单片机步进电机控制程序代码

合集下载

基于stm32控制的步进电机程序代码

基于stm32控制的步进电机程序代码

基于stm32控制的步进电机程序代码一、前言步进电机是一种常见的电机类型,其控制方式也有很多种。

在本文中,我们将介绍如何使用STM32控制步进电机。

二、硬件准备在开始编写程序之前,我们需要准备以下硬件:1. STM32单片机开发板2. 步进电机驱动板3. 步进电机4. 电源三、步进电机驱动原理步进电机驱动原理是通过不同的脉冲信号来控制步进电机转动。

其中,每个脉冲信号代表着一个步进角度,而不同的脉冲序列则可以实现不同的转速和方向。

四、STM32控制步进电机程序代码以下是基于STM32控制步进电机的程序代码:```c#include "stm32f10x.h"#define CLK_PORT GPIOA#define CLK_PIN GPIO_Pin_0#define DIR_PORT GPIOA#define DIR_PIN GPIO_Pin_1void delay_us(uint16_t us){uint16_t i;while(us--){i = 10;while(i--);}void step(uint8_t dir){if(dir == 0)GPIO_ResetBits(DIR_PORT, DIR_PIN);elseGPIO_SetBits(DIR_PORT, DIR_PIN);for(int i=0; i<200; i++){GPIO_SetBits(CLK_PORT, CLK_PIN);delay_us(2);GPIO_ResetBits(CLK_PORT, CLK_PIN);delay_us(2);}}int main(void){GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = CLK_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_Init(CLK_PORT, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin = DIR_PIN;GPIO_Init(DIR_PORT, &GPIO_InitStructure);while(1){step(0);delay_us(1000);step(1);delay_us(1000);}}```五、代码解析1. 定义了CLK_PORT和CLK_PIN,用于控制步进电机的脉冲信号。

单片机驱动步进电机程序代码

单片机驱动步进电机程序代码

/实现功能:正转程序使用芯片:AT89S52晶振:编译环境:Keil作者:声明此程序仅用于学习与参考,引用请注明版权和作者信息/include<> //库文件define uchar unsigned char //字符型宏定义define uint unsigned int //整型宏定义uchar tcnt; //定时器计数初值定义uint sec; //速度值定义uchar buf11;uchar bai,shi,ge;/控制位定义/sbit shi_neng=P1^0; // 使能控制位sbit fang_shi=P1^1; // 工作方式控制位sbit fang_xiang=P1^2;// 旋转方向控制位sbit mai_chong=P1^3; // 脉冲控制位/延时函数/void delay1msuchar z{uchar x,y;forx=0;x<z;x++fory=0;y<110;y++;}/定时中断服务函数/void t0void interrupt 1 using 0 //定时中断服务函数{tcnt++; //每过250ust tcnt 加一iftcnt==1 //当tcnt满足条件时{tcnt=0; //计满重新再计sec++;ifsec==6 //括号内数值越小,电机转动速度越快{sec=0; //计满重新再计mai_chong=~mai_chong; //脉冲输出}}}/定时器0/1初始化/void T0_Init{ET0 = 1;TMOD = 0x22;TH0=0x06; //对TH0 TL0 赋值TL0=0x06;TR0=1; //开始定时sec=0;mai_chong=1; // 脉冲控制位}/串口初始化/void Uart_Init{TMOD = 0x22;TH1 = 0xFD;TL1 = 0xFD;SCON = 0x50;PCON &= 0xef;TR1 = 1;}/数据接收函数/void ReceiveBuf{int i;fori=0;i<11;i++{bufi = SBUF;whileRI == 0;RI=0;}}/角度控制函数/void Control{ifbai==buf5&shi==buf6&ge==buf7{shi_neng=0;};ifbai<buf5{shi_neng=1;fang_xiang=0;}else ifbai>buf5{shi_neng=1;fang_xiang=1;};ifbai==buf5&shi<buf6{shi_neng=1;fang_xiang=0;}else ifbai==buf5&shi>buf6{shi_neng=1;fang_xiang=1;};ifbai==buf5&shi==buf6&ge<buf7{shi_neng=1;fang_xiang=0;}else ifbai==buf5&shi==buf6&ge>buf7 {shi_neng=1;fang_xiang=1;};ifbai==buf5&shi==buf6&ge==buf7{shi_neng=0;};delay1ms3;bai=buf5;shi=buf6;ge=buf7;}/主函数/main{EA=1;T0_Init;Uart_Init;while1{// shi_neng=1; // 使能控制位fang_shi=1; // 工作方式控制ReceiveBuf;delay1ms1;Control;delay1ms10;}}/结束/。

c语言实现单片机控制步进电机加减速源程序

c语言实现单片机控制步进电机加减速源程序

C 语言实现单片机控制步进电机加减速源程序1. 引言在现代工业控制系统中,步进电机作为一种常见的执行元件,广泛应用于各种自动化设备中。

而作为一种常见的嵌入式软件开发语言,C 语言在单片机控制步进电机的加减速过程中具有重要的作用。

本文将从单片机控制步进电机的加减速原理入手,结合 C 语言的编程技巧,介绍如何实现单片机控制步进电机的加减速源程序。

2. 单片机控制步进电机的加减速原理步进电机是一种能够精确控制角度的电机,它通过控制每个步骤的脉冲数来实现旋转。

在单片机控制步进电机的加减速过程中,需要考虑步进电机的加速阶段、匀速阶段和减速阶段。

在加速阶段,需要逐渐增加脉冲的频率,使步进电机的转速逐渐增加;在匀速阶段,需要保持恒定的脉冲频率,使步进电机以匀速旋转;在减速阶段,需要逐渐减小脉冲的频率,使步进电机的转速逐渐减小。

这一过程需要通过单片机的定时器和输出控制来实现。

3. C 语言实现步进电机加减速的源程序在 C 语言中,可以通过操作单片机的 GPIO 来控制步进电机的旋转。

在编写源程序时,需要使用单片机的定时器模块来生成脉冲信号,以控制步进电机的旋转角度和速度。

以下是一个简单的 C 语言源程序,用于实现步进电机的加减速控制:```c#include <reg52.h>void main() {// 初始化定时器// 设置脉冲频率,控制步进电机的加减速过程// 控制步进电机的方向// 控制步进电机的启停}```4. 总结与回顾通过本文的介绍,我们了解了单片机控制步进电机的加减速原理和 C 语言实现步进电机加减速源程序的基本思路。

