第3章水环境化学

合集下载

环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化知识交流

环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化知识交流

之,pE越大,电子浓度越低,体系接受电子的倾向就越强。
(2)氧化还原电位E和pE的关系
Ox +ne→Red
(1)
根据Nernst方程
E=E0-(2.303RT/nF)lg[Red]/[Ox] (2) 当反应达平衡时,定义
E0=(2.303RT/nF) lgK
(3)
从上述化学方程式(1),可写出
K= [Red]/{[Ox][e]n }
如果考虑到羟基配合作用,那么金属氧化物或氢氧化物的 溶解度(MeT)表征为:
MeT = [ Mez+ ] +∑[ Me(OH)nz-n ]
固体的氧化物和氢氧化物具有两性的特征,它们和质子或 羟基离子都发生反应,存在一个pH值,在该值下溶解度为最 小值。在碱性或酸性更强的pH值区域内,溶解度都会变得更 大。
因此,在 H2S 和硫化物均达到饱和的溶液中,溶液重金属离子 的饱和浓度为: [Me2+]=Ksp/[S2-]=Ksp [H+]2/Ksp´ =Ksp [H+]2/(0.1K1K2)
3、碳酸盐
——多相平衡,pH通过控制碳酸根浓度影响沉淀平衡
封闭体系: 只考虑固相和液相,把 H2CO3* 当作不挥发酸类处理。
吸附量随粒度增大而减少,并且当溶质浓度范围固定 时,吸附量随颗粒物浓度增大而减少。
温度变化、几种离子共存(竞争作用)等。
3、沉积物中重金属的释放——属于二次污染问题
诱发释放的主要因素有: (1)盐浓度升高:碱金属和碱土金属阳离子可将被吸附在固体颗
粒上的金属离子交换出来。
(2)氧化还原条件的变化:有机物增多,产生厌氧环境、铁锰氧 化物还原溶解,使结合在其中的金属释放出来。
2、它在中性表面甚至在与吸附离子带相同电荷符号的表面 也能进行吸附作用。

第三章 水环境化学水中无机污染物的迁移转化汇总

第三章  水环境化学水中无机污染物的迁移转化汇总

20
1. 胶体颗粒凝聚的基本原理和方式

1) 带电胶粒稳定性的经典理论--DLVO理论 带电胶粒的两种相互作用力

双电层重叠时的静电排斥力 粒子间的长程范德华吸引力


DLVO理论认为,当吸引力占优势时,溶胶发生聚 沉; 当排斥力占优势,并大到足以阻碍胶粒由于 布朗运动而发生聚沉时,则胶体处于稳定状态。 颗粒在相互接近时两种力相互作用的总位能随相 隔距离的变化而变化: 总位能 VT=VR+VA 式中:VA——由范德华力所产生的位能; VR——由静电排斥力所产生的位能。
4
一 、 颗粒物与水之间的迁移
2、水环境中颗粒物的吸附作用
专属吸附是指吸附过程中,除了化学键的作
用外,尚有加强的憎水键和范德华力或氢键在 起作用。
专属吸附作用不但可使表面电荷改变符号, 而且可使离子化合物吸附在同号电荷的表面上。
5
表3-8水合氧化物对金属离子的专属吸附 与非专属吸附的区别
项目 非专属吸附 专属吸附 发生吸附的表面净电荷的符号 - -、0、+ 金属离子所起的作用 反离子 配位离子 吸附时发生的反应 阳离子交换 配位体交换 发生吸附时体系的PH值 >零电位点 任意值 吸附发生的位置 扩散层 内层 对表面电荷的影响 无 负电荷减少, 正电荷增多 注:本表摘自陈静生主编,1987。
(4)水体悬浮沉积物
悬浮沉积物是以矿物微粒,特别是粘土矿物 为核心骨架,有机物和金属水合氧化物结合在矿 物微粒表面上,成为各微粒间的粘附架桥物质, 把若干微粒组合成絮状聚集体(聚集体在水体中 的悬浮颗粒粒度一般在数十微米以下),经絮凝 成为较粗颗粒而沉积到水体底部。
(5)其他
3
一、 颗粒物与水之间的迁移

