2019年全国III卷文科数学高考真题

合集下载

2019年全国卷Ⅲ文数高考试题文档版(含答案)

2019年全国卷Ⅲ文数高考试题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16B .8C .4D .27.已知曲线e ln xy a x x =+在点(1,ae )处的切线方程为y =2x +b ,则 A .a =e ,b =–1B .a =e ,b =1C .a =e –1,b =1D .a =e –1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则O P F△的面积为 A .32B .52C .72D .9211.记不等式组6,20x y x y +≥⎧⎨-≥⎩表示的平面区域为D .命题:(,),2p x y D x y ∃∈+≥;命题:(,),21q x y D x y ∀∈+≤.下面给出了四个命题 ①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 二、填空题:本题共4小题,每小题5分,共20分。

2019年全国卷Ⅲ文数高考试题文档版含答案【高考】

2019年全国卷Ⅲ文数高考试题文档版含答案【高考】

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1,ae )处的切线方程为y =2x +b ,则 A .a =e ,b =–1B .a =e ,b =1C .a =e –1,b =1D .a =e –1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF△的面积为 A .32B .52C .72D .9211.记不等式组6,20x y x y +≥⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+≥;命题:(,),212q x y D x y ∀∈+≤.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 二、填空题:本题共4小题,每小题5分,共20分。

【数学】2019年高考真题——全国Ⅲ卷(文)(word版含答案).docx

【数学】2019年高考真题——全国Ⅲ卷(文)(word版含答案).docx

2019 年普通高等学校招生全国统一考试(全国Ⅲ 卷)文科数学一、选择题:本题共12 小题,每小题 5 分,共 60 分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合A{ 1,0,1,2},B { x x21} ,则 A B()A .1,0,1B .0,1C.1,1D.0,1,2 2.若z(1 i)2i,则 z=()A .1 iB .1+i C.1i D.1+i 3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()1B .11D.1A .4C.2634.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著 .某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A . 0.5B .0.6C. 0.7D.0.85.函数f ( x)2sinx sin2 x 在[0,2π]的零点个数为()A . 2B .3C. 4D. 56.已知各项均为正数的等比数列{ a n} 的前 4项和为 15,且 a5=3a3+4a1,则 a3=()A . 16 B . 8C. 4D. 27.已知曲线y ae x x ln x 在点(1,ae)处的切线方程为y=2x+b,则()A . a= e, b=-1B .a= e, b=1-1,b=1 D a= e-11 C. a= e.,b8.如图,点 N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面 ABCD ,M 是线段 ED 的中点,则()A . BM=EN ,且直线 BM 、 EN 是相交直线B . BM ≠EN ,且直线 BM , EN 是相交直线C . BM =EN ,且直线 BM 、 EN 是异面直线D . BM ≠EN ,且直线 BM , EN 是异面直线9.执行下边的程序框图,如果输入的为,则输出 s 的值等于()0.011 B. 1 1 1 A. 22C. 2D. 22425262710.已知 F 是双曲线 C :x 2y 2 1 的一个焦点,点 P 在 C 上,O 为坐标原点,若 OP = OF ,45则 △OPF 的面积为()3 B .5 7 9 A .2C .D .222x y ⋯6,表示的平面区域为D.命题 p : (x, y) D ,2 x y ⋯9 ;命题11.记不等式组2x y 0q : ( x, y) D ,2 x y, 12 .下面给出了四个命题① p q②p q③ p q④p q 这四个命题中,所有真命题的编号是()A .①③B .①②C.②③ D .③④12.设f x是定义域为 R 的偶函数,且在0,单调递减,则()132A .f( log3)> f (22)> f (23)4123B.f( log3)> f (23)> f (22 )4C.f(2 D.f(23223)> f (2)> f (223321)> f (log3)1)> f (log3)二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

【数学】2019年高考真题——全国卷Ⅲ(文)(精校版)

【数学】2019年高考真题——全国卷Ⅲ(文)(精校版)