掌握这些知识之后,我们可以更灵活地应用在实际的嵌入式系统开发中。

在实际项目中,我们还可以根据具体的步进电机型号和控制要求,进一步优化 C 语言源程序,实现更加精准和稳定的步进电机控制。

希望本文能为读者在单片机控制步进电机方面的学习和应用提供一定的帮助。

5. 个人观点与理解在我看来,掌握 C 语言实现单片机控制步进电机加减速源程序的技术是非常重要的。

基于51单片机的步进电机调速系统(含完整代码)

基于51单片机的步进电机调速系统(含完整代码)

课程设计报告设计题目:遥控小车——基于51单片机的步进电机调速系统学院:专业:班级:学号:姓名:电子邮件:时间:成绩:指导教师:华南农业大学理学院应用物理系课程设计(报告)任务书学生姓名指导教师职称学生学号专业电子信息科学与技术题目基于51单片机的步进电机调速系统(遥控小车)任务与要求1. 设计并制作电路,利用单片计控制步进电机运转。

2. 通过键盘可以不间断地设定改变电机的转速、转向。

3. 利用显示器实时显示转速等参数。

4. 扩展功能:可设定转动步数。

开始日期2014 年3 月完成日期2014 年3 月1引言步进电机是一种将电脉冲转化为角位移的执行机构。

目前,步进机已经广泛应用于领域,例如工业生产中的机械臂的控制,照明装置和监控摄像机转动等。

步进机在装置转动、精确位移方面有很重大的作用。

本系统是基于STC89C51 单片机的遥控小车。

采用STC89C51单片机作为控制核心,通过ULN2003A驱动步进机(28BYJ-48)转动,由按键和显示屏1602组成人机交互模块,同时通过315M无线发射和接收模块向单片机输入控制信号,将整个系统固定于简易小车上,最终实现小车测试和远程遥控功能。

基本达到预定的设计要求以及功能的扩展。

2系统的设计与理论分析2.1系统总体设计2.2理论分析本设计分为两种工作模式:测试模式、遥控模式。

在电路板上有一个带锁的开关进行设置。

测试模式工作时,通过控制小车上的按键进行加速、减速、反转、设置、步数增、步数减等按键,单片机扫描按键,通过软件控制液晶模块显示对应的转速、设置的速度和步数,同时控制步进机模块进行相应的转动。

步进机的是由ULN2003A达林顿管驱动,由单片机控制输入脉冲的频率来控制步进机的转速,单片机是通过程序查表对4个I/O口输出脉冲,本次设计采用的是两相四线减速步进机,步进角为5.625°,减速比为64:1,程序采用的是8拍查表,具有较好的扭矩。

遥控模式工作时,遥控部分五个按键分别输入前、后、左、右、暂停,单片机扫描按键,通过无线发射模块发射串行编码,小车的无线接收模块接收对应的编码,送至单片机进行解码,从而控制液晶模块的显示和步进机模块的工作,进而完成功能。

单片机步进电机控制程序代码

单片机步进电机控制程序代码

单片机步进电机控制程序代码近年来,随着科技的不断发展,单片机步进电机控制技术在各个领域得到了广泛应用。

单片机步进电机控制程序代码是实现步进电机控制的关键,本文将介绍该代码的基本原理和实现方法。

一、步进电机控制基本原理步进电机是一种将电脉冲信号转换为角位移的电机。

它具有精准定位、高转矩、低噪音等优点,因此被广泛应用于各种设备中。

步进电机控制的基本原理是通过给步进电机提供一系列的脉冲信号,使其按照一定的步进角度旋转。

而单片机则是控制步进电机的核心部件,通过编写控制程序代码来实现对步进电机的控制。

二、单片机步进电机控制程序代码实现方法1. 硬件连接在编写单片机步进电机控制程序代码之前,我们首先需要完成硬件的连接。

一般来说,步进电机的控制需要使用到驱动模块,如ULN2003或者A4988等。

我们需要将单片机的输出引脚与驱动模块的输入引脚相连接,同时将驱动模块的输出引脚与步进电机的控制引脚相连接。

2. 编写控制程序代码接下来,我们可以开始编写单片机步进电机控制程序代码了。

以C 语言为例,下面是一个简单的步进电机正转程序代码示例:```c#include <reg52.h>sbit IN1 = P1^0;sbit IN2 = P1^1;sbit IN3 = P1^2;sbit IN4 = P1^3;void delay(unsigned int t) {unsigned int i, j;for(i = 0; i < t; i++)for(j = 0; j < 120; j++);}void main() {while(1) {IN1 = 1;IN2 = 0;IN3 = 1;IN4 = 0;delay(50);IN1 = 0;IN2 = 1;IN3 = 1;IN4 = 0;delay(50);IN1 = 0;IN2 = 1;IN3 = 0;IN4 = 1;delay(50);IN1 = 1;IN2 = 0;IN3 = 0;IN4 = 1;delay(50);}}```上述代码中,我们通过控制P1口的四个引脚来控制步进电机的旋转方向。

步进电机控制程序(c语言51单片机)

步进电机控制程序(c语言51单片机)

// pri_dj = Pme );
if( i == set_pwm_width ) { P1 = 0xff; i = 0; one _round_flg = 0; while ( !one_round_flg & key_puse );}
if(!key_puse) { delay(4ms); if(!key_puse) break; }
while ( key_puse & key_clear ); delay ( 8ms );
if ( !key_clear ) { round_num = 0; display(); }
if ( !key_puse ) break; }
while( !key_puse ); delay(8ms);
while( !key_puse ); }
set_display_num(); for(i = 0; i < LEDLen ; i ++){
P0 = 0xf0; P0 = P0 | LEDBuf[i] ; if(i==0) led_1000 = 0; //P0^4 if(i==1) led_100 = 0; //P0^5 if(i==2) led_10 = 0; //P0^6 if(i==3) led_1 = 0; //P0^7
delay ( 1ms ); tmp = (~(P2 | 0xF0)); P2 = 0x7F; // 0111 1111
delay ( 1ms ); tmp = (~(P2 | 0xF0)) * 10 + tmp; set_round_num = set_round_num + tmp * 100; set_round_num = set_round_num * Chilun_Num;

