常微分方程的数值解

合集下载

常微分方程的数值解

常微分方程的数值解

f ( x, y1 ) f ( x, y2 ) L y1 y2
(其中 L 为 Lipschitz 常数)则初值问题( 1 )存 在唯一的连续解。
求问题(1)的数值解,就是要寻找解函数在一 系列离散节点x1 < x2 <……< xn < xn+1 上的近似 值y1, y 2,…,yn 。 为了计算方便,可取 xn=x0+nh,(n=0,1,2,…), h称为步长。
(1),(2)式称为初值问题,(3)式称为边值问题。 在实际应用中还经常需要求解常微分方程组:
f1 ( x, y1 , y2 ) y1 ( x0 ) y10 y1 (4) f 2 ( x, y1 , y2 ) y2 ( x0 ) y20 y2
本章主要研究问题(1)的数值解法,对(2)~(4)只 作简单介绍。
得 yn1 yn hf ( xn1 , yn1 )
上式称后退的Euler方法,又称隐式Euler方法。 可用迭代法求解
二、梯形方法 由
y( xn1 ) y( xn )
xn1 xn
f ( x, y( x))dx
利用梯形求积公式: x h x f ( x, y( x))dx 2 f ( xn , y( xn )) f ( xn1 , y( xn1 ))
常微分方程的数言 简单的数值方法 Runge-Kutta方法 一阶常微分方程组和高阶方程
引言
在高等数学中我们见过以下常微分方程:
y f ( x, y, y) a x b y f ( x, y ) a x b (2) (1) (1) y ( x ) y , y ( x ) y 0 0 0 0 y ( x0 ) y0 y f ( x, y, y) a x b (3) y(a) y0 , y(b) yn

求常微分方程的数值解

求常微分方程的数值解

求常微分方程的数值解一、背景介绍常微分方程(Ordinary Differential Equation,ODE)是描述自然界中变化的数学模型。

常微分方程的解析解往往难以求得,因此需要寻找数值解来近似地描述其行为。

求解常微分方程的数值方法主要有欧拉法、改进欧拉法、龙格-库塔法等。

二、数值方法1. 欧拉法欧拉法是最简单的求解常微分方程的数值方法之一。

它基于导数的定义,将微分方程转化为差分方程,通过迭代计算得到近似解。

欧拉法的公式如下:$$y_{n+1}=y_n+f(t_n,y_n)\Delta t$$其中,$y_n$表示第$n$个时间步长处的函数值,$f(t_n,y_n)$表示在$(t_n,y_n)$处的导数,$\Delta t$表示时间步长。

欧拉法具有易于实现和理解的优点,但精度较低。

2. 改进欧拉法(Heun方法)改进欧拉法又称Heun方法或两步龙格-库塔方法,是对欧拉法进行了精度上提升后得到的一种方法。

它利用两个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。

改进欧拉法的公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\Delta t,y_n+k_1\Delta t)$$$$y_{n+1}=y_n+\frac{1}{2}(k_1+k_2)\Delta t$$改进欧拉法比欧拉法精度更高,但计算量也更大。

3. 龙格-库塔法(RK4方法)龙格-库塔法是求解常微分方程中最常用的数值方法之一。

它通过计算多个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。

RK4方法是龙格-库塔法中最常用的一种方法,其公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_1\Delta t}{2})$$ $$k_3=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_2\Delta t}{2})$$ $$k_4=f(t_n+\Delta t,y_n+k_3\Delta t)$$$$y_{n+1}=y_n+\frac{1}{6}(k_1+2k_2+2k_3+k_4)\Delta t$$三、数值求解步骤对于给定的常微分方程,可以通过以下步骤求解其数值解:1. 确定初值条件:确定$t=0$时刻的函数值$y(0)$。

常微分方程的数值解算法

常微分方程的数值解算法

常微分方程的数值解算法常微分方程的数值解算法是一种对常微分方程进行数值计算的方法,这可以帮助我们更好地理解和研究自然现象和工程问题。

在本文中,我们将介绍一些常用的数值解算法,探讨它们的优缺点和适用范围。

常微分方程(ODE)是描述自然现象和工程问题的重要数学工具。

然而,对于许多ODE解析解是无法求出的,因此我们需要通过数值方法对其进行求解。

常微分方程可以写作:y' = f(t, y)其中,y是函数,f是给定的函数,表示y随t的变化率。

这个方程可以写成初始值问题(IVP)的形式:y'(t) = f(t,y(t)),y(t0) = y0其中,y(t0)=y0是方程的初始条件。

解决IVP问题的典型方法是数值方法。

欧拉方法欧拉方法是最简单的一阶数值方法。

在欧拉方法中,我们从初始条件开始,并在t = t0到t = tn的时间内,用以下公式逐步递推求解:y n+1 = y n + hf (t n, y n)其中,f(t n,y n)是点(t n,y n)处的导数, h = tn - tn-1是时间间隔。

欧拉方法的优点是简单易懂,容易实现。

然而,它的缺点是在整个时间段上的精度不一致。

程度取决于使用的时间间隔。

改进的欧拉方法如果我们使用欧拉方法中每个时间段的中间点而不是起始点来估计下一个时间点,精度就会有所提高。

这个方法叫做改进的欧拉方法(或Heun方法)。

公式为:y n+1 = y n + h½[f(t n, y n)+f(tn+1, yn + h f (tn, yn))]这是一个二阶方法,精度比欧拉方法高,但计算量也大一些。