2019年普通高等学校招生全国统一考试(全国Ⅲ卷)文科数学一、选择题1.已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B等于()A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}答案 A解析集合B={x|-1≤x≤1},则A∩B={-1,0,1}.2.若z(1+i)=2i,则z等于()A.-1-i B.-1+iC.1-i D.1+i答案 D解析z====1+i.3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.答案 D解析设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=.4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7.5.函数f(x)=2sin x-sin 2x在[0,2π]上的零点个数为()A.2 B.3 C.4 D.5答案 B解析令f(x)=0,得2sin x-sin 2x=0,即2sin x-2sin x cos x=0,∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.故函数f(x)的零点为0,π,2π,共3个.6.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3等于() A.16 B.8 C.4 D.2答案 C解析设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.7.已知曲线y=a e x+x ln x在点(1,a e)处的切线方程为y=2x+b,则()A.a=e,b=-1 B.a=e,b=1C.a=e-1,b=1 D.a=e-1,b=-1答案 D解析因为y′=a e x+ln x+1,所以y′|x=1=a e+1,所以曲线在点(1,a e)处的切线方程为y-a e=(a e+1)(x-1),即y=(a e+1)x-1,所以解得8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案 B解析取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD 的边长为2,则EO=,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=,CP=,所以BM2=MP2+BP2=2+2+22=7,得BM=,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.9.执行下边的程序框图,如果输入的ε为0.01,则输出s的值等于()A.2-B.2-C.2-D.2-答案 C解析执行程序框图,x=1,s=0,s=0+1=1,x=,不满足x<ε=,所以s=1+=2-,x=,不满足x<ε=,所以s=1++=2-,x=,不满足x<ε=,所以s=1+++=2-,x=,不满足x<ε=,所以s=1++++=2-,x =,不满足x<ε=,所以s=1+++++=2-,x=,不满足x<ε=,所以s=1++++…+=2-,x=,满足x<ε=.输出s=2-.10.已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A. B. C. D.答案 B解析由F是双曲线-=1的一个焦点,知|OF|=3,所以|OP|=|OF|=3.不妨设点P在第一象限,P(x0,y0),x0>0,y0>0,则解得所以P,所以S△OPF=|OF|·y0=×3×=.11.记不等式组表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题:①p∨q;②(綈p)∨q;③p∧(綈q);④(綈p)∧(綈q).这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④答案 A解析方法一画出可行域如图中阴影部分(含边界)所示.目标函数z=2x+y是一条平行移动的直线,且z的几何意义是直线z=2x+y在y轴上的截距.显然,当直线过点A(2,4)时,z min=2×2+4=8,即z=2x+y≥8.∴2x+y∈[8,+∞).由此得命题p:∃(x,y)∈D,2x+y≥9正确;命题q:∀(x,y)∈D,2x+y≤12不正确.∴①③真,②④假.方法二取x=4,y=5,满足不等式组且满足2x+y≥9,不满足2x+y≤12,故p真,q假.∴①③真,②④假.12.设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则()A.f >f () >f ()B.f >f ()>f ()C.f ()>f ()>fD.f ()>f ()>f答案 C解析根据函数f(x)为偶函数可知,f=f(-log34)=f(log34),因为0<<<20<log34,且函数f(x)在(0,+∞)上单调递减,所以f()>f()>f.二、填空题13.已知向量a=(2,2),b=(-8,6),则cos〈a,b〉=________.答案-解析∵a=(2,2),b=(-8,6),∴a·b=2×(-8)+2×6=-4,|a|==2,|b|==10.∴cos〈a,b〉===-.14.记S n为等差数列{a n}的前n项和.若a3=5,a7=13,则S10=________.答案100解析∵{a n}为等差数列,a3=5,a7=13,∴公差d===2,首项a1=a3-2d=5-2×2=1,∴S10=10a1+d=100.15.设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则得所以M的坐标为(3,).16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H 分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm,3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.答案118.8解析由题意得长方体ABCD-A1B1C1D1的体积为6×6×4=144(cm3),四边形EFGH为平行四边形,如图所示,连接GE,HF,易知四边形EFGH的面积为矩形BCC1B1面积的一半,即×6×4=12(cm2),所以V四棱锥O-EFGH=×3×12=12(cm3),所以该模型的体积为144-12=132(cm3),所以制作该模型所需原料的质量为132×0.9=118.8(g).三、解答题17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18.△ABC的内角A,B,C的对边分别为a,b,c.已知a sin =b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.解(1)由题设及正弦定理,得sin A sin=sin B sin A.因为sin A≠0,所以sin =sin B.由A+B+C=180°,可得sin =cos ,故cos =2sin cos .因为cos ≠0,故sin =,因此B=60°.(2)由题设及(1)知△ABC的面积S△ABC=a.由正弦定理,得a===+.由于△ABC为锐角三角形,故0°<A<90°,0°<C<90°.由(1)知A+C=120°,所以30°<C<90°,故<a<2,从而<S△ABC<.因此,△ABC面积的取值范围是.19.图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE =BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的四边形ACGD的面积.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,BE∩BC=B,BC,BE⊂平面BCGE,所以AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)解取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,又DE∩EM=E,DE,EM⊂平面DEM,所以CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=,故DM=2.所以四边形ACGD的面积为4.20.已知函数f(x)=2x3-ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M-m的取值范围.解(1)f′(x)=6x2-2ax=2x(3x-a).令f′(x)=0,得x=0或x=.若a>0,则当x∈(-∞,0)∪时,f′(x)>0,当x∈时,f′(x)<0,故f(x)在(-∞,0),上单调递增,在上单调递减;若a=0,f(x)在(-∞,+∞)上单调递增;若a<0,则当x∈∪(0,+∞)时,f′(x)>0,当x∈时,f′(x)<0,故f(x)在,(0,+∞)上单调递增,在上单调递减.(2)当0<a<3时,由(1)知,f(x)在上单调递减,在上单调递增,所以f(x)在[0,1]上的最小值为f=-+2,最大值为f(0)=2或f(1)=4-a.于是m=-+2,M=所以M-m=当0<a<2时,可知M-m=2-a+单调递减,所以M-m的取值范围是;当2≤a<3时,M-m=单调递增,所以M-m的取值范围是.综上,M-m的取值范围是.21.已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(1)证明设D,A(x1,y1),则=2y1.由于y′=x,所以切线DA的斜率为x1,故=x1,整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.所以直线AB的方程为2tx-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0,于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.设M为线段AB的中点,则M.由于⊥,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=±1.当t=0时,||=2,所求圆的方程为x2+2=4;当t=±1时,||=,所求圆的方程为x2+2=2.22.[选修4-4:坐标系与参数方程]如图,在极坐标系Ox中,A(2,0),B,C,D(2,π),弧,,所在圆的圆心分别是(1,0),,(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.解(1)由题设可得,弧,,所在圆的极坐标方程分别为ρ=2cos θ,ρ=2sin θ,ρ=-2cos θ,所以M1的极坐标方程为ρ=2cos θ,M2的极坐标方程为ρ=2sin θ,M3的极坐标方程为ρ=-2cos θ.(2)设P(ρ,θ),由题设及(1)知若0≤θ≤,则2cos θ=,解得θ=;若≤θ≤,则2sin θ=,解得θ=或θ=;若≤θ≤π,则-2cos θ=,解得θ=.综上,P的极坐标为或或或.23.[选修4-5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z +1)+(z+1)(x-1)]≤3[(x-1)2+(y+1)2+(z+1)2],故由已知,得(x-1)2+(y+1)2+(z+1)2≥,当且仅当x=,y=-,z=-时,等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为.(2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)]≤3[(x-2)2+(y-1)2+(z-a)2],故由已知,得(x-2)2+(y-1)2+(z-a)2≥,当且仅当x=,y=,z=时,等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为. 由题设知≥,解得a≤-3或a≥-1.。