合泰单片机控制5线4相步进电机控制程序

合泰单片机控制5线4相步进电机控制程序

合泰单片机控制5线4相步进电机控制程序;步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!!; 28BYJ48 步进电机步进角为 5.625 度; A 组线圈对应PC.0; B 组线圈对应PC.1; C 组线圈对应PC.2; D 组线圈对应PC.3; 正转次序: AB 组--BC 组--CD 组--DA 组(即一个脉冲,正转5.625 度); 完整的源程序下载:51hei/f/htbjdj.rarinclude HT66F50.incORG0000HJMPA1ORG0014H ;多功能中断入口地址JMPZD1ORG002DHQ1:DC03H; 0ABDC06H; 1BCDC0CH; 2CDDC09H; 3DAA1: MOVA,08H;跟CP1C 寄存器设置要求选择数据MOVCP1C,A;设置PC 口为I/0 口而不是中断口CLRPCC;设置pc 口为输出口MOVA,0;设置初始脉冲MOV[80H],A;MOVA,00000000B;设置TM2 计数时钟位为fSYS/4MOVTM2C0,AMOVA,11000001B ;设置TM2 中断为定时/计数模式选择比较器A 匹配MOVTM2C1,AMOVA,LOW 5000;设置中断时间为5000 个时钟周期MOVTM2AL,A;低8 位MOVA,HIGH 5000;设置中断时间为5000 个时钟周期MOVTM2AH,A;高8 位不能少于3500 个时钟周期否则无法启动CLRMF0F;清多功能中断0 标志CLRT2AF;清定时器2 较器A 中断标志SETMF0E;使能多功能0 中断SETT2AE;使能定时器2 较器A 中断SETEMI;使能总中断SETT2ON;开始计数JMP$;;*******************************************************;中断服务子程序;*******************************************************ZD1:MOV[0F0H],A;压栈ACC 到0F0HMOVA,STATUS;MOV[0F1H],A;压栈status 标志寄存器。

51单片机驱动步进电机的方法

51单片机驱动步进电机的方法

51单片机驱动步进电机的方法一、步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构,广泛应用于各种自动化设备中。

其工作原理是,当一个脉冲信号输入时,电机转动一个步距角,从而实现电机的精确控制。

二、51单片机驱动步进电机的方法1、硬件连接需要将51单片机与步进电机连接起来。

通常,步进电机需要四个引脚,分别连接到单片机的四个GPIO引脚上。

同时,还需要连接一个驱动器来提高电机的驱动能力。

2、驱动程序编写接下来,需要编写驱动程序来控制步进电机的转动。

在51单片机中,可以使用定时器或延时函数来产生脉冲信号,然后通过GPIO引脚输出给电机。

同时,还需要设置电机的步距角和转向,以保证电机的精确控制。

3、示例程序以下是一个简单的示例程序,用于演示如何使用51单片机驱动步进电机:cinclude <reg52.h> //包含51单片机的头文件sbit motorPin1=P1^0; //定义连接到P1.0引脚的电机引脚sbit motorPin2=P1^1; //定义连接到P1.1引脚的电机引脚sbit motorPin3=P1^2; //定义连接到P1.2引脚的电机引脚sbit motorPin4=P1^3; //定义连接到P1.3引脚的电机引脚void delay(unsigned int time) //延时函数unsigned int i,j;for(i=0;i<time;i++)for(j=0;j<1275;j++);void forward(unsigned int step) //正转函数motorPin1=0;motorPin2=0;motorPin3=0;motorPin4=0; //清零电机引脚delay(step); //延时一段时间motorPin1=1;motorPin3=1;motorPin2=0;motorPin4=0; //设置转向和步距角delay(step); //延时一段时间void backward(unsigned int step) //反转函数motorPin1=0;motorPin2=0;motorPin3=0;motorPin4=0; //清零电机引脚delay(step); //延时一段时间motorPin2=1;motorPin4=1;motorPin3=0;motorPin1=0; //设置转向和步距角delay(step); //延时一段时间void main() //主函数unsigned int step=1000; //设置步距角为1000微步forward(step); //正转一圈backward(step); //反转一圈while(1); //循环等待,保持电机转动状态在这个示例程序中,我们使用了四个GPIO引脚来控制步进电机的转动。

单片机控制步进电机正反转的实际应用程序

单片机控制步进电机正反转的实际应用程序

单片机控制步进电机正反转的实际应用程序/*这是一个控制步进电机正反转的实际应用程序*//*选用的是三相步进电机驱动器,p14口线用做步进电机的脉冲控制*//*p13口线用做步进电机的方向控制。

p15,p16,p17是光耦开关量输入*//*信号端,p20,p21,p22,p23与x25045看门狗存储器相连*//*k7,k8键是设定步进电机转动速度参数的加减键*//*k9是启动运行键,按一下k9,步进电机开始运行,直到p17口线有信号输入才停止*/ /*k10是停止键,任何时候按下k10都将停止步进电机当前的运行*//*k11是步进运行键,按一下,步进电机动一下*//*k12键是反向运行键,按一下,步进电机开始反向运行,知道p15口线有信号才停止*/ /*如果p16口线有信号输入,则只有k12键才起作用,其它键都没反应。