水环境化学-72页文档资料

水环境化学-72页文档资料

农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)
第三节 水中有机污染物的迁移转化
(Transport and Transformation of organic Pollutants)
有机污染物在水环境中的迁移转化 取决于有机污染物的自身性质和水体的 环境条件。 迁移转化主要方式:
吸附、挥发、水解、光解、生物富集、 生物降解等。
一、分配作用 (Partition)
1、 分配理论 (Partition Theory)
吸着(sorption)指有化合物在土壤(沉积物) 中的吸着存在,可以用二种机理来描述有机 污染物和土壤质点表面间物理化学作用的范 围。
(2)天然水中的碱度和酸度
(Acidity and Alkalinity in Natural Waters)
碱度(Alkalinity)
指水中能与强酸发生中和作用 的全部物质,即接受质子的物质总 量,包括强碱、弱碱及强碱弱酸盐。

(完整版)第三章水环境化学答案

(完整版)第三章水环境化学答案

第三章水环境化学1、请推导出封闭和开放体系碳酸平衡中[H 2CO 3*]、[HCO 3-]和[CO 32-]的表达式,并讨论这两个体系之间的区别。

解: 开放体系,考虑到CO 2在气液相之间的平衡,[H 2CO 3*] 不变根据亨利定律: [CO 2(aq)] = K H Pco 2 lg[H 2CO 3*] ≈ lg[CO 2(aq)] = lg K H + lg Pco 2 = - 4.9lg[HCO 3-] = lg K 1 + lg [H 2CO 3*] + pH= -11.3 + pHlg[CO 32-] = lgK 1 + lgK 2 + lg[H 2CO 3*] + 2pH= -21.6 + 2pH*][][][*][]][[32133231CO H H K HCO CO H HCO H K +--+==*][][][*][][][32221233223221CO H H KK CO CO H CO H K K +--+⋅==⋅][][][233*32--++=CO HCO CO H C T 是常数。

的总和为各种碳酸化合态浓度假设,T C TC HCO ⎥⎦⎤⎢⎣⎡-=31αTC CO ⎥⎦⎤⎢⎣⎡-=232αTC CO H ⎥⎦⎤⎢⎣⎡*=320α122122][][1(-+++=K H K K H α1211)][][1(-++++=H K K H α122110][][1(-++++=H K K H K α*][][][*][]][[32133231CO H H K HCO CO H HCO H K +--+==*][][][*][][][32221233223221CO H H K K CO CO H CO H K K +--+⋅==⋅][][][][21233*32+--H K K CO HCO C CO H T 和含有的表示式,,为变量表示以:,][],[*],[21023332得到,,代入把αααT C CO HCO CO H --eg oo d 2、请导出总酸度、CO 2酸度、无机酸度、总碱度、酚酞碱度和苛性碱度的表达式作为总碳酸量和分布系数(α)的函数。