【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试文数试题(含答案)

【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试文数试题(含答案)

2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85. 函数()2sin sin2f x x x =-在[0,2]π的零点个数A .2B .3C .4D .56. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为A .32B .52C .72D .9211.记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是 A .①③ B .①② C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在(0+)∞,单调递减,则A .233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>二、填空题:本题共4小题,每小题5分,共20分。

(完整word)2019年全国卷Ⅲ文数高考试题(含答案),推荐文档

(完整word)2019年全国卷Ⅲ文数高考试题(含答案),推荐文档

2019年普通高等学校招生全国统一考试文科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3 •考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1 .已知集合A { 1,0,1,2}, B {x2x 1},则Al BA1,0,1B.0,1C. 1,1 D .0,1,22.若z(1 i) 2i ,则z=A . 1 iB.1+i C. 1 i D . 1+i3.两位男同学和两位女同学随机排成一列, 则两位女同学相邻的概率是1111 A—B—C—— D . —64324 •《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A • 0.5B • 0.6C • 0.7 D. 0.85.函数f(x) 2sinx sin2x在[0, 2 n的零点个数为A • 2B • 3C • 4D • 56•已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,贝U a3=A • 16B • 8C • 4D • 2x7 •已知曲线y ae xlnx在点(1, ae)处的切线方程为y=2x+b,贝UA • a=e, b= —B. a=e, b=1 C . a=e-, b=1 D. a=e-, b 18.如图,点N为正方形ABCD的中心,△ ECD为正三角形,平面ECD丄平面ABCD , M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM 壬N,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM 毛N ,且直线BM,EN是异面直线为0.01,则输出s的值等于A.22B. 21252x10.已知F是双曲线C:42y_51的一个焦点,点P在C上,O为坐标原点,若OP = OF,则厶OPF 的面积为9D. 一211 .记不等式组2xy 6,表示的平面区域为D .y 0命题p : (x,D,2x y 9 ;命题q:9 •执行下边的程序框图,如果输入的C. 2(x,y) D,2 x y 12 .下面给出了四个命题这四个命题中,所有真命题的编号是32A . f gl )> f ( 2 2 )> f ( 2 3 )4231B . f (log 3 - )> f ( 2 3 )> f ( 2 2 )432C . f ( 2 2 )> f ( 2 3 )> f (Iog 3〔)423D . f ( 2 3 )> f ( 2 2 )> f (Iog 3-)413.已知向量 a (2,2), b ( 8,6),则 cos a,b2 215•设F 2为椭圆C: —+^ 1的两个焦点,M 为C 上一点且在第一象限.若厶MF 1F 2为等腰三角形,36 20则M 的坐标为 _____________ . 16•学生到工厂劳动实践,利用3D 打印技术制作模型•如图,该模型为长方体ABCD AB1GD 1挖去四棱锥O-EFGH 后所得的几何体,其中 O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB = BC = 6 cm , AA = 4 cm , 3D 打印所用原料密度为 0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为 ____________ g .三、解答题:共 70分。

2019年全国III卷高考数学(文科)试题(带答案)

2019年全国III卷高考数学(文科)试题(带答案)

A
因此DM.LCG.
在Rt6.DEM中 , DE=l. EM=石 ,故DM=2.
所以四边形ACGD的面积为4.
20. (12分)
已知函数/(x)=2x'-ax'+2 .
( 1 )讨论/(x)的单调性;
(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m, 求M-m的取伯范围
解:
(I) f'(x)=6x1 -2ax=2x(3x-a).
l烦率/组距
03. 0•········-·····-·········
�::;�ti::::1· .
0.05
频率/纠距
罚i1··:······
00. 51········
芦Lt 0 2,5 3,5 4.5 5.5 6 5 7.5
甲离子残衔百分比n方图
乙离子残钳Li分比五方图
记C为水件: "乙离千残留在体内的百分比不低千55. ",根据直方图得到P(C )的估计值为0.70
(I)求乙离子残衍百分比直方图中a, b的值;
(2)分别估计甲、乙离子残衍百分比的平均值(同一组中的数据用该组区间的中点值为代表) .
一2 —
蛁:
(I)山已知得0.70=a+0.20+0.15 ,故
a=0.35 .
b=1-0.0 S-O.IS -0.70 =0.IO
(2)甲离子残留百分比的平均值的估计值为
B.
/(log,
一I4)汀(2-,' )汀
_2 (2勺
--2
- -,
l
D. /(2 1)>/(2')>/(log) 一4)
二、填空题:本题共4小题,每小题5分,共20分.

(完整)2019年高考全国卷3文科数学及答案(word精校版).doc

(完整)2019年高考全国卷3文科数学及答案(word精校版).doc

2019 年普通高等学校招生全国统一考试全国卷 3 文科数学考试时间: 2019 年 6 月 7 日 15: 00—— 17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I 卷(选择题)和第II卷(非选择题)两部分, 满分 150 分,考试时间120 分钟。