*/START:do;$INCLUDE(REG51.DCL)DECLARE (addrl,n,I,j,ok,ds) byte; /*定义变量*/declare l(5) byte;declare (dat,data) byte at (30h);declare delay word;DECLARE ACO(11) BYTE CONSTANT (05h,9fh,23h,0bh,99h,49h,/*定义LED段码表*/ 41h,1fh,01h,09h,00h);declare si literally 'p21',sck literally 'p20'; /*X25045囗线定义*/declare so literally 'p22',cs literally 'p23';dog:procedure; /* 初始化看门狗x25045 */cs=1;call time(1);cs=0;call time(1);cs=1;end dog;run:procedure; /*步进电机运行脉冲输出程序*/if ok=1 thencall dog;do;p14=0;call time(1);p14=1;call time(1);end;end run;DISPLAY:PROCEDURE(L0,L10); /*显示子程序*/DECLARE (L0,L10) BYTE; /*定义显示二位*/n=L10;n=aco(n); /*十位数BCD码译成段码*/sbuf=n; /*十位数送164显示*/do while ti=0; /*等待发送结束*/call dog; /*看门狗定时器复位*/end;n=L0;n=aco(n);sbuf=n; /*个位数送164显示*/do while ti=0;call dog;end;end display;outbyt: procedure(da); /*向看门狗存储器写入一字节*/ declare (i,da) byte;j=da; /*将要写入的字节赋给临时变量J */do i=0 to 7; /*左移8位,送到口线si */sck=0;j=scl(j,1);si=cy;sck=1; /*每移一位数据,跟一个时钟信号*/end;end outbyt;inbyt: procedure; /* 从看门狗存储器读出一字节*/ declare (i,di) byte;j=0;do i=0 to 7;sck=1;sck=0;cy=so;j=scl(j,1); /*从看门狗存储器读出一字节送入临时变量j*/ end;dat=j;end inbyt;wrenable: procedure; /* 置看门狗写使能*/sck=0;cs=0;; /* write enable command */call outbyt(06h); /* x25045 写使能指令06h */cs=1;sck=0;end wrenable;wrdisable: procedure; /* 置看门狗写禁止*/sck=0;cs=0;; /* write disable command */call outbyt(04h);sck=0;cs=1;end wrdisable;wrregister: procedure; /* 写状态寄存器*/sck=0;cs=0;dat=01h; /* write register command */call outbyt(dat);; /* 00h--1.4S, 20h--200MS, 10h--600MS, 30h--disable Wdog */ call outbyt(00h); /* 设定看门狗定时时间*/;sck=0;cs=1;call time(200); /* wait to complete writting cycle */end wrregister;rdregister:procedure; /* 读看门狗状态寄存器*/sck=0;cs=0;; /* register read command */call outbyt(05h);call inbyt; /* status register read in <DAT> */sck=0;cs=1;end rdregister;wbyte:procedure; /* 看门狗存储器字节写入子程序*/ declare comm byte;sck=0;cs=0;comm=02h; /* 写指令02h */call outbyt(comm);call outbyt(addrl);call outbyt(dat); /* send one byte data to X25043 */cs=1;sck=0;call time(150);end wbyte;rbyte:procedure; /*看门狗存储器字节读出子程序*/declare comm byte;sck=0;cs=0;comm=03h; /* read command */call outbyt(comm);call outbyt(addrl);call inbyt; /* read one byte to <DAT> */sck=0;cs=1;end rbyte;incdata: procedure; /* 参数修改--"加"键处理子程序+ */if p10=0 then /* 如果K7键按下*/do;do while p10=0; /* 等待键松开有效*/call dog; /* 此处必需调用看门狗复位子程序("喂狗"),否则程序将被看门狗复位*/ end;data=data+1; /* 设定值+1 */if data>99 then data=1; /* 规定设定值的上限*/L(1)=data MOD 10; /*将设定值的十位数拆出来送给十位数显示变量L(1) */L(2)=data/10; /*将设定值的个位数拆出来送给个位数显示变量L(2) */call display(L(1),L(2)); /* 将改变后的设定值送164显示出来*/call time(200); /* 延时*/call dog;call time(200);call dog;call wrenable; /* 置存储器写使能*/addrl=00h; /* 置存储器地址*/dat=l(1);call wbyte; /* 将变量L(1)的值写入存储器00h位置*/call wrenable;addrl=01h;dat=l(2);call wbyte; /* 将变量L(2)的值写入存储器01h位置*/end;end incdata;decdata: PROCEDURE; /* 参数修改---"减"键处理子程序- */IF p11=0 THEN /* k8 键处理子程序*/do;do while p11=0;call dog;end;DATA=DATA-1; /* 设定值-1 */if data=0 then data=99;L(1)=data MOD 10;L(2)=data/10;call display(l(1),l(2));call dog;call time(200);call dog;call time(200);call dog;call wrenable;addrl=00h;dat=l(1);call wbyte;call wrenable;addrl=01h;dat=l(2);call wbyte;end;END decdata;starton: PROCEDURE; /* start */declare sd byte;if p12=0 THEN /* K9键处理子程序*/do;do while p12=0;call dog;end;if p17=0 then ok=0; /* 如果p17 口线上有信号输入,则运行标志置0 (停止运行)*/ p13=1; /* 置步进电机正向运转*/call time(200);call dog;do while ok=1; /* 当运行标志为1时,执行速度延时操作*/do sd= 0 to data; /* 根据设定值data的数值延时来确定步进电机运行时的脉冲给定速度*/call dog;end;end;END starton;step: PROCEDURE; /* step */declare sd byte;p13=1; /* 置步进电机正向运转*/call time(200);IF p33=0 THEN /* k11键处理子程序*/do;if p17=0 then ok=0; /* 如果p17上有信号输入,则停止运行*/do while p33=0;do sd= 0 to data; /* 调用延时,调整步进电机的运行速度*/call dog;call time(2);end;call run;call dog;end;end;ok=0;END step;back: PROCEDURE; /* 反向运行处理子程序*/declare sd byte;IF p34=0 THENdo;do while p34=0;call dog;end;if p15=0 then ok=0; /* 反向运行时,如果遇到p15上有信号输入,则停止步进电机运行*/ p13=0; /* 置步进电机反向运行*/call time(200);call dog;do while ok=1;do sd=0 to data; /*根据设定值调节步进电机的运行速度*/call dog;call time(2);end;call run;if (p15=0 or p32=0 ) then ok=0; /* p15 或p32 口线任意一个有信号输入,停止运行*/ end;end;END back;MAIN$PROGRAM: /* 初始化主程序*/ea=0; /* 关中断*/SCON=00h; /*置串口方式0 ,串行数据输出模式*/PCON=00h;tmod=11h;enable; /* 开中断(ea=1) */SCK=0;cs=1; /* 定义存储器口线初始状态*/call wrenable;call wrregister; /* 看门狗存储器初始化*/call wrenable;call dog;p2=0ffh; /* 初始化各个口线的状态*/p1=0ffh;ok=0;p14=1;p32=1;p33=1;p34=1;p13=1;ADDRL=00h; /* 上电复位后从存储器中读出设定的速度值*/CALL rbyte;l(1)=dat;addrl=01h;call rbyte;l(2)=dat;DATA=L(1)+L(2)*10; /*将读出的值合并成十进制,存入变量data中*/ /* 以下是主循环程序*/LOOP:IF p10=0 THEN CALL incdata; /* 检测各个按键是否有按下*/IF p11=0 THEN CALL decdata;if p12=0 thendo;ok=1;call starton;end;if p34=0 thendo;ok=1;call back;end;if p33=0 thendo;ok=1;call step;end;call dog;CALL DISPLAY(L(1),L(2)); /* 将设定值送164显示*/call dog;CALL TIME(100);call dog;GOTO LOOP;END START;。