对于易受噪声干扰的问题,改进的欧拉方法是个很好的选择。

Runge-Kutta方法Runge-Kutta方法是ODE计算的最常用的二阶和高阶数值方法之一。

这个方法对定义域内的每个点都计算一个导数。

显式四阶Runge-Kutta方法(RK4)是最常用的Runge-Kutta方法之一,并已得到大量实践的验证。

常微分方程数值解法

常微分方程数值解法

介绍常微分方程数值解法常微分方程(ordinary differential equations,ODE)可用于描述许多日常存在的物理系统。

处理ODE问题常常被称为数值求解法,这指的是找到概括ODE或者其他适用于数学模型的解决方案来模括这些ODE。

这种解决方案可能在一系列不同方案中发挥重要作用,以此来提供更好的解释和预测。

常微分方程与几何图形更为相关,它利用二维或者三维空间中曲线的绘制以及分析。

通过引入一些不同的方法,可以对不同的常微分方程中的量进行描述,使得可以通过数值方法的解析来进行研究。

数值解法可能是时间消耗较多的,但有助于验证几何图形中的某些过程,以此帮助揭示数学模型。

四种常见的常微分方程数值解法四种常见的常微分方程数值解法是:前向差分法、向后差分法、中点法和全分方法。

•前向差分法:前向差分法的基本概念是利用ODE的特定解来表达时间步的影响。

这是一种基本的数值法,可以在ODE中确定任意位置的点作为终点。

在这里,任何这样的点都可以表示为ODE右边的时间步。

•向后差分法:它是反过来基于前向差分法。

它要求对ODE中的时间步进行逆向推导,以获得某一特定点的解。

向后差分法要求推导反向解中点,以便可以从每一步中获取该点的解。

•中点法:这是一种非常基本的数值解法,可以用来求解ODE中的某一步的解,但不具有直观的方法解释。

主要的思想是在每一次时间步中通过求出ODE的中点来寻找解。

•全分方法:这是一种更复杂的数值解法,它要求将ODE中的每一步解细分并解决。

与前面提到的三种解法不同,它首先要求将ODE分解成若干离散区间,然后计算每一段区间中的点。

这种解法可以更准确地进行处理,但时间消耗较多,因此比较少被使用。

优化方案在需要解决常微分方程时,为了得到最佳的结果,有必要考虑一些优化措施。

•首先,应考虑将一个复杂的ODE拆分成一些更易解决的问题。

这样做的结果是,预见到解决此ODR的总耗时将会降低。

•其次,为了加快计算速度,可以考虑使用预解算法。

常微分方程的数值解法

常微分方程的数值解法

常微分方程的数值解法1. 引言常微分方程是自变量只有一个的微分方程,广泛应用于自然科学、工程技术和社会科学等领域。

由于常微分方程的解析解不易得到或难以求得,数值解法成为解决常微分方程问题的重要手段之一。

本文将介绍几种常用的常微分方程的数值解法。

2. 欧拉方法欧拉方法是最简单的一种数值解法,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上假设解函数为线性函数,即通过给定的初始条件在每个子区间上构造切线;- 使用切线的斜率(即导数)逼近每个子区间上的解函数,并将其作为下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。

3. 改进的欧拉方法改进的欧拉方法是对欧拉方法的一种改进,主要思想是利用两个切线的斜率的平均值来逼近每个子区间上的解函数。

具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上构造两个切线,分别通过给定的初始条件和通过欧拉方法得到的下一个初始条件;- 取两个切线的斜率的平均值,将其作为该子区间上解函数的斜率,并计算下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。

4. 二阶龙格-库塔方法二阶龙格-库塔方法是一种更为精确的数值解法,其基本思想是通过近似计算解函数在每个子区间上的平均斜率。

具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上计算解函数的斜率,并以该斜率的平均值近似表示该子区间上解函数的斜率;- 利用该斜率近似值计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。

5. 龙格-库塔法(四阶)龙格-库塔法是目前常用的数值解法之一,其精度较高。

四阶龙格-库塔法是其中较为常用的一种,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上进行多次迭代计算,得到该子区间上解函数的近似值;- 利用近似值计算每个子区间上的斜率,并以其加权平均值逼近解函数的斜率;- 计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。