注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题,共60 分)一、选择题:本题共12 小题,每小题 5 分,共60 分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合A { 1,0,1,2}, B { x x2 1} ,则A I B ()A .1,0,1 B.0,1 C.1,1 D.0,1,22.若z(1 i) 2i ,则z=()A .1 i B.1+i C.1 i D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()1 1 1 1A .B.C.D.6 4 3 24.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A . 0.5 B. 0.6 C. 0.7 D. 0.85.函数f ( x) 2sin x sin2 x在[0,2π]的零点个数为()A . 2 B. 3 C. 4 D. 5)6.已知各项均为正数的等比数列{ a } 的前 4 项和为 15,且 a =3a +4a ,则 a =(n 5 3 1 3A . 16 B. 8 C. 4 D. 27.已知曲线y ae x x ln x 在点(1,ae)处的切线方程为y=2x+b,则()A . a= e, b=-1 B. a= e,b=1 C. a= e-1, b=1 D. a= e-1,b18.如图,点 N 为正方形 ABCD 的中心,△ ECD 为正三角形,平面ECD ⊥平面 ABCD , M 是线段 ED 的中点,则()A. BM=EN,且直线B. BM≠EN,且直线C. BM=EN,且直线D. BM≠EN,且直线BM 、 EN 是相交直线BM , EN 是相交直线BM 、 EN 是异面直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的为,则输出 s 的值等于()0.011B.11 D. 21 A. 22C. 22724252610.已知 F 是双曲线 C :x 2 y 241 的一个焦点, 点 P 在 C 上,O 为坐标原点, 若 OP = OF ,则 △ OPF5的面积为()357 9A .B .C .D .2222x y ⋯6,D ,2 x y ⋯9 ; 命 题11 . 记 不 等 式 组y 表 示 的 平 面 区 域 为 D . 命 题 p : ( x, y)2x 0q : ( x, y) D ,2 xy, 12 .下面给出了四个命题① p q② p q③ pq④ pq这四个命题中,所有真命题的编号是()A .①③B .①②C .②③D .③④ 12.设 fx 是定义域为 R 的偶函数,且在0,单调递减,则()1)> f32A . f ( log 3 ( 2 2 )> f ( 23 )4231)> f ( 2B . f ( log 3 3 )> f ( 2 2 )3 421 )C . f ( 2 2 )> f ( 2 3 )> f ( log 32341 )D . f ( 2 3 )> f ( 2 2 )> f ( log 34第Ⅱ卷(非选择题,共 90 分)二、填空题:本题共4 小题,每小题5 分,共20 分。

2019年全国统一高考数学试卷(文科)(新课标ⅲ)-解析版

2019年全国统一高考数学试卷(文科)(新课标ⅲ)-解析版

2019年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1A =-,0,1,2},2{|1}B x x = ,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}【解答】解:因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==- ,所以{1A B =- ,0,1},故选:A .2.若(1)2z i i +=,则(z =)A .1i--B .1i -+C .1i -D .1i+【解答】解:由(1)2z i i +=,得22(1)12i i i z i -==+1i =+.故选:D .3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A .16B .14C .13D .12【解答】解:用捆绑法将两女生捆绑在一起作为一个人排列,有323212A A =种排法,再所有的4个人全排列有:4424A =种排法,利用古典概型求概率原理得:121242p ==,故选:D .4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.8【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出韦恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:700.7100=.故选:C .5.函数()2sin sin 2f x x x =-在[0,2]π的零点个数为()A .2B .3C .4D .5【解答】解:函数()2sin sin 2f x x x =-在[0,2]π的零点个数,即:2sin sin 20x x -=在区间[0,2]π的根个数,即2sin sin 2x x =,令左右为新函数()h x 和()g x ,()2sin h x x =和()sin 2g x x =,作图求两函数在区间[0,2]π的图象可知:()2sin h x x =和()sin 2g x x =,在区间[0,2]π的图象的交点个数为3个.故选:B .6.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =)A .16B .8C .4D .2【解答】解:设等比数列{}n a 的公比为(0)q q >,则由前4项和为15,且53134a a a =+,有231111421111534a a q a q a q a q a q a ⎧+++=⎪⎨=+⎪⎩,∴112a q =⎧⎨=⎩,∴2324a ==,故选:C .7.已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则()A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-【解答】解:x y ae xlnx =+的导数为1x y ae lnx '=++,由在点(1,)ae 处的切线方程为2y x b =+,可得102ae ++=,解得1a e -=,又切点为(1,1),可得12b =+,即1b =-,故选:D .8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线【解答】解: 点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,BM ∴⊂平面BDE ,EN ⊂平面BDE ,BM 是BDE ∆中DE 边上的中线,EN 是BDE ∆中BD 边上的中线,∴直线BM ,EN 是相交直线,设DE a =,则2BD a =,2235244BE a a a =+=,62BM a ∴=,223144EN a a a =+=,BM EN ∴≠,故选:B .9.执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于()A .4122-B .5122-C .6122-D .7122-【解答】解:第一次执行循环体后,1s =,12x =,不满足退出循环的条件0.01x <;再次执行循环体后,112s =+,212x =,不满足退出循环的条件0.01x <;再次执行循环体后,211122s =++,312x =,不满足退出循环的条件0.01x <;⋯由于610.012>,而710.012<,可得:当261111222s =++++⋯,712x =,此时,满足退出循环的条件0.01x <,输出2661111122222s =+++⋯=-.故选:C .10.已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为()A .32B .52C .72D .92【解答】解:如图,不妨设F 为双曲线22:145x y C -=的右焦点,P为第一象限点.由双曲线方程可得,24a =,25b =,则3c =,则以O 为圆心,以3为半径的圆的方程为229x y +=.联立22229145x y x y ⎧+=⎪⎨-=⎪⎩,解得P ,5)3.5sin 9POF ∴∠=.则15533292OPF S ∆=⨯⨯⨯=.故选:B .11.记不等式组6,20x y x y +⎧⎨-⎩ 表示的平面区域为D .命题:(,)p x y D ∃∈,29x y + ;命题:(,)q x y D ∀∈,212x y + .下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q⌝∧⌝这四个命题中,所有真命题的编号是()A .①③B .①②C .②③D .③④【解答】解:作出等式组6,20x y x y +⎧⎨-⎩的平面区域为D .在图形可行域范围内可知:命题:(,)p x y D ∃∈,29x y + ;是真命题,则p ⌝假命题;命题:(,)q x y D ∀∈,212x y + .是假命题,则q ⌝真命题;所以:由或且非逻辑连词连接的命题判断真假有:①p q ∨真;②p q ⌝∨假;③p q ∧⌝真;④p q ⌝∧⌝假;故答案①③真,正确.故选:A .12.设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A .233231(log )(2)(2)4f f f -->>B .233231(log (2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>【解答】解:()f x 是定义域为R 的偶函数∴331(log )(log 4)4f f =,33log 4log 31>= ,2303202221--<<<<=,23323022log 4--∴<<<()f x 在(0,)+∞上单调递减,∴233231(2)(2)()4f f f log -->>,故选:C .二、填空题:本题共4小题,每小题5分,共20分。