中国农业大学_807环境化学与环境监测_《环境化学》课件_环境化学第三章

中国农业大学_807环境化学与环境监测_《环境化学》课件_环境化学第三章

第一节
水环境中的沉淀溶解反应
3、相互结合的离子半径差别愈小,其离子化合物愈牢固, 即难溶解。 溶解度小于0.01克/100克水的物质叫做“难溶物” 地表水和沉积物的孔隙水中主要阴离子Cl-、SO2-4、HCO-3
还原条件下有H2S衍生的HS-与S2-,碳酸盐、氢氧化物、硫 化物难溶。
第一节
水环境中的沉淀溶解反应
一、氧化物和氢氧化物
金属氢氧化物沉淀有多种形态,它们在水环境中的行为差
别很大。氧化物可看成是氢氧化物脱水而成。金属氢氧化 物的沉淀溶解平衡可以用化学反应的通式表述:
Me (OH)n(s) ==== Me n+ + nOH¯ Ksp = [Me n+][OH–]n [Me n+]= Ksp/[OH–]n = Ksp[H+]n / Knw
pc = ( pKsp – npKw ) + npH (3-1)
第一节
水环境中的沉淀溶解反应
1、pc 与pH成直线关系,即在一定的pH的范围内, pH 越高,金属离子的浓度越低;
2、金属离子的价数就是浓度随pH变化的斜率,其中
lg[Men+] 与pH的关系,斜率分别为 -1、-2、-3。 Ag+、Hg+ 的斜率为 1; Ca2+ 、 Mg2+ 、 Fe2+ 、 Mn2+ 、 Zn2+ 、 Pb2+ 、 Cu2+ 、 Hg2+ 、 Ni2+ 、 Cd2+ 、 Co2+ 的斜率为 2; Al3+、Fe3+、Cr3+ 的斜率为 3; 3、当pc = 0时(-lg[Men+] = 0 即 [Men+] = 1 mol/L), 直线在横轴上的pH值为截距 , 用下式计算:

第3章水环境化学1

第3章水环境化学1

可从CO2的酸离解常数K1计算出:
[H+]= [HCO3-]
[H+]2/[CO2] =k1=4.45×10-7
[H+]=2.14×10-6 mol/L
pH=5.67
故CO2在水中的溶解度应为[CO2]十[HCO3-]=1.24×l0-5 mol/L。
第二十一页,共68页。
★⑷水生生物:
水生生物体可分为自养生物和异养生物。
pG=(p标-p水蒸汽)×V%
式中:KH:各种气体在一定温度下的亨利定律常数;pG:各 种气体的分压。
但是:亨利定律不能说明气体在溶液中进一步的化学反应 ,如:
H2CO3 = H+ + HCO3-
HCO3- = H+ + CO32-
第十六页,共68页。
表表3-34-125℃25时℃一时些一气些体气在体水在中水的中亨的利亨定利律定常律数常数
氧的分子量为32,因此其溶解度为8.32mg/L。
气体的溶解度随温度升高而降低,这种影响可由C1ausius-C1apeyron方
程式显示出:
lgc2 H (1- 1) c1 2.303T R1 T2
温度从0℃升高到35℃时,氧在水中的溶解度从14.74mg/L降低到
7.03mg/L。
第二十页,共68页。
3.地球上水的分布
地球上的水分布在海洋、湖泊、沼泽、河流、冰川、雪地、 以及大气、生物体、土壤和地层。水的总量约为13.86亿km3,其
中海水占96.5%,淡水为0.35亿km3,占总水量的2.35%。 比较容易开发利用的,与人类生活和生产关系密切的淡水
储量为400多万km3,仅占淡水的11%,总水量的0.3%。
阳离子

环境化学第三章水环境化学复习知识点

环境化学第三章水环境化学复习知识点

第三章水环境化学1、水中八大离子:K+、Na+、Ca2+、Mg2+、HCO3-、NO3-、Cl-和SO42-为常见八种离子2、溶解气体与Henry定律:溶解于水中的气体与大气中的气体存在平衡关系,气体的大气分压P G与气体的溶解度的比表现为常数关系,称为Henry定律,该常数称为Henry定律常数K H。

[G(aq)] = K H PG K H-气体在一定温度下的亨利定理常数 (mol/L.Pa) PG -各种气体的分压 (Pa)3、水体中可能存在的碳酸组分 CO2、CO32-、HCO3-、H2CO3 ( H2CO3*)4、天然水中的碱度和酸度:碱度:水中能与强酸发生中和作用的全部物质,即能够接受质子H+的物质总量;酸度:凡在水中离解或水解后生成可与强碱(OH-)反应的物质(包括强酸、弱酸和强酸弱碱盐)总量;即水中能与强碱发生中和作用的物质总量。