基于stm32控制的步进电机程序代码

基于stm32控制的步进电机程序代码

基于stm32控制的步进电机程序代码本文将介绍如何使用STM32控制步进电机,并提供相应的程序代码供参考。

步进电机是一种常用的电动机,其运动是通过控制电流来实现的。

通过STM32微控制器,我们可以灵活地控制步进电机的转动速度、方向和步数。

步进电机简介步进电机是一种特殊的电动机,可以将固定的角度转动称为步进角。

它由多个电磁线圈和齿轮组成,通过不同的相序控制电流的通断,从而实现转动。

步进电机通常有两种工作方式:全步进和半步进。

全步进模式下,步进电机按照一定的相序依次通断电流,从而实现转动。

半步进模式下,步进电机可以在每个全步进之间以半个步进的方式运行。

全步进模式有较高的转动精度,半步进模式有更高的分辨率。

STM32控制步进电机STM32是意法半导体(STMicroelectronics)公司开发的一款高性能32位单片机。

它具有丰富的外设和强大的处理能力,适合于使用步进电机的应用。

步进电机可以通过动态控制电流和相序来实现精确的转动。

对于STM32来说,我们可以使用GPIO来控制步进电机的相序,通过PWM输出来控制步进电机的电流大小。

以下是一个实现步进电机控制的示例代码:#include "stm32f1xx.h"#include "stm32f1xx_nucleo.h"// 定义步进电机的相序uint8_t sequence[] = {0x0C, 0x06, 0x03, 0x09};// 定义当前相序的索引uint8_t sequence_index = 0;// 定义当前步进的方向uint8_t direction = 0;// 定义每个相序的持续时间(单位:毫秒)uint16_t sequence_delay = 10;// 初始化GPIO和PWMvoid init_GPIO_PWM() {// 初始化GPIO口GPIO_InitTypeDef GPIO_InitStruct;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStruct);// 初始化PWMRCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;TIM_TimeBaseInitStruct.TIM_Period = 999;TIM_TimeBaseInitStruct.TIM_Prescaler = 0;TIM_TimeBaseInitStruct.TIM_ClockDivision = TIM_CKD_DIV1;TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;TIM_TimeBaseInitStruct.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM1, &TIM_TimeBaseInitStruct);TIM_OCInitTypeDef TIM_OCInitStruct;TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1;TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStruct.TIM_Pulse = 500;TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High;TIM_OC1Init(TIM1, &TIM_OCInitStruct);TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);TIM_Cmd(TIM1, ENABLE);}// 控制步进电机的转动void step_motor_control() {// 设置当前相序GPIO_Write(GPIOA, sequence[sequence_index]);// 切换方向if (direction == 0) {sequence_index++;if (sequence_index >= 4) {sequence_index = 0;}} else {sequence_index--;if (sequence_index < 0) {sequence_index = 3;}}// 延时一段时间HAL_Delay(sequence_delay);}int main(void) {// 初始化GPIO和PWMinit_GPIO_PWM();while (1) {// 控制步进电机的转动step_motor_control();}}以上示例代码通过包含STM32 HAL库(HAL库是ST公司提供的一套可移植的硬件抽象层)来实现GPIO和PWM的初始化。