2019年全国卷Ⅲ文数高考试题文档版(含答案)

2019年全国卷Ⅲ文数高考试题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16B .8C .4D .27.已知曲线e ln xy a x x =+在点(1,ae )处的切线方程为y =2x +b ,则 A .a =e ,b =–1B .a =e ,b =1C .a =e –1,b =1D .a =e –1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则O P F△的面积为 A .32B .52C .72D .9211.记不等式组6,20x y x y +≥⎧⎨-≥⎩表示的平面区域为D .命题:(,),2p x y D x y ∃∈+≥;命题:(,),21q x y D x y ∀∈+≤.下面给出了四个命题 ①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 二、填空题:本题共4小题,每小题5分,共20分。

2019年高考全国卷Ⅲ文科数学试题(含答案)

2019年高考全国卷Ⅲ文科数学试题(含答案)

绝密★2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.85. 函数()2sin sin2f x x x =-在[0,2]π的零点个数A .2B .3C .4D .56. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线 C .BM =EN ,且直线BM ,EN 是异面直线 D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为A .32B .52C .72D .9211.记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x是定义域为R的偶函数,且在(0+)∞,单调递减,则A.233231(log)(2)(2)4f f f-->>B.233231(log)(2)(2)4f f f-->>C.233231(2)(2)(log)4f f f-->>D.233231(2)(2)(log)4f f f-->>二、填空题:本题共4小题,每小题5分,共20分。

【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试文数试题(含答案)

【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试文数试题(含答案)

2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85. 函数()2sin sin 2f x x x =-在[0,2]π的零点个数A .2B .3C .4D .56. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线 C .BM =EN ,且直线BM ,EN 是异面直线 D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为A .32B .52C .72D .9211.记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是 A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在(0+)∞,单调递减,则A .233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>二、填空题:本题共4小题,每小题5分,共20分。

2019年高考真题——文科数学(全国卷Ⅲ)附答案解析

2019年高考真题——文科数学(全国卷Ⅲ)附答案解析
【详解】(1)由题得 ,解得 ,由 ,解得 .
(2)由甲离子的直方图可得,甲离子残留百分比的平均值为 ,
乙离子残留百分比的平均值为
【点睛】本题考查频率分布直方图和平均数,属于基础题.
18. 的内角 的对边分别为 ,已知 .
(1)求 ;
(2)若 为锐角三角形,且 ,求 面积的取值范围.
【答案】(1) ;(2) .
5.函数 在 的零点个数为()
A.2B.3C.4D.5
【答案】B
【解析】
【分析】
令 ,得 或 ,再根据x的取值范围可求得零点.
【详解】由 ,得 或 , , . 在 零点个数是3..故选B.
【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.
2根据三角形面积公式又根据正弦定理和得到关于1225abc函数由于是锐角三角形所以利用三个内角都小于来计算的定义域最后求解vabc详解1根据题意由正弦定理得因为sinsinsinsinsinsinsinsin因为故或者而根据题意不成立所以又因为代入得所以2因为是锐角三角形又由前问得到vabcsinsin1225sinsinsinsinabcsincoscossinsincotcoscotcot的取值范围是abc点睛这道题考查了三角函数的基础知识和正弦定理或者余弦定理的使用此题也可以用余弦定理求解最后考查是锐角三角形这个条件的利用
记 为事件:“乙离子残留在体内的百分比不低于 ”,根据直方图得到 的估计值为 .
(1)求乙离子残留百分比直方图中 的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
【答案】(1) , ;(2) , .
【解析】

2019年全国iii高考数学试卷(文科)(解析版)

2019年全国iii高考数学试卷(文科)(解析版)