5、天然水中的总碱度=HCO3-+2CO32-+ OH- —H+6、水体中颗粒物的类别(1)矿物微粒和粘土矿物(铝或镁的硅酸盐)(2)金属水合氧化物(铝、铁、锰、硅等金属)(3)腐殖质 (4)水体悬浮沉积物 (5)其他(藻类、细菌、病毒等)影响水体中颗粒物吸附作用的因素有:颗粒物浓度、温度、PH。

7、水环境中胶体颗粒物的吸附作用有表面吸附、化学吸附、离子交换吸附和专属吸附。

8、天然水的PE随水中溶解氧的减少而降低,因而表层水呈氧化性环境。

9、吸附等温线:在一定温度,处于平衡状态时被吸附的物质和该物质在溶液中的浓度的关系曲线称为吸附等温线;水环境中常见的吸附等温线主要有L-型、F-型和H-型。

10、无机物在水中的迁移转化过程:分配作用、挥发作用、水解作用、光解作用、生物富集、生物降解作用。

11、PE:pE 越小,电子活度越高,提供电子的倾向越强,水体呈还原性。

pE 越大,电子活度越低,接受电子的倾向越强,水体呈氧化性。

pe影响因素:1)天然水的pE随水中溶解氧的减少而降低;2)天然水的pE随其pH减少而增大。

第三章-水环境化学(第一次课)

第三章-水环境化学(第一次课)
次要离子:Fe2+、CO32-、HSiO3-、NO2-、 HPO42-、H2PO4-、PO43-
ii 表示方法
总含盐量(Total Dissolved Solids-TDS),也称总矿化度: 水中所含各种溶解性矿物盐类的总量称为水的总含盐量。
总含盐量=Σ阳离子+Σ阴离子
iii 测定
重量法
总含盐量=溶解固形物
cT
[H
2 CO
* 3
](1
K1 [H
]
K1K 2 [H ]2
)
0
[H2CO*3
]
1
cT
(1
K1 [H ]
K1K 2 [H ]2
) 1
说明pH决定它们的 含量多少
1
[HCO
3
]
cT
[H ] (
K1
1
K2 [H
) ]
1
2
[CO32 ] cT
([H ]2 K1K 2
[H ] 1)1 K2
lg c2 H • ( 1 1 ) 15.59103 ( 1 1 ) c1 2.303R T1 T2 2.3038.314 298.15 273.15
c2 8.289 1.778 14.74mg / L
0 ℃时的含量14.74mg/L 20 ℃时为9.227mg/L
2.在一个标准大气压下,25℃时CO2在水中的溶解度。已知 CO2在干空气中的含量为0.0314%(体积)。
氧气的分压为
0.9813105 20.95% 0.2056105 Pa
[G(O2) ] KH PG 1.26108 0.2056105 2.590104 mol / L
[G(O2) ] 2.590104 32 8.289mg / L

第三章 水环境化学-fxc11

第三章 水环境化学-fxc11


开放体系 CO2 在气相和液相处于平衡状态,各种碳酸盐化合态 的平衡浓度可表示为pCO2和pH的函数。 [CO2(aq)] = KH · pCO2 CT = [CO2] / α0 = KH · pCO2 /α0 [HCO3-] = (α1/α0) KH · pCO2 = K1 · KH · pCO2 / [H+] [CO32-] = (α2 / α0 ) KH · pCO2 = K1 · K2 · KH · pCO2 / [H+]2
然 取 水 站 净 水 厂
给 水 管 网
净 水 站
生产用水设备
(2)
水 体 或 土 壤
废水处理厂
直流系统(2)
生产用水设备
( 1)
直流系统(1)
水的社会循环
水循环的重要意义
1)通过水循环使大气圈、水圈、岩石圈、 生物圈相互联系,各种水体相互转化,并在 循环运动中进行能量交换、物质迁移 2)通过水循环使陆地上的水得到不断的补 充,水资源得到更新再生 目前人类可影响的环节是: 时间上:修建水库
海洋水全部更新一次需要2500a;
地下水平均更新期为1400a。
水的社会循环:
——指由于人的社会需要而促成的循环,称 为水的社会循环。水的社会循环是直接为人 类的生活和生产服务的。
这个过程包括了:给水、排水两个环节
排水工程 (用水) (废水) 雨水 排水管网
生活用水设备
污水处理厂