步进电机调速程序

步进电机调速程序

/****************************************************************************** ******** 标题: 步进电机试验一**** 通过本例程了解步进马达使用及驱动程序编写**; 单双八拍工作方式:**; A-AB-B-BC-C-CD-D-DA (即一个脉冲,转3.75 度)** J14短路冒需断开** 请学员一定要消化掉本例程********************************************************************************* *******/#include "reg52.h"//Motorsbit F1 = P1^0;sbit F2 = P1^1;sbit F3 = P1^2;sbit F4 = P1^3;/////////////////////////////////////////步进电机驱动unsigned char MotorStep=0;unsigned int MotorTimer = 0;unsigned int MotorDelay,Speed=1,TIM,CT;/****************************************************** 初始化马达*******************************************************/void InitMotor(){F1 = 1;F2 = 1;F3 = 1;F4 = 1;}void SetMotor(){// if(Speed == 0) return;MotorDelay=Speed;switch(MotorStep){case 0:if(TIM) // A{F1 = 0; //0xf1F2 = 1;F3 = 1;F4 = 1;MotorStep = 1;TIM=0;}break;case 1: // ABif(TIM){F1 = 0; //0xf3F2 = 0;F3 = 1;F4 = 1;MotorStep = 2;TIM=0;}break;case 2: //Bif(TIM){F1 = 1;F2 = 0; //0xf2F3 = 1;F4 = 1;MotorStep = 3;TIM=0;}break;case 3: //BCif(TIM){F1 = 1;F2 = 0; //0xf6F3 = 0;F4 = 1;MotorStep = 4;TIM=0;}break;case 4: //Cif(TIM){F1 = 1;F2 = 1; //0xf4F3 = 0;F4 = 1;MotorStep = 5;TIM=0;}break;case 5: //CDif(TIM){F1 = 1;F2 = 1; //0xfcF3 = 0;F4 = 0;MotorStep = 6;TIM=0;}break;case 6: //Dif(TIM){F1 = 1;F2 = 1; //0xf8F3 = 1;F4 = 0;MotorStep = 7;TIM=0;}break;case 7: //DAif(TIM){F1 = 0;F2 = 1; //0xf9F3 = 1;F4 = 0;MotorStep = 0;TIM=0;}break;}}void system_Ini(){TMOD|= 0x11;TH0=0xDC; //11.0592MTL0=0x00;IE = 0x8A;TR0 = 1;}main(){ system_Ini();InitMotor();while(1){SetMotor();}}/************************************************* ** 定时中断延时*************************************************/void Tzd(void) interrupt 1{TH0 = 0xfe; //11.0592TL0 = 0x33;if( CT++==10){TIM=1;CT=0;}}/****************************************************************************** ******** 标题: 步进电机试验二**** 通过本例程了解步进马达使用及驱动程序编写**; 单双八拍工作方式:**; A-AB-B-BC-C-CD-D-DA (即一个脉冲,转3.75 度)** J14短路冒需断开** 请学员一定要消化掉本例程*****************************************************************************************/#include "reg52.h"unsigned char code FFW[8]={0xfe,0xfc,0xfd,0xf9,0xfb,0xf3,0xf7,0xf6}; void delay(unsigned int t);//Motorsbit F1 = P1^0;sbit F2 = P1^1;sbit F3 = P1^2;sbit F4 = P1^3;/////////////////////////////////////////步进电机驱动void motor_ffw(){unsigned char i;for (i=0; i<8; i++) //一个周期转30度{P1 = FFW[i]&0x1f; //取数据delay(5); //调节转速}}void delay(unsigned int t){unsigned int k;while(t--){for(k=0; k<60; k++){ }}}main(){while(1){motor_ffw();}}/****************************************************************************** ******** 标题: 步进电机试验三(加减速运行)**** 通过本例程了解步进马达使用及驱动程序编写**; 单双八拍工作方式:**; A-AB-B-BC-C-CD-D-DA (即一个脉冲,转3.75 度)**** 请学员一定要消化掉本例程******************************************************************************** *******/#include "reg52.h"void delay();//Motorsbit F1 = P1^0;sbit F2 = P1^1;sbit F3 = P1^2;sbit F4 = P1^3;unsigned char code FFW[8]={0xfe,0xfc,0xfd,0xf9,0xfb,0xf3,0xf7,0xf6}; //反转unsigned char code FFZ[8]={0xf6,0xf7,0xf3,0xfb,0xf9,0xfd,0xfc,0xfe}; //正转unsigned int K, rate;/********************************************************** * * * 步进电机驱动* ***********************************************************/ void motor_ffw(){unsigned char i;for (i=0; i<8; i++) //一个周期转30度{P1 = FFW[i]&0x1f; //取数据delay(); //调节转速}}/********************************************延时程序*********************************************/void delay(){unsigned int k,t;t=rate;while(t--){for(k=0; k<150; k++){ }}}/**********************************************************步进电机运行**********************************************************/ void motor_turn(){unsigned char x;rate=0x0a;x=0x40;do{motor_ffw(); //加速rate--;}while(rate!=0x01);do{motor_ffw(); //匀速x--;}while(x!=0x01);do{motor_ffw(); //减速rate++;}while(rate!=0x0a);}main(){while(1){motor_turn();}}/****************************************************************************** ********* 标题: 步进电机试验四**** 通过本例程了解步进马达使用及驱动程序编写** 双四拍工作方式:** AB-BC-CD-DA (即一个脉冲,转7.5 度)**** 请学员一定要消化掉本例程,********************************************************************************* *******/#include "reg52.h"//Motorsbit F1 = P1^0;sbit F2 = P1^1;sbit F3 = P1^2;sbit F4 = P1^3;/////////////////////////////////////////步进电机驱动unsigned char MotorStep=0;unsigned int MotorTimer = 0;unsigned int TIM,CT;void InitMotor(){F1 = 1;F2 = 1;F3 = 1;F4 = 1;}void SetMotor(){// if(Speed == 0) return;switch(MotorStep){case 0:if(TIM){F1 = 0;F2 = 0;F3 = 1;F4 = 1;MotorStep = 1;TIM=0;}break;case 1:if(TIM){F1 = 1;F2 = 0;F3 = 0;F4 = 1;MotorStep = 2;TIM=0;}break;case 2:if(TIM){F1 = 1;F2 = 1;F3 = 0;F4 = 0;MotorStep = 3;TIM=0;}break;case 3:if(TIM){F1 = 0;F2 = 1;F3 = 1;F4 = 0;MotorStep = 0;TIM=0;}break;}}void system_Ini(){TMOD|= 0x11;TH0=0xDC; //11.0592MTL0=0x00;IE = 0x8A;TR0 = 1;}main(){ system_Ini();InitMotor();while(1){SetMotor();}}/************************************* [ t1 (0.5ms)中断] 中断中做PWM 输出------------1000/(0.02ms*250)=200Hz*************************************/ void Tzd(void) interrupt 1{TH0 = 0xfe; //11.0592TL0 = 0x33;if( CT++==20){TIM=1;CT=0;}}/****************************************************************************** ****** 标题: 步进电机试验五(正转一圈反转一圈)**** 通过本例程了解步进马达使用及驱动程序编写**; 单双八拍工作方式:**; A-AB-B-BC-C-CD-D-DA (即一个脉冲,转3.75 度)**** 请学员一定要消化掉本例程********************************************************************************* *******/#include "reg52.h"void delay(unsigned int t);//Motorsbit F1 = P1^0;sbit F2 = P1^1;sbit F3 = P1^2;sbit F4 = P1^3;unsigned char code FFW[8]={0xfe,0xfc,0xfd,0xf9,0xfb,0xf3,0xf7,0xf6}; //反转unsigned char code FFZ[8]={0xf6,0xf7,0xf3,0xfb,0xf9,0xfd,0xfc,0xfe}; //正转unsigned int K;/*********************************************************************** ** 步进电机驱动** * ***********************************************************************/ void motor_ffw(){unsigned char i;unsigned int j;for (j=0; j<12; j++) //转1*n圈{for (i=0; i<8; i++) //一个周期转30度{if(K==1) P1 = FFW[i]&0x1f; //取数据if(K==2) P1 = FFZ[i]&0x1f;delay(5); //调节转速}}}/******************************************************** 延时程序*********************************************************/void delay(unsigned int t){unsigned int k;while(t--){for(k=0; k<80; k++){ }}}main(){while(1){K=1;motor_ffw();K=2;motor_ffw();} }。

51单片机控制步进电机

51单片机控制步进电机

设计方案与原理1 设计方案设计一个51单片机四相步进电机控制系统要求系统具有如下功能:(1)由I/O口产生的时序方波作为电机控制信号;(2)信号经过驱动芯片驱动电机的运转;(3)电机的状态通过键盘控制,包括正转,反转,加速,减速,停止和单步运行。