常微分方程数值解

常微分方程数值解

常微分方程数值解常微分方程数值解是数学中的一门重要学科,主要研究如何求解常微分方程,在科学计算中有着重要的应用。

常微分方程模型是自然界中广泛存在的现象描述方法,有着广泛的应用领域。

比如,在物理学中,运动中的物体的位置、速度和加速度随时间的关系就可以通过微分方程描述;在经济学中,经济变化随时间的变化也可以用微分方程来描述。

而常微分方程数值解的求解方法则提供了一种快速、高效的计算手段。

一、常微分方程数值解的基本概念常微分方程就是一个描述自变量(通常是时间)与其导数之间关系的方程。

其一般形式如下:$\frac{dy}{dt} = f(y,t)$其中 $f(y,t)$ 是一个已知的函数。

常微分方程数值解就是对于一个常微分方程,对其进行数字计算求解的方法。

常微分方程数值解常使用数值积分的方法来求解。

由于常微分方程很少有解析解,因此数值解的求解方法显得尤为重要。

二、常微分方程数值解的求解方法常微分方程数值解的求解方法很多,以下介绍其中两种方法。

1.欧拉法欧拉法是最简单的一种数值算法,其思想是通过将一个微分方程转化为一个数值积分方程来求解。

其数值积分方程为:$y_{i+1}=y_i+hf(y_i,t_i)$其中 $h$ 为步长,可以理解为每次计算的间隔。

欧拉法的主要缺点是其精度比较低,收敛速度比较慢。

因此,当需要高精度的数值解时就需要使用其他的算法。

2.级数展开方法级数展开法是通过将一个待求解的微分方程进行Taylor级数展开来求解。

通过对Taylor级数展开的前若干项进行求和,可以得到微分方程与其解的近似解。

由于级数展开法的收敛速度很快,因此可以得到相对较高精度的数值解。

但是,当级数过多时,会出现截断误差。

因此,在实际应用中需要根据所需精度和计算资源的限制来选择适当的级数。

三、常微分方程数值解的应用常微分方程数值解在现代科学技术中有着广泛的应用。

以下介绍其中两个应用领域。

1.物理建模常微分方程的物理建模是常见的应用领域。

常微分方程数值解法_OK

常微分方程数值解法_OK

y(xi )
O(h3)][yi
hf
(xi ,
yi )]
h2 2
y(xi ) O(h3 )
O(h2 )
欧拉法具有 1 阶精度。4
2. 隐式 Euler法
用向后差商公式代替导数项
y(xi1 ) h
y(xi )
y' (xi1 )
h 2
y' ' ( i
)
y(xi1 ) h
y(xi )
f (xi1, y(xi1 ))
i1 y(xi1 ) yi1 O(h3f)x ( x, y) f y ( x, y) f ( x, y) Step 1: 将 K2 在 ( xi , yi ) 点作 Taylor 展开
K2 f (xi ph, yi phK1)
f (xi , yi ) phfx (xi , yi ) phK1 f y (xi , yi ) O(h2 ) y(xi ) phy(xi ) O(h 2 )
f
(
xi
1
,
y(
xi
1
))]
h3 12
f
''( )
所以,有格式为:
yi1
yi
h[ f 2
(xi , yi )
f
(xi1, yi1 )]
上式称为梯形格式。
类似,可以算出梯形格式的误差估计式:
i1 O(h3 )
2阶的方法
梯形法是二阶、隐式单步的方法,要用迭代法求解。怎么求?
8
改进欧拉格式 /* modified Euler’s Formula */
xi1, yi h f ( xi , yi )
(i 0, ..., n 1)

常微分方程的数值解法

常微分方程的数值解法
第九章 常微分方程的数值解法
主要内容
§1、引言 §2、初值问题的数值解法--单步法 §3、龙格-库塔方法 §4、收敛性与稳定性 §5、初值问题的数值解法―多步法 §6、方程组和刚性方程 §7、习题和总结
§1、 引 言 主要内容 ➢研究的问题 ➢数值解法的意义
1.什么是微分方程 ? 现实世界中大多数事物
使得对任意的x [a,b]及y1, y2都成立
则称 f (x,y) 对y 满足李普希兹条件,L 称为 Lipschitz常数.
就可保证方程解的存在唯一性
若 f (x,y) 在区域 G连续,关于y
满足李普希兹 条件
一阶常微分方程的初值问题的解存在且唯一. 我们以下的讨论,都在满足上述条件下进行.
一阶常微分方程组常表述为:
y(x0
)
y0
(1.2)
种 数 值 解

其中f (x,y)是已知函数,(1.2)是定解条件也称为 初值条件。
常微分方程的理论指出:
当 f (x,y) 定义在区域 G=(a≤x≤b,|y|<∞)
若存在正的常数 L 使:
(Lipschitz)条件
| f (x, y1) f (x, y2) | L | y1 y2 | (1.3)
节点 xi a ihi,一般取hi h( (b a) / n)即等距
要计算出解函数 y(x) 在一系列节点
a x0 x1 xn b
处的近似值 yi y(xi )
y f (x, y)
y
(
x0
)
y0
a xb
(1.1) (1.2)
对微分方程(1.1)两端从 xn到xn1 进行积分
内部联系非常复杂
其状态随着 时间、地点、条件 的不同而不同

常微分方程数值解法

常微分方程数值解法

ρ ρ
n+1 n
≤1
三、梯形公式
由 分 径 y ( xn+1) = y ( xn) + 积 途 : xn+1

f ( x, y)dt

积分 梯形 式 且令:yn+1 = y( xn+1), yn = y( xn) 用 公 , h 则 yn+1 = yn + ( f (xn , yn) + f (xn+1 , yn+1)) 得: 2
第九章 常微分方程数值解法
§1 、引言
一 常 分 程 初 问 : 阶 微 方 的 值 题 dy dx = f (x, y) y( x0) = y0
'
a ≤ x ≤b
2 y 例 : 方 程 xy -2 y = 4 x ⇒ y = + 4 x 2 y 令 :f ( x , y ) = + 4 且 给 出 初 值 y (1 )= -3 x 就 得 到 一 阶 常 微 分 方 程 的 初 值 问 题 : 2 y dy = f (x, y) = + 4 dx x y(1) = − 3
n n n n n 2 // n n+1
~
y
n+1
= yn + hf ( xn, yn ) = y(xn) + hf
n+1
~
y
n+1
( x , y( x ))
n n
则 T = y( x ) − = h y (ξ ) x y 2 ~
// n+1 n+1
2
n
< ξ < xn+1

常微分方程组数值解法

常微分方程组数值解法

常微分方程组数值解法一、引言常微分方程组是数学中的一个重要分支,它在物理、工程、生物等领域都有广泛应用。

对于一些复杂的常微分方程组,往往难以通过解析方法求解,这时候数值解法就显得尤为重要。

本文将介绍常微分方程组数值解法的相关内容。

二、数值解法的基本思想1.欧拉法欧拉法是最基础的数值解法之一,它的思想是将时间连续化,将微分方程转化为差分方程。

对于一个一阶常微分方程y'=f(x,y),其欧拉公式为:y_{n+1}=y_n+hf(x_n,y_n)其中h为步长,x_n和y_n为第n个时间点上x和y的取值。

2.改进欧拉法改进欧拉法是对欧拉法的改良,其公式如下:y_{n+1}=y_n+\frac{h}{2}[f(x_n,y_n)+f(x_{n+1},y_n+hf(x_n,y_n))] 3.四阶龙格-库塔方法四阶龙格-库塔方法是目前最常用的数值解法之一。

其公式如下:k_1=f(x_n,y_n)k_2=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_1)k_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_2)k_4=f(x_n+h,y_n+hk_3)y_{n+1}=y_n+\frac{h}{6}(k_1+2k_2+2k_3+k_4)其中,k_i为中间变量。