2019年普通高等学校招生全国统一考试文科数学1.A 【详解】21,x ≤∴Q 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =-I ,故选A .2.D 【详解】()(2i2i 1i 1i 1i 1i 1i )()z -===+++-.故选D . 3.D 【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D . 4.C 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .5.B 【详解】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2x π∈Q ,02x ππ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .6.C 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .7.D 【详解】详解:ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e -∴= 将(1,1)代入2y x b =+得21,1b b +==-,故选D .8.B 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,35,,72MF BF BM ==∴=.BM EN ∴≠,9.C 【详解】输入的ε为0.01, 1.01,0.50.01?x S x ==+=<不满足条件;1101,0.01?24S x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<L 满足条件输出676111112122222S ⎛⎫=++⋯+=-=- ⎪⎝⎭,故选C .10.B 【详解】设点()00,P x y ,则2200145x y -=①.又453OP OF ==+=,22009x y ∴+=②.由①②得20259y =,即053y =,0115532232OPF S OF y ∆∴==⨯⨯=g ,故选B . 11.A 【详解】如图,平面区域D 为阴影部分,由2,6y xx y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D ,则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A . 12.C 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4ff f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选C .13.10-【详解】cos ,a b a b a b <>==r rr r g r r g 14.100【详解】317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 15.(【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F Fy y =⋅⋅=△,又1201442MF F S y=⨯∴=△0y ,22013620x∴+=,解得03x =(03x =-舍去),M ∴的坐标为(.16,118.8【详解】由题意得, 2146423122EFGH S cm =⨯-⨯⨯⨯=,四棱锥O −EFG 的高3cm ,∴31123123O EFGH V cm -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144V cm =⨯⨯=, 所以该模型体积为22114412132V V V cm =-=-=,其质量0.9132118.8g ⨯=.17.【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯= 18.【详解】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=.0<B π<,02A Cπ+<<因为故2A CB +=或者2A CB π++=,而根据题意A BC π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC V 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅=⋅=⋅V 22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ-=⋅=⋅-=+.又因3,tan 62C C ππ<<>,故331338tan C <+<,故33ABC S <<V .故ABCS V 的取值范围是33(,) 19. (1)证:Q //AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥Q .AB ∴⊥平面BCGE ,AB ⊂Q 平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=o 得EM CG ⊥,故CG ⊥平面DEM .因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.20.【详解】(1)对32()22f x x ax =-+求导得2'()626()3a f x x ax x x =-=-.所以有当0a <时,(,)3a -∞区间上单调递增,(,0)3a区间上单调递减,(0,)+∞区间上单调递增;当0a =时,(,)-∞+∞区间上单调递增; 当0a >时,(,0)-∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增.(2)若02a <≤,()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f .而(0)2,(1)22(0)f f a f ==-+≥,故所以区间[0,1]上最大值为(1)f . 所以332(1)()(4)[2()()2]233327a a a a M m f f a a a -=-=---+=-+,设函数3()227x g x x =-+,求导2'()19x g x =-当02x <≤时)'(0g x <从而()g x 单调递减.而02a <≤,所以38222727a a ≤-+<.即M m -的取值范围是8[,2)27.若23a <<,()f x 在区间(0,)3a单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0)2,(1)22(0)f f a f ==-+≤,故所以区间[0,1]上最大值为(0)f .所以332(0)()2[2()()2]33327a a a a M m f f a -=-=--+=,而23a <<,所以3812727a <<.即M m -的取值范围是8(,1)27.综上得M m -的取值范围是8[,2)27.21.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以y'x =.则切线DA 的斜率为1x ,故1111()2y x x t +=-,整理得112210tx y -+=.设22(,)B x y ,同理得112210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 方程为2210tx y -+=,和抛物线方程联立得:2221012tx y y x -+=⎧⎪⎨=⎪⎩化简得2210x tx --=.于是122x x t +=,21212()121y y t x x t +=++=+设M 为线段AB 的中点,则21(,)2M t t +由于EM AB ⊥u u u u v u u u v ,而2(,2)EM t t =-u u u u v ,AB u u u v与向量(1,)t 平行,所以2(2)0t t t +-=,解得0t =或1t =±.当0t=时,(0,2)EM =-u u u u v ,2EM =u u u u u v 所求圆的方程为225()42x y +-=;当1t=±时,(1,1)EM =-u u u u v或(1,1)EM =--u u u u v,EMu u u u u v225()22x y +-=. 所以圆的方程为225()42x y +-=或225()22x y +-=.22.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,])4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P的极坐标为)6π解方程32sin [,])44ππθθ∈得3πθ=或23πθ=,此时P的极坐标为)3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P的极坐标为5)6π故P的极坐标为)6π,)3π,2)3π,5)6π. 23. (1) 22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++≥-++++=+++=故2224(1)(1)(1)3x y z -++++≥等号成立当且仅当111x y z -=+=+而又因1x y z ++=,解得531313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩时等号成立所以222(1)(1)(1)x y z -++++的最小值为43. (2)因为2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥.根据柯西不等式等号成立条件,当21x y z a -=-=-,即22321323a x a y a z a +⎧=-⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩时有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a ≤-或1a ≥-.。

精品解析:2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(解析版)

精品解析:2019年全国统一高考数学试卷(文科)(新课标Ⅲ)(解析版)
∴ B x 1 x 1 ,则 A B 1,0,1 ,
故选 A. 【点睛】本题考查了集合交集的求法,是基础题.
2.若 z(1 i) 2i ,则 z ( )
A. 1 i
B. 1+i
【答案】D
C. 1 i
【解析】
【分析】
根据复数运算法则求解即可.
【详解】
z
【解析】
【分析】
根据题意可画出平面区域再结合命题可判断出真命题.
y 2x x 2
【详解】如图,平面区域
D
为阴影部分,由

x

y

, 6


y

, 4
即 A(2,4),直线 2x y 9 与直线 2x y 12 均过区域 D, 则 p 真 q 假,有 p 假 q 真,所以①③真②④假.故选 A.
选 C.
【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想
解题.
5.函数 f (x) 2sinx sin2x 在0, 2 的零点个数为( )
扫描添加多来 A 梦,获得更多教育干货资料
2
A. 2
B. 3
C. 4
D. 5
【答案】B
【解析】
【分析】
60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A. 0.5
【答案】C
B. 0.6
C. 0.7
D. 0.8
【解析】
【分析】
根据题先求出阅读过西游记的人数,进而得解.
【详解】由题意得,阅读过《西游记》的学生人数为 90-80+60=70,则其与该校学生人数之比为 70÷100=0.7.故

2019年全国高考全国卷Ⅲ文科数学(含答案)

2019年全国高考全国卷Ⅲ文科数学(含答案)

2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .124. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.85. 函数()2sin sin2f x x x =-在[0,2]π的零点个数A .2B .3C .4D .56. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .27.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线 C .BM =EN ,且直线BM ,EN 是异面直线 D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则△OPF 的面积为A .32B .52C .72D .9211.记不等式组62x y x y +⎧⎨-⎩,≥≥0表示的平面区域为D .命题p :(,)29x y D x y ∃∈+,≥;命题q :(,)212x y D x y ∀∈+,≤.下面给出了四个命题①p q ∨ ②p q ⌝∨ ③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④12.设()f x是定义域为R的偶函数,且在(0+)∞,单调递减,则A.233231(log)(2)(2)4f f f-->>B.233231(log)(2)(2)4f f f-->>C.233231(2)(2)(log)4f f f-->>D.233231(2)(2)(log)4f f f-->>二、填空题:本题共4小题,每小题5分,共20分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮 擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