排放渠
地 面 或 地 下 水 源
(3)气体在水中的溶解性 氧气溶解度随着温度的变化
Lg(C2/C1) = △H / (2.303R) ( 1/T1 - 1/T2 )
当温度从0 ℃升到35 ℃时,氧在水中的溶解度将从 14.74mg/L降低到7.03mg/L。

第3章:水环境化学

第3章:水环境化学
➢湖水中:Na+、Cl-、SO42-占优势; ➢地下水主要离子成分受地域变化影响很大,一般说地下水硬度 高,就是其中Ca2+、Mg2+含量高,对于一些苦水或咸水地区, 地下水中Na+、HCO3-含量较高; ➢河水中所含有的部分Na+和大部分的Ca2+主要分别来源于硅酸 盐和碳酸盐的风化、溶解;水中所含有的SO42-主要来自硫化物矿 物和硫酸盐矿物(如石膏)的溶解。
第3章:水环境化学
举例:水中可溶性金属离子可以多种形态存在。例如,铁可以
Fe(OH)2+、Fe(OH)2+、Fe2(OH)24+、Fe3+等形态存在。这些 形态在中性(pH=7)水体中的浓度可以通过平衡常数加以计算:
Fe3++H2O=Fe(OH)2++H+ [Fe(OH)2+][H+]/[Fe3+]=8.9×10-4
代入亨利定律即可求出氧在水中的摩尔浓度为:
[O2(aq)]= KH·=1.26×10-8×0.2056×105=2.6×10-4 mol/L 氧的分子量为32,因此其溶解度为8.32mg/L。
气 体 溶 解 度 随 温 度 升 高 而 降 低 , 这 种 影 响 可 由 Clausius-Clapeyron (克拉帕龙)方程式显示出:
CO2在水中离解部分可产生等浓度的H+和HCO3-。H+及HCO3-的浓度可 从 CO2的酸离解常数(K1)计算出: CO2+H2O CO2·H2O 亨利常数 KH [C=OP23CO H.232O 4]×10-7molL-1Pa-1
第3章:水环境化学
CO2·H2O HCO3-+H+ 一级电离

(完整版)第三章水环境化学

(完整版)第三章水环境化学
化学反应平衡:
分布分数:α0 、α1、α2分别表示化合物在总量中的比 例则:
α0=[H2CO3*]/{[H2CO3*]+[HCO3]+[CO32-] } α1 =[HCO3-]/{[H2CO3*]+[HCO]+[CO32-] } α2=[CO32-]/{[H2CO3*]+[HCO3-]+[CO32-] }
2003年我国万元GDP用水量为465m3,是世界平均水平的4 倍;农业灌溉用水有效利用系数为0.4~0.5,是发达国家 的1/2;水的重复利用率为50%,发达国家已达到了85%; 全国城市供水管网漏损率达20%左右。
水危机的出现
根据水利部《21世纪中国水供求》分析,2010年 我国工业、农业、生活及生态环境总需水量在中 等干旱年为6988亿立方米,供水总量6670亿立方 米,缺水318亿立方米。这表明,2010年后我国 将开始进入严重的缺水期。
CT=[H2CO3*]+[HCO3- ]+[CO32- ]
试计算封闭体系和开放体系中各碳酸形态的表示式? (1)封闭体系
总碳酸量不变 (2)开放体系
[H2CO3*]保持不变
封闭体系:
0
H]
k1k2 [H ]2
)1
1
HCO3 CT
(1
[H k1
]
k2 [H
)1 ]
溶解于水中气体的量可能高于亨利定律表示的量。
氧在25℃ ,1.013X105Pa下溶解度计算:
由亨利定律[G(aq)]=KH*pG
不同温度下,气体在水中溶解度的计算:
CO2在25℃ ,1.013X105Pa下溶解度计算
(4)水体富营养化(eutrophication) 由于水体中氮磷营养物质的富集,引起