三、常微分方程组的数值解法1.欧拉法对于一个二阶常微分方程组:\begin{cases} y'_1=f_1(x,y_1,y_2) \\ y'_2=f_2(x,y_1,y_2)\end{cases}其欧拉公式为:\begin{cases} y_{n+1,1}=y_{n,1}+hf_1(x_n,y_{n,1},y_{n,2}) \\y_{n+1,2}=y_{n,2}+hf_2(x_n,y_{n,1},y_{n,2}) \end{cases}其中,x_n和y_{n,i}(i=1, 2)为第n个时间点上x和y_i的取值。

常微分方程数值解法

常微分方程数值解法

用分段的折线逼近函数,此为 “折线法”而非“切线法”, 除第一个点是曲线上的切线,
其它都不是。
2、Euler方法的误差估计
1)局部截断误差。 在一步中产生的误差而非累积误差:
~
T x y y

n1
n1
n1
其中
~
y
是当
y
n

y(
x
)
n
(精确解!)时
n1
由Euler法求出的值,即y 无误差! n
T x y h y 则
y
n1
~
2

n1
n1 2
//
x x
n
n1
令 M 2 max y// (x) , y(x) 充分光滑,则: a xb
T M h h n 1
2
O 2 22
3、 总体方法误差(1)
递推方法:从任意两相邻步的总体误差关系
第九章 常微分方程数值解法
§1 、引言
一阶常微分方程的初值问题:
dy

dx

f (x, y)
a xb

y
(
x
)
0

y 0
例: 方程 xy' -2y=4x y' = 2 y 4 x
令:f(x,y)= 2 y 4 且给出初值 y(1)=-3 x
就得到一阶常微分方程的初值问题:
n
n
n1
y y x y hf ( , ) n 0, 1, 2,
n1
n
n
n
Taylor展开法不仅可得到求数值解的公式,且容易估计
截断误差。
§2 尤拉(Eular)方法

常微分方程的数值解法

常微分方程的数值解法

常微分方程的数值解法常微分方程是研究变量的变化率与其当前状态之间的关系的数学分支。

它在物理、工程、经济等领域有着广泛的应用。

解常微分方程的精确解往往十分困难甚至不可得,因此数值解法在实际问题中起到了重要的作用。

本文将介绍常见的常微分方程的数值解法,并比较其优缺点。

1. 欧拉方法欧拉方法是最简单的数值解法之一。

它基于近似替代的思想,将微分方程中的导数用差商近似表示。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)根据微分方程的定义使用近似来计算下一个点的值。

欧拉方法的计算简单,但是由于误差累积,精度较低。

2. 改进欧拉方法为了提高欧拉方法的精度,改进欧拉方法应运而生。

改进欧拉方法通过使用两个点的斜率的平均值来计算下一个点的值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)根据微分方程的定义使用近似来计算下一个点的值。

改进欧拉方法相较于欧拉方法而言,精度更高。

3. 龙格-库塔法龙格-库塔法(Runge-Kutta)是常微分方程数值解法中最常用的方法之一。

它通过迭代逼近精确解,并在每一步中计算出多个斜率的加权平均值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)计算各阶导数的导数值。

(4)根据权重系数计算下一个点的值。

与欧拉方法和改进欧拉方法相比,龙格-库塔法的精度更高,但计算量也更大。

4. 亚当斯法亚当斯法(Adams)是一种多步法,它利用之前的解来近似下一个点的值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)通过隐式或显式的方式计算下一个点的值。