5.函数f(x) 2sinx sin2x 在[0, 2兀的零点个数为6.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,贝U a 3=N 为正方形 ABCD 的中心,△ ECD 为正三角形,平面 ECD ±平面ABCD , M 是线段ED 的中点,则文科数学3.考试结束后, 将本试卷和答题卡一并交回。

、选择题:本题共 12小题,每小题5分,共 60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合A (1,0,1,2}, B {x x 21}, 则AIA. 1,0,1B.0,1 C.1,1D.0,1,22 .若 z(1 i) 2i则z=B.1+iC. D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A . 1 B. 1 C. 16 4 3D.4.〈〈西游记》〈〈三国演义》〈〈水浒传》和〈〈红楼梦》是中国古典文学瑰宝, 并称为中国古典小说四大名著某中学为了解本校学生阅读四大名著的情况,随机调查了 100位学生,其中阅读过〈〈西游记》或〈〈红楼 梦》的学生共有 90位,阅读过〈〈红楼梦》的学生共有80位,阅读过〈〈西游记》且阅读过〈〈红楼梦》的学生共有60位,则该校阅读过〈〈西游记》的学生人数与该校学生总数比值的估计值为 A. 0.5B. 0.6C. 0.7D. 0.8 A. 2 B. 3C. 4D. 5B. 8C. 4D. 27.已知曲线xy aexln x 在点(1, ae)处的切线方程为y=2x+b,则A. a=e,b= -1B. a=e, b=1D. a=et, b 1 8 .如图,点A. BM=EN,且直线B . BM毛N,且直线C. BM=EN,且直线D. BM击N,且直线BM, EN是相交直线BM , EN是相交直线BM,BM,EN是异面直线EN是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出s的值等于c 1 cA. 2 歹B. 22 2 10.已知F是双曲线C:— -4 5 125D. 21271的一个焦点,点P在C上,O为坐标原点,若OP = OF,则△ OPF的面积为A.不等式组2xB.-27C.29D.-2y 6,表示的平面区域为D .y 0 命题p : (x, y) D,2x y 9 ;命题q : (x, y) D,2 x y 12 .下面给出了四个命题Dp q ④ p q这四个命题中,所有真命题的编号是12 .设f X 是定义域为R 的偶函数,且在 0, 单调递减,则32A. f (logs 1) > f (22)> f (2 3 )42 3B . f (log 31) > f ( 2 3 )> f ( 2 2 )43 2C. f ( 2 2) > f ( 2 3) > f (log 3 1)42 3D. f ( 2 3 )> f ( 2 2 )> f (log3—)413.已知向量 a (2,2), b ( 8,6),则 cos 14.记S n 为等差数列{a n }的前n 项和,若a 3 5,a 7 13,则5。

15. 设0 F 2为椭圆C : —+^ 1的两个焦点,M 为C 上一点且在第一象限.若^ MF 1F 2为等腰三角形,36 20贝U M 的坐标为. 16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD AB 1C 1D 1挖去四棱锥O- EFGH 后所得的几何体,其中 O 为长方体的中心,E, F , G, H 分别为所在棱的中点,AB = BC = 6 cm , AA 1 = 4 cm , 3D 打印所用原料密度为 0.9 g/cm 3,不考虑打印损耗,制作该模型所 需原料的质量为 g.三、解答题:共 70分。

解答应写出文字说明、证明过程或演算步骤。

第都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共 60分。

17. ( 12 分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A, B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液. 每只小鼠给服的溶液体积相同、摩尔 浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别 得到如下直方图:A.①③B.①②C.②③D.③④二、填空题: 本题共 4小题,每小题 5分,共 20分。

a, b17~21题为必考题,每个试题考生记C为事件:乙离子残留在体内的百分比不低于 5.5 ”,根据直方图得到P (C)的估计值为0.70.(1) 求乙离子残留百分比直方图中a, b的值;(2) 分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18. ( 12 分)A C△ ABC的内角A、B、C的对边分别为a、b、c.已知asin -------------- bsin A.2(1) 求B;(2) 若^ ABC为锐角三角形,且c=1,求^ ABC面积的取值范围.19. (12 分)图1是由矩形ADEB , RtA ABC和菱形BFGC组成的一个平面图形,其中AB=1 , BE=BF=2,/ FBC=60°.将其沿AB , BC折起使得BE与BF重合,连结DG ,如图2.(1) 证明:图2中的A, C, G, D四点共面,且平面ABCL平面BCGE;(2) 求图2中的四边形ACGD的面积.20. (12 分)已知函数f(x) 2x3 ax2 2 .(1)讨论f (x)的单调性;(2)当0<a<3时,记f(x)在区间[0, 1]的最大值为M,最小值为m,求M m的取值范围.21 . ( 12 分)已知曲线C:V=L , D为直线y= 1上的动点,过D作C的两条切线,切点分别为A, B.2 2(1) 证明:直线AB过定点:(2) 若以E(0, 5)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.2(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22. [选修4 Y:坐标系与参数方程](10分)如图,在极坐标系Ox中,A(2,0) , B(花了,C(提,打),D(2,),弧A B , B C,C D所在圆的圆心分别是(1,0) , (1," , (1,),曲线M1是弧AB,曲线M2是弧?C,曲线M3是弧C D.(1) 分别写出M〔,M2, M3的极坐标方程;(2) 曲线M由M1 , M2 , M3构成,若点P在M上,且|OP | J3,求P的极坐标.23. [选修4 5 不等式选讲](10分)设x, y, z R,且x y z 1 .(1)求(x 1)2 (y 1)2 (z 1)2的最小值;—2 2 2 1(2)若(x 2) (y 1) (z a) g 成立,证明:a 3或a 1 .选择题填空题解答题解:(1)由已知得 0.70=a+0.20+0.15,故a=0.35.b=1 -0.05 -0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2 >0.15+3 0.20+4 0.30+5 0.20+6 0.10+7 乙离子残留百分比的平均值的估计值为1故0 <A<90 , 0 <C<90 .由(1 )知 A+C=120 ,所以 30 <C<90 ,故—2文科数学•参考答案A 2. D 3. D 4. C 5. B6. C7. D8. 12. C131014. 10015. (3^/15)16. 118.817 0.05=4.05 •18 3 >0.05+4 解:(1)0.10+5 0.15+6 0.35+7 0.20+8由题设及正弦定理得 sin Asin 0.15=6.00. LC sinBsin A.2因为sinA A C0,所以sin --------- 2 sinB.C 180可得sin2 B cos2B 2sin B cos —.2 2一. B -因为cos — 0,2故 sin B2 1 …。