2 设计原理步进电机实际上是一个数字\角度转换器,也是一个串行的数\模转换器。

步进电机的基本控制包括启停控制、转向控制、速度控制、换向控制4个方面。

从结构上看,步进电机分为三相、四相、五相等类型,本次设计的是四相电机。

四相步进电机的工作方式有单四拍、双四拍和单双八拍三种。

在本次设计中,我们使用的是四相单八拍的工作方式。

通过P1口给A,B,C,D四相依次输出高电平即可实现步进电机的旋转,通过控制两次输出的间隔,即可实现对步进电机的速度控制。

图 2.1 步进电机内部结构截图根据步进电机的相关相序表我们可以正常的控制电机的步进运行。

3 硬件设计根据设计要求和设计原理,我们可以绘制出基本的功能方框图,以便之后我们连接实际电路时的方便和可靠。

用键盘控制具体的功能模块,这样更能直观方便的控制整体的系统,使其达到我们预期的操作效果。

图3.1中简单描述了整个单片机系统的控制模式和控制流程,包括通过时钟电路和键盘电路,来控制ULN2003驱动电机动作。

图表图 3.1 硬件电路功能方框图4 电路原理图4.C程序代码#include <reg52.h>#define KeyPort P3#define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换sbit LATCH1=P2^2;//定义锁存使能端口段锁存sbit LATCH2=P2^3;// 位锁存unsigned char code dofly_DuanMa[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码unsigned char TempData[8]; //存储显示值的全局变量sbit A1=P1^0; //定义步进电机连接端口sbit B1=P1^1;sbit C1=P1^2;sbit D1=P1^3;#define Coil_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电#define Coil_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电#define Coil_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电#define Coil_DA1 {A1=1;B1=0;C1=0;D1=1;}//DA相通电,其他相断电#define Coil_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电#define Coil_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电#define Coil_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电#define Coil_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电#define Coil_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电unsigned char Speed=1;bit StopFlag;void Display(unsigned char FirstBit,unsigned char Num);void Init_Timer0(void);unsigned char KeyScan(void);/*------------------------------------------------uS延时函数,含有输入参数 unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编,大致延时长度如下 T=tx2+5 uS------------------------------------------------*/void DelayUs2x(unsigned char t){while(--t);}/*------------------------------------------------mS延时函数,含有输入参数 unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编------------------------------------------------*/void DelayMs(unsigned char t)while(t--){//大致延时1mSDelayUs2x(245);DelayUs2x(245);}}/*------------------------------------------------主函数------------------------------------------------*/ main(){unsigned int i=512;//旋转一周时间unsigned int n=0;unsigned char num,vo,v;Init_Timer0();Coil_OFF;while(1) //正向{num=KeyScan(); //循环调用按键扫描if(num==1)//第一个按键,速度等级增加{if(Speed<15)Speed=Speed+2;}if(num==2)//第二个按键,速度等级减小{if(Speed>1)Speed=Speed-2;}if(num==3)//第三个按键,电机停转{Coil_OFFStopFlag=1;}if(num==4)//第四个按键,电机启动{StopFlag=0;TR0=1;}if(num==5)//第五个按键,电机反转{TR0=0;TR1=1;}if(num==6)//第六个按键,电机正传{TR0=1;TR1=0;}vo=(0.25*(20-Speed)*64*32)/1000;v=60/vo;TempData[0]=dofly_DuanMa[v/10]; //分解显示信息,如要显示68,则68/10=6 68%10=8TempData[1]=dofly_DuanMa[v%10];}}/*------------------------------------------------显示函数,用于动态扫描数码管输入参数 FirstBit 表示需要显示的第一位,如赋值2表示从第三个数码管开始显示如输入0表示从第一个显示。

步进电机的单片机控制方法

步进电机的单片机控制方法

"# 步进电机与单片机接口及程序设计
$ ! %# 步进电机与单片机的接口电路 由于步进电机的驱动电流比较大, 所以单片机 与步进电机的连接都需要专门的接口电路及驱动电
图 &# 步进电机与单片机的接口电路流程图
万方数据
>(
武汉工程职业技术学院学报A A A A A A A A A A A A A A A A A A A A A ())>B 8A
步进电机的单片机控制方法
宋! 锦
( 南京信息职业技术学院! 江苏南京: "#$$%& ) 摘! 要! 以四相步进电机为例, 介绍了由 ’(#%#) 驱动的电路原理图, 给出了四相步进电机的正
转反转的程序设计流程图和程序清单。 关键词! 单片机! 步进电机! 控制 中图分类号: *’)$#+ "! 文献标识码:, ! 文章编号: #&-#.)/"% ( "$$& ) $).$$/0.$/ 实验教学、 科研中效果良好。
1""2( :
; 取控制模型
1""28 :
; 反向控制模型 偏移量
%.6: 5&1.<:
万方数据
; 正向控制模型 ; 反向控制模型
!Байду номын сангаас! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 宋! 锦 : 步进电机的单片机控制方法 "%%&#
I*
! ! 总之, 用单片机来控制步进电机可以解决传统 步进控制器线路复杂, 成本高的问题, 既简化了线 路, 降低了成本, 又大大提高了可靠性。使用起来极 为方便。 参考文献

基于ULN2003 控制步进电机正反转

基于ULN2003 控制步进电机正反转

基于ULN2003 控制步进电机正反转第24组电子设计报告组员:郝冠 111308309郭剑楠 111308308李爽 111308317一、功能说明本设计是基于STC89C52单片机和ULN2003 芯片能控制步进电机正反转的设计。

程序由我们自己完成的。

是由按键引发外部中断来控制步进电机输入信号端先后顺序,从而改变正反转。

功能通过按键输入外部中断信号,改变步进电机步进方向。

还可改进地方:用数码管显示当前步进电机旋转速度,再用按键来控制步进电机旋转速度。

二、原理图(1)52芯片引脚图(2)ULN2003芯片原理图三、程序源代码//本程序内容:使用外部中断控制步进电机的正传和反转// //注意外部中断必须用P3^2//#include<reg52.h>#define uint unsigned int#define uchar unsigned charuchar flag;sbit k1=P3^2;//步进电机数据口取名sbit A1=P3^4;sbit B1=P3^5;sbit C1=P3^6;sbit D1=P3^7;//步进电机1四相八拍所用数据#define POWER_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电#define POWER_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电#define POWER_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电#define POWER_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电#define POWER_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电#define POWER_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电#define POWER_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电#define POWER_DA1 {A1=1;B1=0;C1=0;D1=1;}//DA相通电,其他相断电#define POWER_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电void delay_ms(unsigned char t){uchar x,y;for(x=t;x>0;x--){for(y=114;y>0;y--) ;}}uchar speed; //定义速度全局变量,也是时间延迟变量uint i; //旋转一周时间,512一周void main(){EA=1; //全局中断开EX0=1; //外部中断0开IT0=1; //1表示边沿触发i=512;speed=6;POWER_OFFwhile(1){while(i--){if(flag==0){POWER_A1delay_ms(speed);POWER_AB1delay_ms(speed);POWER_B1delay_ms(speed);POWER_BC1delay_ms(speed);POWER_C1delay_ms(speed);POWER_CD1delay_ms(speed);POWER_D1delay_ms(speed);POWER_DA1delay_ms(speed);}else{POWER_DA1delay_ms(speed);POWER_D1delay_ms(speed);POWER_CD1delay_ms(speed);POWER_C1delay_ms(speed);POWER_BC1delay_ms(speed);POWER_B1delay_ms(speed);POWER_AB1delay_ms(speed);POWER_A1delay_ms(speed);}}}}void ex0(void) interrupt 0{if(k1==0){delay_ms(10);if(k1==0){flag=~flag;}}}四、设计总结本次设计完全是我们自己写的程序,有很多没有考虑到的地方,需要我们今后更加努力,改进程序,使功能更齐全,操作更简单。

STC增强型51单片机利用PWM脉冲控制4个57步进电机的编程方法

STC增强型51单片机利用PWM脉冲控制4个57步进电机的编程方法

IAP15W4K58S4单片机利用PWM脉冲控制4个步进电机的编程方法最近购入一块IAP15W4K58S4(图1)的STC单片机的最小系统,然后用它控制步进电机,步进电机驱动器为基于TB6600的MicroStep Driver(图2)驱动器。

为了能控制该驱动器,利用现有的单片机系统控制驱动器。

连接电路原理图如图3所示,图中Vcc=5V.图1 IAP15W4K58S4单片机最小系统图2 步进电机驱动器使IAP15W4K58S4单片机能够控制步进电机,首先需要产生PWM脉冲,本例子产生频率为1KHz,占空比为50%的脉冲,P2.1、P2.2、P2.3、P3.7口输出4路PWM脉冲。