亚当斯法可以提高精度,并且比龙格-库塔法更加高效。

5. 多步法和多级法除了亚当斯法,还有其他的多步法和多级法可以用于解常微分方程。

多步法通过利用多个点的值来逼近解,从而提高精度。

而多级法则将步长进行分割,分别计算每个子问题的解,再进行组合得到整体解。

常微分方程的数值解法全文

常微分方程的数值解法全文

第8章常微分方程的数值解法8.4单步法的收敛性与稳定性8.4.1相容性与收敛性上面所介绍的方法都是用离散化的方法,将微分方程初值问题化为差分方程初值问题求解的.这些转化是否合理?即当h →∞时,差分方程是否能无限逼近微分方程,差分方程的解n y 是否能无限逼近微分方程初值问题的准确解()n y x ,这就是相容性与收敛性问题.用单步法(8.3.14)求解初值问题(8.1.1),即用差分方程初值问题100(,,)()n n n n y y h x y h y x y ϕ+=+⎧⎨=⎩(8.4.1)的解作为问题(8.1.1)的近似解,如果近似是合理的,则应有()()(,(),)0 (0)y x h y x x y x h h hϕ+--→→(8.4.2)其中()y x 为问题(8.1.1)的精确解.因为0()()lim ()(,)h y x h y x y x f x y h→+-'==故由(8.4.2)得lim (,,)(,)h x y h f x y ϕ→=如果增量函数(,(),)x y x h ϕ关于h 连续,则有(,,0)(,)x y f x y ϕ=(8.4.3)定义8.3如果单步法的增量函数(,,)x y h ϕ满足条件(8.4.3),则称单步法(8.3.14)与初值问题(8.1.1)相容.通常称(8.4.3)为单步法的相容条件.满足相容条件(8.4.3)是可以用单步法求解初值问题(8.1.1)的必要条件.容易验证欧拉法和改进欧拉法均满足相容性条件.一般地,如果单步法有p 阶精度(1p ≥),则其局部截断误差为[]1()()(,(),)()p y x h y x h x y x h O h ϕ++-+=上式两端同除以h ,得()()(,,)()p y x h y x x y h O h hϕ+--=令0h →,如果(,(),)x y x h ϕ连续,则有()(,,0)0y x x y ϕ'-=所以1p ≥的单步法均与问题(8.1.1)相容.由此即得各阶龙格-库塔法与初值问题(8.1.1)相容.定义8.4一种数值方法称为是收敛的,如果对于任意初值0y 及任意固定的(,]x a b ∈,都有lim () ()n h y y x x a nh →==+其中()y x 为初值问题(8.1.1)的精确解.如果我们取消局部化假定,使用某单步法公式,从0x 出发,一步一步地推算到1n x +处的近似值1n y +.若不计各步的舍入误差,而每一步都有局部截断误差,这些局部截断误差的积累就是整体截断误差.定义8.5称111()n n n e y x y +++=-为某数值方法的整体截断误差.其中()y x 为初值问题(8.1.1)的精确解,1n y +为不计舍入误差时用某数值方法从0x 开始,逐步得到的在1n x +处的近似值(不考虑舍入误差的情况下,局部截断误差的积累).定理8.1设单步法(8.3.14)具有p 阶精度,其增量函数(,,)x y h ϕ关于y 满足利普希茨条件,问题(8.1.1)的初值是精确的,即00()y x y =,则单步法的整体截断误差为111()()p n n n e y x y O h +++=-=证明由已知,(,,)x y h ϕ关于y 满足利普希茨条件,故存在0L >,使得对任意的12,y y 及[,]x a b ∈,00h h <≤,都有1212(,,)(,,)x y h x y h L y y ϕϕ-≤-记1()(,(),)n n n n y y x h x y x h ϕ+=+,因为单步法具有p 阶精度,故存在0M >,使得1111()p n n n R y x y Mh ++++=-≤从而有111111111()()()(,(),)(,,)()(,(),)(,,)n n n n n n n p n n n n n n p n n n n n n e y x y y x y y y Mh y x h x y x h y h x y h Mh y x y h x y x h x y h ϕϕϕϕ+++++++++=-≤-+-≤++--≤+-+-1(1)p nMh hL e +≤++反复递推得11111101110(1)(1)1(1)(1)(1)(1)1(1)p p n n n p n n p n e Mh hL Mh hL e hL hL Mh hL e hL Mh hL e hL+++-+++++⎡⎤≤++++⎣⎦⎡⎤≤+++++++⎣⎦+-≤++因为00()y x y =,即00e =,又(1)n h b a +≤-,于是ln(1)1()(1)(1)b a b a hL n L b a h h hL hL e e --++-+≤+=≤所以()11()p L b a p n M e h e O h L -+⎡⎤≤-=⎣⎦推论设单步法具有p (1p ≥)阶精度,增量函数(,,)x y h ϕ在区域G :, , 0a x b y h h ≤≤-∞<<+∞≤≤上连续,且关于y 满足利普希茨条件,则单步法是收敛的.当(,)f x y 在区域:,D a x b y ≤≤-∞<<+∞上连续,且关于y 满足利普希茨条件时,改进欧拉法,各阶龙格-库塔法的增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,因而它们都是收敛的.关于单步法收敛的一般结果是:定理8.2设增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,则单步法收敛的充分必要条件是相容性条件(8.4.3).8.4.2稳定性稳定性与收敛性是两个不同的概念,收敛性是在假定每一步计算都准确的前提下,讨论当步长0h →时,方法的整体截断误差是否趋于零的问题.而稳定性则是讨论舍入误差的积累能否对计算结果有严重影响的问题.定义8.6若一种数值方法在节点值n y 上有一个大小为δ的扰动,于以后各节点()m y m n >上产生的偏差均不超过δ,则称该方法是稳定的.我们以欧拉法为例进行讨论.假设由于舍入误差,实际得到的不是n y 而是n n n y y δ=+,其中n δ是误差.由此再计算一步,得到1(,)n n n n y y hf x y +=+把它与不考虑舍入误差的欧拉公式相减,并记111n n n y y δ+++=-,就有[]1(,)(,)1(,)n n n n n n y n nh f x y f x y hf x δδηδ+⎡⎤=+-=+⎣⎦其中y f f y∂=∂.如果满足条件1(,)1y n hf x η+≤,(8.4.4)则从n y 到1n y +的计算,误差是不增的,可以认为计算是稳定的.如果条件(8.4.4)不满足,则每步误差将增大.当0y f >时,显然条件(8.4.4)不可能满足,我们认为问题本身具有先天的不稳定性.当0y f <时,为了满足稳定性要求(8.4.4),有时h 要很小.一般的,稳定性与方法有关,也与步长h 的大小有关,当然也与方程中的(,)f x y 有关.为简单起见,通常只考虑数值方法用于求解模型方程的稳定性,模型方程为y y λ'=(8.4.5)其中λ为复数.一般的方程可以通过局部线性化转化为模型方程,例如在(,)x y 的邻域(,)(,)(,)()(,)()x y y f x y f x y f x y x x f x y y y '==+-+-+略去高阶项,再作变量替换就得到u u λ'=的形式.对于模型方程(8.4.5),若Re 0λ>,类似以上分析,可以认为方程是不稳定的.所以我们只考虑Re 0λ<的情形,这时不同的数值方法可能是数值稳定的或者是数值不稳定的.当一个单步法用于试验方程y y λ'=,从n y 计算一步得到1()n n y E h y λ+=(8.4.6)其中()E h λ依赖于所选的方法.因为通过点(,)n n x y 试验方程的解曲线(它满足,()n n y y y x y λ'==)为[]exp ()n n y y x x λ=-,而一个p 阶单步法的局部截断误差在()n n y x y =时有1111()()p n n n T y x y O h ++++=-=,所以有1exp()()()p n n y h E h y O h λλ+-=(8.4.7)这样可以看出()E h λ是h e λ的一个近似值.由(8.4.6)可以看到,若n y 计算中有误差ε,则计算1n y +时将产生误差()E h λε,所以有下面定义.定义8.7如果(8.4.6)式中,()1E h λ<,则称单步法(8.3.14)是绝对稳定的.在复平面上复变量h λ满足()1E h λ<的区域,称为方法(8.3.14)的绝对稳定区域,它与实轴的交称为绝对稳定区间.在上述定义中,规定严格不等式成立,是为了和线性多步法的绝对稳定性定义一致.事实上,()1E h λ=时也可以认为误差不增长.(1)欧拉法的稳定性欧拉法用于模型方程(8.4.5),得1(1)n n y h y λ+=+,所以有()1E h h λλ=+.所以绝对稳定条件是11h λ+<,它的绝对稳定区域是h λ复平面上以(1,0)-为中心的单位圆,见图8.3.而λ为实数时,绝对稳定区间是(2,0)-.Im()h λRe()h λ2-1-O 图8.3欧拉法的绝对稳定区域(2)梯形公式的稳定性对模型方程,梯形公式的具体表达式为11()2n n n n h y y y y λλ++=++,即11212n nh y y h λλ++=-,所以梯形公式的绝对稳定区域为12112h h λλ+<-.化简得Re()0h λ<,因此梯形公式的绝对稳定区域为h λ平面的左半平面,见图8.4.特别地,当λ为负实数时,对任意的0h >,梯形公式都是稳定的.Im()h λRe()h λO 图8.4梯形公式的绝对稳定区域(3)龙格-库塔法的稳定性与前面的讨论相仿,将龙格-库塔法用于模型方程(8.4.5),可得二、三、四阶龙格-库塔法的绝对稳定区域分别为211()12h h λλ++<23111()()126h h h λλλ+++<2341111()()()12624h h h h λλλλ++++<当λ为实数时,二、三、四阶显式龙格-库塔法的绝对稳定区域分别为20h λ-<<、2.510h λ-<<、 2.780h λ-<<.例8.5设有初值问题21010101(0)0xy y x x y ⎧'=-≤≤⎪+⎨⎪=⎩用四阶经典龙格-库塔公式求解时,从绝对稳定性考虑,对步长h 有何限制?解对于所给的微分方程有2100,(010)1f x x y xλ∂==-<≤≤∂+在区间[0,10]上,有201010max ||max51t x x λ<<==+由于四阶经典龙格-库塔公式的绝对稳定区间为 2.7850h λ-<<,则步长h 应满足00.557h <<.。

