后续的晚早期基因。

N蛋白不能代替Q蛋白,对Cro和N基因后的抗终止作用是特异性的。

2.晚早期:O基因和P基因产物为噬菌体DNA复制所必需的蛋白质,而复制是裂解周期的关键。

Q基因产物Q蛋白是另一个抗终止子,可使晚期基因转录。

3.晚期:右顺时针转录,晚期启动子PR’位于Q的下游,Q蛋白可使晚期基因转录,S基因和R基因产物是裂解宿主细胞的蛋白,其他基因产物是噬菌体头部和尾部蛋白。

(二)溶源模式(1)某些晚早期基因的产物是噬菌体DNA整合到宿主基因组形成溶源态所必须的(2)CⅡ和CⅢ基因产物使CⅠ基因转录产生λ阻遏物,λ阻遏物结合到操纵基因PR和PL上,阻止极早期基因的转录,从而进入溶源态,噬菌体DNA会整合到宿主基因组中。

CⅡ直接刺激聚合酶结合到PRE和PI 上,CⅢ缓解CⅡ的降解。

(3)CⅠ基因有两个启动子,PRM和PRE,PRM为阻遏物保持启动子,位于OL’下游,PRE为阻遏物建立启动子,位于cro和PR右侧,是溶源态的建立启动子,向左转录CⅠ基因。

10.复制体中的几种蛋白因子及其功能:1)、DNA拓扑异构酶:释放因解旋酶的活性而造成的扭曲链,恢复复制后松弛的DNA双链成负超螺旋;2)、DNA聚合酶:前导链的合成,后随链的合成以及修复3)、DNA连接酶:连接修复后的后随链片段4)、单链结合蛋白(SSB):稳定复制叉的单链区域5)、DNA解旋酶:使复制叉前的双链解开6)、RNA引发酶:合成RNA引物7)、RNaseH:切除RNA11.原核DNA聚合酶:1、DNA聚合酶:以DNA为模板合成DNA新链时需要的酶,DNA聚合酶从5‘到3’把核苷酸连续加在延伸DNA的游离3‘羟基上。

2、DNA聚合酶的特性:1)底物必须是dNTP;2)以DNA为模板,链延伸功能,不能从头开始合成;3)合成方向只能是5‘→3’。

3、DNA聚合酶的种类polⅠ:3’-5’外切酶活性,主要是起修复的作用(比如光修复),5’-3’外切酶活性,把RNA引物切除后的空隙填补起来,在温和蛋白酶水解下,大结构( Klenow片段)与和小结构与分离,任具有完整聚合酶的三种活性。

PolⅡ:是参与原核生物SOS修复的酶,polⅢ:是原核生物在DNA延长中起主要作用的酶,是真正的复制酶。

PolⅢ核心由α、ε、θ亚基组成,α亚基由DNA聚合酶活性,ε具有执行校正功能的3’-5’外切酶活性。

β亚基二聚体形成环形结构,环绕DNA模板,并与α亚基相互作用,将模板与聚合酶结合在一起,起持续性作用。

pol Ⅲ全酶为双头酶,两个核心聚合酶通过两个τ二聚体和一个γ复合体连接在一起。

一个核心酶合成前导链。

一个核心酶合成后随链。

γ复合体作为钳装载器将β钳装载到待转录的DNA模板上,装载完成后,β钳与γ复合体失去亲和力,转而与核心酶作用,帮助核心聚合酶持续性合成冈崎片段,合成完成后,β钳与核心酶失去亲和力,再与γ复合体结合,γ复合体作为钳卸载器将其从DNA模板释放下来,再循环到下一个引物。

12、真核生物DNA聚合酶α在DNA合成期水平升高,主要负责复制引发和后随链部分序列的合成;δ是DNA双链合成的主要聚合酶,在合成起始后存在聚合酶α/δ的转换;DNA聚合酶α没有3’-5’核酸外切酶活性;而δ和ε有校正阅读活性,保证复制忠实性。

γ存在于线粒体内,复制线粒体DNAε存在于细胞核内,修复后随链13. 端粒酶真核生物染色体末端具有端粒结构,端粒的一条链由许多串联重复且富含G的短序列组成,该重复序列具有种属特异性。

富含G的端粒链由端粒酶合成,端粒酶的短RNA分子是端粒合成的模板。

富含C的端粒链通过常规的RNA引发DNA复制的方式进行合成,类似常规后随链的合成。

该机制能保护染色体末端被重建,避免因每轮复制而导致的末端短缩。

14. cDNA克隆(1)cDNA克隆:利用mRNA反转录酶,逆转录合成互补cDNA,然后重组入载体,经过复制,筛选得到单一种cDNA分子的技术。

(2)cDNA克隆法操作流程①cDNA第一链的合成:以mRNA为模板,利用反转录酶,从mRNA3’端poly(A)尾巴开始,以oligo(dT)引物,合成其次是合成cDNA第二链。

单链cDNA3’端的发卡结构,便于DNA聚合酶I发挥5’→3’聚合酶活性,合成cDNA第一链。

②cDNA的第二链:用RNaseH将mRNA部分降解,残留的mRNA片段作为引物,以cDNA第一链为模板,利用DNA聚合酶,合成cDNA的第二链。

(此过程中用DNA聚合酶Ⅰ进行切口平移)③将双链cDNA克隆到质粒和噬菌体载体上:用末端转移酶和某种脱氧核苷酸在cDNA和载体上创建粘性末端,cDNA末端与载体末端退火后,连接成重组DNA,然后进行扩增。

④进行测序,研究转录本的信息以及功能。

(3)cDNA克隆法的应用真核生物DNA的结构中有内含子和外显子。

内含子并不表达蛋白质,如果直接剪接真核生物的DNA的话,内含子肯定是很难去除,这样连接到表达载体(一般都是原核生物)后表达出来的蛋白质就不再是目的蛋白质。

所以用真核生物细胞中的mRNA为模板,再经反转录为cDNA后,也就除去了原本应该有的内含子。

再经PCR扩增,就能得到大量的目的基因了。

15.cDNA文库以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。

cDNA文库特异地反映某种组织或细胞中,在特定发育阶段表达的蛋白质的编码基因,因此cDNA文库具有组织或细胞特异性。

对真核细胞来说,从基因组DNA文库获得的基因与从cDNA 文库获得的不同,基因组DNA文库所含的是带有内含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含子的cDNA。

因为真核生物基因的选择性表达,由mRNA出发的cDNA克隆,其复杂程度要比直接从基因组克隆简单得多。

基本步骤:(1)mRNA的提纯获取高质量的mRNA是构建高质量的cDNA。

(2)cDNA第一条链的合成。

(3)cDNA 第二条链的合成。

(4)双链cDNA的修饰。

(5)双链cDNA的分子克隆。

(6)cDNA文库的扩增。

(7)cDNA文库鉴定评价。

相关文档
最新文档