生产PWM脉冲,单片机涉及到的寄存器(不考虑PWM中断)有P_SW2(端口配置寄存器)、PWMCFG(PWM配置寄存器,初始电平高低)、PWMCKS(PWM时钟选择寄存器)、由PWMCH(高7位)和PWMCL(低8位)组成的15位PWM计数器、由PWM n T1H、PWM n T1L和PWM n T2H、PWM n T2L组成的PWM脉冲翻转计数器(其中PWM n T1H、PWM n T1L组成第一次翻转15位计数器,其中PWM n T2H、PWM n T2L组成第二次翻转15位计数器,n取值范围为2、3、4、5、6、7)、PWM n CR(PWM n的控制寄存器,设置输出管脚选择和中断使能控制,n取值范围为2、3、4、5、6、7)和PWMCR(PWM控制寄存器,用于开启各个端口和PWM模块开关,该寄存器最后设置)。

由于生成PWM,需将I/O 口配置为准双向口或强推挽模式,所以还需配置P m M0和P m M1寄存器,m取值范围为0~3。

以上寄存器各个位配置可参考该单片机的数据手册,本项目的例程参考STC官方例程基础进行修改,如后文所述。

IAP15W4K58S4单片机的特殊功能寄存器区中要使用扩展的特殊功能寄存器需要配置P_SW2的bit7位,将其(bit7)置1。

基于单片机ULN2003的步进电机控制系统(汇编及C语言程序各一个)

基于单片机ULN2003的步进电机控制系统(汇编及C语言程序各一个)

图8 总体电路图1.3.4软件设计通过分析可以看出,实现系统功能可以采用多种方法,由于随时有可能输入加速、加速信号和方向信号,因而采用中断方式效率最高,这样总共要完成4个部分的工作才能满足课题要求,即主程序部分、定时器中断部分、外部中断0和外部中断1部分,其中主程序的主要功能是系统初始参数的设置及启动开关的检测,若启动开关合上则系统开始工作,反之系统停止工作;定时器部分控制脉冲频率,它决定了步进电机转速的快慢;两个外部中断程序要做的工作都是为了完成改变速度这一功能。

下面分析主程序与定时器中断程序及外部中断程序。

(1)主程序设计主程序中要完成的工作主要有系统初始值的设置、系统状态的显示以及各种开关状态的检测判断等。

其中系统初始状态的设置内容较多,该系统中,需要初始化定时器、外部中断;对P1口送初值以决定脉冲分配方式,速度值存储区送初值决定步进电机的启动速度,对方向值存储区送初值决定步进电机旋转方向等内容。

若初始化P1=11H、速度和方向初始值均设为0,就意味着步进电机按四相单四拍运行,系统上电后在没有操作的情况下,步进电机不旋转,方向值显示“0”,速度值显示“0”,主程序流程图如图9所示。

(2)定时中断设计步进电机的转动主要是给电机各绕组按一定的时间间隔连续不断地按规律通入电流,步进电机才会旋转,时间间隔越短,速度就越快。

在这个系统中,这个时间间隔是用定时器重复中断一定次数产生的,即调节时间间隔就是调节定时器的中断次数,因而在定时器中断程序中,要做的工作主要是判断电机的运行方向、发下一个脉冲,以及保存当前的各种状态。

程序流程图如图10所示。

(3)外部中断设计外部中断所要完成的工作是根据按键次数,改变速度值存储区中的数据(该数据为定时器的中断次数),这样就改变了步进电机的输出脉冲频率,也就是改变了电机的转速。

速度增加按钮S2为INT0中断,其程序流程为原数据,当值等于7时,不改变原数值返回,小于7时,数据加1后返回;速度减少按钮S3,当原数据不为0,减1保存数据,原数据为0则保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机步进电机控制程序代码
引言:
步进电机是一种常见的电机类型,它具有准确的位置控制和高速运动的特点,在许多应用中被广泛使用。

为了实现步进电机的精确控制,我们需要编写相应的单片机控制程序代码。

本文将介绍一种常见的单片机步进电机控制程序代码,并详细解析其实现原理和使用方法。

一、控制原理:
步进电机通过控制电流的方向和大小来控制转子的运动,常见的步进电机控制方式有两相和四相控制。

本文将以四相控制为例进行介绍。

四相控制是指通过控制四个线圈的电流状态来控制步进电机的运动。

具体控制方式有全步进和半步进两种。

全步进模式下,每一步都是四个线圈中的两个同时激活;半步进模式下,每一步都是四个线圈中的一个或两个同时激活。

在本文中,我们将介绍半步进模式的控制程序代码。

二、程序代码:
下面是一段常见的单片机步进电机控制程序代码:
```c
#include <reg51.h>
sbit A1 = P1^0;
sbit A2 = P1^1;
sbit B1 = P1^2;
sbit B2 = P1^3;
void delay(unsigned int t)
{
unsigned int i, j;
for (i = 0; i < t; i++)
for (j = 0; j < 120; j++);
}
void main()
{
unsigned int i;
unsigned char step[8] = {0x01, 0x03, 0x02, 0x06, 0x04, 0x0C, 0x08, 0x09};
while (1)
{
for (i = 0; i < 8; i++)
{
P1 = step[i];
delay(1000);
}
}
}
```
三、代码解析:
1. 引用头文件reg51.h,该头文件定义了单片机51的寄存器等相关信息。

2. 定义了四个IO口A1、A2、B1、B2,分别对应步进电机的四个线圈。

3. 定义了一个延时函数delay,用于控制电机转动的速度。

4. 在主函数main中,定义了一个8位数组step,存储了每个步进位置对应的线圈状态。

5. 进入无限循环,循环中依次输出step数组中的每个元素,即控制电机转动到相应位置。

6. 每次输出后延时一段时间,控制电机的转速。

四、使用方法:
1. 将步进电机的四个线圈分别连接到单片机的四个IO口A1、A2、B1、B2。

2. 将单片机烧录该控制程序代码到单片机中。

3. 运行单片机,步进电机将按照程序中定义的步进顺序进行转动。

五、总结:
本文介绍了一种常见的单片机步进电机控制程序代码,通过控制四个线圈的电流状态实现步进电机的精确控制。

通过编写相应的程序代码,我们可以实现步进电机的准确定位和高速运动,满足不同应用场景的需求。

希望本文对大家理解单片机步进电机控制原理和使用方法有所帮助。

相关文档
最新文档