常微分方程数值解法

常微分方程数值解法

第八章 常微分方程的数值解法一.内容要点考虑一阶常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。

在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。

用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。

(一)常微分方程处置问题解得存在唯一性定理对于常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy如果:(1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。

(2) ),(y x f 对于y 满足利普希茨条件,即2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。

定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。

收敛性定理:若一步方法满足: (1)是p 解的.(2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件.(3) 初始值y 0是精确的。

则),()()(p h O x y kh y =-kh =x -x 0,也就是有0x y y lim k x x kh 0h 0=--=→)((一)、主要算法 1.局部截断误差局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~+k y 的误差y (x k+1)- 1~+k y 称为局部截断误差。

常微分方程的数值解

常微分方程的数值解
欧拉方法的公式为$y_{n+1} = y_n + h f(x_n, y_n)$,其中$h$是步长,$f(x, y)$是微分方程的右端函数。
欧拉方法的实现
确定步长和初始值
根据问题的性质和精度要求,选择合适的步长 和初始值。
迭代计算
根据欧拉方法的公式,迭代计算下一个点的值。
终止条件
当达到预设的迭代次数或误差范围时,停止迭代。
常微分方程的应用
总结词
常微分方程在自然科学、工程技术和社会科学等领域有广泛应用。
详细描述
在物理学中,常微分方程可以描述物体的运动规律、电磁波的传播等;在化学中,可以描述化学反应 的动力学过程;在社会科学中,可以用于研究人口增长、经济趋势等。此外,常微分方程还在控制工 程、航空航天等领域有广泛应用。
确定步长和初始值
在应用龙格-库塔方法之前,需要 选择合适的步长和初始值。步长 决定了迭代的精度,而初始值则 用于启动迭代过程。
编写迭代公式
根据选择的步长和初始值,编写 龙格-库塔方法的迭代公式。该公 式将使用已知的函数值和导数值 来计算下一步的函数值。
迭代求解
按照迭代公式进行迭代计算,直 到达到所需的精度或达到预设的 最大迭代次数。
欧拉方法的误差分析
截断误差
由于欧拉方法只使用了微分方程的一次项, 因此存在截断误差。
全局误差
全局误差是实际解与近似解之间的最大偏差。
局部误差
由于每一步都使用了上一步的结果,因此存 在局部误差。
稳定性
欧拉方法是稳定的,但步长和初始值的选择 会影响其稳定性和精度。
04 龙格-库塔方法
龙格-库塔方法的原理
常用的数值解法包括欧拉方法、龙格-库塔方法、改进的欧拉方法、预估 校正方法和步进法等。

计算方法 第6章 常微分方程数值解

计算方法 第6章 常微分方程数值解

已知Euler格式 yn1 yn hf ( xn , yn )
h2 y( xn1 ) yn1 2 y''( xn )
即Euler格式具有一阶精度
如果令
y( xn1 ) y( xn1 ) 2h

y'( xn )
f ( xn , yn )
并假定 y( xn1 ) yn1, y( xn ) yn
常微分方程数值解
常微分方程的数值解法
§1 引 言 §2 欧拉方法 §3 龙格-库塔方法
2
§1 引 言
在工程和科学技术的实际问题中,常需要解常微 分方程。但常微分方程组中往往只有少数较简单和典 型的常微分方程(例如线性常系数常微分方程等)可 求出其解析解。对于变系数常微分方程的解析求解就 比较困难,而一般的非线性常微分方程就更不用说了。 在大多数情况下,常微分方程只能用近似法求解。这 种近似解法可分为两大类:一类是近似解析法,如级 数解法、逐次逼近法等;另一类则是数值解法,它给 出方程在一些离散点上的近似解。
yn
2
xn yn