—,因此 B=60 .2(2)由题设及(1)知△ ABC 的面积S A ABC 由正弦定理得acsin A sinCsin 120 C sinC2tanC 2由于△ ABC 为锐角三角形,a 2,因此,△ ABC 面积的取值范围是 如,如8 2解:(1)由已知得AD P BE, CG P BE,所以AD P CG,故AD , CG 确定一个平面,从而 A,四点共面.由已知得AB BE, AB BC ,故AB 平面BCGE . 又因为AB 平面ABC ,所以平面ABC 平面BCGE. (2)取CG 的中点M,连结EM , DM.因为AB // DE, AB 平面BCGE,所以DE 平面BCGE ,故DE CG.由已知,四边形 BCGE 是菱形,且/ EBC=60°得EM CG ,故CG 平面DEM. 因此DM CG .在 Rt △ DEM 中,DE=1 , EM=V 3,故 DM =2. 所以四边形ACGD 的面积为4.2解:(1) f (x) 6x 2ax 2x(3x a).令 f (x) 0,得 x=0 或 x a . 3(,0), a ,单调递增,在 0,旦 单调递减;33若a=0, f (x)在(,)单调递增;,(0,)单调递增,在 ■— ,0单调递减.319. 20. 若a>0,则当x (,0) U 旦,3时,f (x) 0 ;当 x0,-时,f (x) 0 . 3f (x)在若a<0 ,则当xa,-U(0,)时,f (x) 0 ;当 x 3-,0 时,f (x) 0 . 3f (x)在(2)当0 a 3时,由(1)知,f (x)在0,-单调递减,在33的最小值为f -— 2,最大值为f (0)=2或f(1)=4 a.于是3 27-,1单调递增,所以f(x)在[0,1]33 a m ——27 4 a,0 a 2, 2,2 a 3.所以M27,2 3.2时,可知3兰单调递减,所以M m的取值范围是27综上,33时,至单调递增,所以M27m的取值范围是[-8,1).27m的取值范围是[-8,2).2721.解:(1)设D t, 1 , A 为,y〔,则x2 2y1 .2由于y' DA的斜率为x1 ,故1 y12 x1 t整理得2 tx1 2 y1+1=0.设B x2, y2,同理可得2tx2 2 y2+1=0 .故直线AB的方程为2tx 2y 1 0.〜,一1所以直线AB过定点(0,―).21 (2)由(1)得直线AB的万程为y tx — .tx2 x —2,可得x22tx 1_ _ ............. ... _ 3 兀M 3的极坐标方程为2cos— 兀4(2)设P (,),由题设及(1)知若0心兀若_4 “ 3兀若一4综上,M 贝U 2cos 、 4 3兀,则 2sin 4 /3,解得 -6 73,解得- 也,解得或J 3 /或,3J-或32兀 3,或•.,,里.6兀,则 P 的极坐标为2cos'蜡5_K6.3,登323.解:( (x 1)由于[(x1)2 (y 1)21) (y(z 1) 21) (z 1)]2 2[(x 1)(y1) (y 1)(z 1) (z 1)(x 1)]_2223 (x 1) (y 1) (z 1),故由已知得(x 1)2 (y 1)2 (z 1)2 4, ,一,511当且仅当X=— , y- Z—时等号成立.3 3 3所以(x 1)2 (y 1)2 (z 1)2的最小值为 (2)由于于是 Xx 2 2t, y 1 y 2 tx 1 x 21 2t2 1.,•,〜,21设M 为线段AB 的中点,则M t,t -2uuuu uuu uuuu 由于EM AB ,而EM uuu t,t 2 2 , AB 与向量(1, t )平行,所以t2t 2 t 0 .解得t=0或tuuur o当t =0时,|EM|=2,所求圆的方程为x 22当t 1时,|EM | J 2,所求圆的方程为x 2 y 52.222.解:(1)由题设可得,弧A B , B C ,C D 所在圆的极坐标方程分别为2cos , 2sin , 2cos 所以M 1的极坐标方程为2cos 07C,M 2的极坐标方程为兀2sin —4[(x 2)2(y 1) (z a)],-、2 , 八 2, 、2 _ .、, ,、 , ,、, 、 ,、, __(x 2) (y 1) (z a) 2 [(x 2 )(y 1) (y 1)(z a) (z a)(x 2)]3 (x 2)2 (y 1)2 (z a)2 ,2 故由已知得(x 2)2 (y 1)2 (z a)2(^) , 当且仅当x 4^ , y 空 z 色~2时等号成立.333因此(x 2)2 (y 1)2 (z a)2的最小值为(2 a). 3(2 a )2 1由题设知(2 a)1,解得a 3或a 1 . 3 3。

相关文档
最新文档