令 h 0.1 将 x0 0, y0 1 代入Euler格式
步进计算结果见P106表5.1
第五章:常微分方程数值解
Euler值
y 1 2x
第五章:常微分方程数值解
Euler格式的误差分析
pn1
事实上Euler格式的每一步都存在误差,为了方便讨论y算( x)

d2x
dt 2 x(t
0
c
m )
x x
0
0 (t

t) 0

x(t ) x
0
0
5

常微分方程数值解法

常微分方程数值解法

常微分方程数值解法常微分方程是研究函数的导数与自变量之间的关系的数学分支,广泛应用于物理、工程、生物等领域的建模与分析。

在实际问题中,我们常常遇到无法通过解析方法求得精确解的常微分方程,因此需要利用数值解法进行求解。

本文将介绍几种常用的常微分方程数值解法。

一、欧拉方法(Euler's Method)欧拉方法是最基本的数值解法之一。

它的思想是将微分方程转化为差分方程,通过逐步逼近解的方式求得数值解。

具体步骤如下:1. 将微分方程转化为差分方程:根据微分方程的定义,可以得到差分方程形式。

2. 选择步长:将自变量范围进行离散化,确定步长h。

3. 迭代计算:根据差分方程递推公式,利用前一步的数值解计算后一步的数值解。

二、改进的欧拉方法(Improved Euler's Method)改进的欧拉方法通过使用欧拉方法中的斜率来进行更准确的数值计算。

具体步骤如下:1. 计算欧拉方法的斜率:根据当前节点的数值解计算斜率。

2. 根据斜率计算改进的数值解:将得到的斜率代入欧拉方法的递推公式中,计算改进的数值解。

三、龙格-库塔方法(Runge-Kutta Method)龙格-库塔方法是一类常微分方程数值解法,其中最著名的是四阶龙格-库塔方法。

它通过计算各阶导数的加权平均值来逼近解,在精度和稳定性方面相对较高。

具体步骤如下:1. 计算每一步的斜率:根据当前节点的数值解计算每一步的斜率。

2. 计算权重:根据斜率计算各个权重。

3. 计算下一步的数值解:根据计算得到的权重,将其代入龙格-库塔方法的递推公式中,计算下一步的数值解。

四、多步法(多步差分法)多步法是需要利用多个前面节点的数值解来计算当前节点的数值解的数值方法。

常见的多步法有Adams-Bashforth法和Adams-Moulton法。

具体步骤如下:1. 选择初始值:根据差分方程的初始条件,确定初始值。

2. 迭代计算:根据递推公式,利用前面节点的数值解计算当前节点的数值解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 常微分方程的数值解【实验目的】1.掌握用MATLAB软件求微分方程初值问题数值解的方法;2.通过实例用微分方程模型解决简化的实际问题;3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。

【实验内容】题3小型火箭初始重量为1400kg,其中包括1080kg燃料。

火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。

设火箭上升时空气阻力正比于速度的平方,比例系数为m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。

模型及其求解火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=s2。

在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。

因此有如下二式:a=dv/dt=/m=/(1400-18t)dh/dt=v又知初始时刻t=0,v=0,h=0。

记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。

程序如下:function [ dx ] = rocket( t,x )a=[*x(2)^2)/(1400-18*t)];dx=[x(2);a];endts=0:1:60;x0=[0,0];[t,x]=ode45(@rocket,ts,x0);h=x(:,1);v=x(:,2);a=[*(v.^2))./(1400-18*t)];[t,h,v,a];数据如下:t h v a 000因此,在引擎关闭的瞬间,火箭的速度为s,高度为,加速度为s2。

(2)在第二个阶段,火箭的重量保持不变,没有向上的推力,只收到重力和空气阻力。

因此有如下关系式:a=dv/dt=/m=dh/dt=v假设在80秒之前达到最高点,以60秒时的速度、高度、加速度为初始值进行计算,程序如下:function [ dx ] = rocket2( t,x )dx=[x(2);*x(2)^2/];endts2=60:1:80;x1=[,];[t2,x2]=ode45(@rocket2,ts2,x1);h2=x2(:,1);v2=x2(:,2);a2=*v2.^2./;[t2,h2,v2,a2];数据如下:t2 h2 v2 a2可以看到:在第60秒瞬间,加速度发生了突变,从s2突变为s2;而在第71秒至第72秒之间,速度从正变为负,即速度反向,说明在第71秒中的某个时刻速度为零,火箭达到了最高点。

因此需要对这个时间段进行分析,并且找到速度减小到0的时刻和此时的高度。

以为步长,在71s到72s中重新求解微分方程的数值解。

可见在t=时,速度为,可视为速度为零点,此时最大高度为,加速度。

综合(1),(2),可以绘出高度,速度和加速度随时间的变化曲线。

plot(t,h,t2,h2),xlabel('t/s'),ylabel('h/m'),title('高度随时间变化曲线');plot(t,v,t2,v2),xlabel('t/s'),ylabel('v/(m/s)'),title('速度随时间变化曲线');aa=[a',a2']';tt=[t',t2']';plot(tt,aa),xlabel('t/s'),ylabel('a/(m/s2)'),title('加速度随时间的变化曲线');题6一只小船渡过宽为d的河流,目标是起点A正对着的另一岸B点。

已知河水流速v 1与船在静水中的速度v 2之比为k 。

(1)建立描述小船航线的数学模型,求其解析解;(2)设d=100m ,v 1=1m/s ,v 2=2m/s ,用数值解法求渡河所需时间、任意时刻小船的位置及航行曲线,作图,并与解析解比较;(3)若流速v 1=0,,,2m/s ,结果将如何。

模型及其求解(1).假设在航行过程中,人们不知道水流的速度,小船的方向始终指向目标B ,因此若以B 为原点,我们可以得到如下方程组:解初值为(x, y )=( 0, -d) 的常微分方程组,得到解析解为:其中c=–1/d=–,故有事实上,若用matlab 中计算微分方程的语句:[x,y]=dsolve('Dx=v1-v2*x/sqrt(x^2+y^2)','Dy=-v2*y/sqrt(x^2+y^2)','x(0)=0','y(0)=-d','t');则显示“Warning: Explicit solution could not be found.”即无法得到x,y 关于t 的分立解。

(2)d=100m,v 1=1m/s,v 2=2m/s 。

求数值解时,由解析解可以看出,此为刚性方程。

为避免用ode45s 求解时间过长。

采用ode23s 进行求解。

假定100s 可以到达对岸。

ts=0::100; x0=[0,-100];[t,x]=ode23s(@boat,ts,x0); [t,x];plot(t,x);gtext('x');gtext('y');xlabel('时间t/s');ylabel('距离/m');title('x,y 与时间t 的关系'); 可以得到数据如下(部分): t/s x/m y/m1dx v dt dy dt ⎧=-⎪⎪⎨⎪=⎪⎩1111022k k k kx c y c y +--+-=1111()(0.01)(0.01)22k k k k x y y y +--=--+-可知在t=时,船到达对岸B点。

做x,y与时间t的关系图:从曲线上可以看出,0到30s这段时间内,y的增长几乎呈线性关系,即小船几乎研直线匀速前进。

现在求解析解并将之与数值解对比:function [ x] = jiexi(y,k)x=*^k*y.^(k+1)+*^(-k).*y.^(1-k);endy=-100:1:0;x2=jiexi(y,;plot(x2,y,'ro',x(:,1),x(:,2));legend('解析解','数值解',-1);从轨迹曲线中也可以看到,用数值解得到结果与解析解几乎重合,可信度很高。

(3)当改变v1的值时,解析式中的k值将发生变化,此时将对结果产生影响。

利用MATLAB计算和绘图也可以发现,渡河时间及航行曲线都发生了变化。

v1=0时,k=0。

说明河水静止不动,这种情况下,小船的总速度就是它在静水中的速度,于是沿着AB直线便可到达对岸,计算结果表示,t=50s时,小船到达B点。

v1=s时,k=,得到的曲线如下:这种情况下,t=时,小船到达B点,比起v1=1m/s时,小船在x方向上走过的距离缩短了大约一半,总路程缩短了许多。

v1=s时,k=,得到的曲线如下:这种情况下, t=,小船到达对岸,渡河时间明显长了许多。

而且由数值解的疏密程度也可以看出,小船花费较少时间久到达x的最大位移处,但是却花了相当长的时间回到x=0的目的地,可见s的河水流速给小船到达终点造成了巨大阻碍。

v1=2m/s时,k=1,得到的曲线如下:这种情况下,小船无论如何都无法到达B点,只能到达B点下游50米处。

从解析式中也可以看到,k=1时,有x(y)=+50。

曲线呈开口朝左的抛物线状。

从速度合成的三角形上来看,由于v1和v2长度相等,v1的方向也已确定,它们的合速度的方向与v1的夹角不可能大于90°,也就是说在x的分位移始终在增加,不可能减小。

即使v2沿着水流逆向,也只能使合速度为零,此时正好是小船停在B点下游50米处的情况。

类似的问题在高中物理出现过。

综合上述曲线,有下图:仔细观察解析式可以发现影响船过河轨迹仅是k值,即船与河水的相对速度,我们不妨作此假设。

如果我们用v1=2m/s,v2=4m/s与前面的结果做下对比(我们仅做数值解的对比,因为解析解相同)。

结果证明当v1=2m/s,v2=4m/s 时船的航行轨迹与v1=1m/s,v2=2m/s 航行轨迹相同,但时间缩短为。

而且继续实验当v1=4m/s,v2=8m/s时,船的航行轨迹也与前两种情况相同,但过河时间为,说明过河时间与船速成倒数关系,这是从航行轨迹相同、路程相等可以很自然导出的关系。

在实际问题中,人们通常会对水的流速做初步判断,以调整船行驶的方向,而不是单纯的每个时刻都将方向对准目的地。

同时由于水的流速也不是始终不变的,在不同的流域和不同的时刻流速都可能不同,本题中只是采取了最为简单的数学模型进行近似计算。

题9两种群相互竞争的模型如下:X’(t)=r1*x*(1-x/n1-s1*y/n2);Y’(t)=r2*y*(1-s2*x/n1-y/n2);其中X(t),Y(t)分别为甲乙两种种群的数量;r1,r2为他们的固有增长率;n1,n2为他们的最大容量。

s1的含义是:对于供养甲的资源而言,单位数量乙(相对n2)的消耗为单位数量的甲(相对n1)消耗的s1倍,对s2可做相应的解释。

该模型无解析解,使用数值的解法研究问题:(1)设r1=r2=1,n1=n2=100,s1=,s2=2,初值x0=y0=10,计算X(t),Y(t),画出他们的图形及相图(x,y),说明时间t充分大以后X(t),Y(t)的变化趋势。

(2)改变r1,r2,n1,n2,x0,y0,但保持s1,s2不变(或保持s1<1,s2>1),计算并分析所得结果;若s1=,s2=,再分析结果。

由此你能得到什么结论,请用各参数生态学上的含义做出解释。

(3)实验s1=,s2=和s1=,s2=时会有什么结果,并作出解释。

模型及其求解(1)编写程序如下:function [ dx ] = compt( t,x )r1=1;r2=1;n1=100;n2=100;s1=;s2=2;dx=[r1*x(1)*(1-x(1)/n1-s1*x(2)/n2);r2*x(2)*(1-s2*x(1)/n1-x(2)/n2)];endts=0::20;x0=[10,10];[t,x]=ode23s(@compt,ts,x0);[t,x];plot(t,x);title('t充分大后x(t),y(t)的变化趋势');xlabel('时间t');ylabel('种群数量');gtext('x(t)');gtext('y(t)');plot(x(:,1),x(:,2));xlabel('x');ylabel('y');title('相图x,y');设定t从0到20,得出t,x(t),y(t)的数值关系t X(t)Y(t)由统计数据可以看出,t=17时,乙种群的数量已经为0,之后甲种群的数量达到饱和。

相关文档
最新文档