环境化学(袁加程)第三章-水环境化学

环境化学(袁加程)第三章-水环境化学
工业废水:废水中污染物浓度大;废水成分复杂且不易净化; 很多工业废水带有颜色或异味,或呈现出令人生厌的外观,易 产生泡沫,含有油类污染物等;废水水量和水质变化大;某些 工业废水的水温高,甚至有高达40℃以上。
3. 水体污染及水体污染源
主要的水环境污染物
悬浮物 植物性营养物 酸碱污染 难降解有机物 热污染
总碱度 = [HCO3-] + 2[CO32-] + [OH-] – [H+]
2. 天然水体中的化学平衡
酸度是指水中能与强碱发生中和作用的全部物质,亦即放 出H+或经水解能产生H+的物质总量。包括强酸、弱酸、强酸弱 碱盐等。
总酸度 = [H+] + [HCO3-] + 2[H2CO3] – [OH-]
第三章 水环境化学
第一节 水环境化学基础
天然水的基本特性 天然水体中的化学平衡 水体污染及水体污染源 水体的自净作用与水环境容量
1. 天然水的基本特性
1.1 天然水的组成
(1) 天然水的主要离子组成: K+, Na+, Ca2+, Mg2+, HCO3-, NO3-, Cl-, SO42- 为天然水中常 见的八大离子,占天然水离子总量的95-99%。
[HCO
3
]
K1[H2CO3 ] [H ]
[CO32- ]
K1K2[H2CO3 ] [H ]2
0
[H2CO3 ]
[H2CO3 ]
K1[H 2 CO 3 [H ]
]
K1K2[H2CO3 ] [H ]2
(1
K1 [H
]
K1 K 2 [H ]2
) 1
2. 天然水体中的化学平衡

资源与环境化学 第三章 第三部分(水污染控制)

资源与环境化学 第三章 第三部分(水污染控制)

《资源与环境化学》 第三章 水环境化学
第8页
《资源与环境化学》 第三章 水环境化学
活性污泥法污水处理工艺流程
第9页
《资源与环境化学》 第三章 水环境化学
B、生物过滤法 在过滤池中,废水被喷淋在表面上覆盖有发达微生物膜的石 块或其他滤料上,这些滤料在化学上是惰性的。 生物膜,实际上是一种胶状膜(Schmutzdecke),其中含有 成熟的微生物,包括细菌、真菌和原生动物等。 在设计生物过滤池时,应考虑其结构能使废水与空气得到充 分的接触,以便生物膜和废水层从空气中吸收氧气。
第11页
(3)三级处理
《资源与环境化学》 第三章 水环境化学
三级处理也称高级处理或深度处理,它是将二级处理未能去 除的部分污染物进一步净化处理,常用超滤、活性炭吸附、离子 交换、电渗析等。其处理内容为去除某些重金属毒物,进一步去 除可溶性无机物(富营养物)、部分有机物以及细菌、病毒等微 生物。经过三级处理后的污水, BOD5去除率在 95%以上,出水 浓度降至5mg/L以下,可直接回用于工业。
三级处理系统
第12页
《资源与环境化学》 第三章 水环境化学
一级处理 二级处理 三级处理
废水
格 栅
沉沙 池
沉淀 池
生物曝气 池或生物 滤池
二次沉淀 池
混凝、过 滤、离子 交换、消 毒等设备
回流污泥 一级处理出水 (排放、灌溉) 二级处理出水 三级处理出水 (排放、灌溉) (排放、再用)
垃圾 处理
沉渣 处理
第14页
《资源与环境化学》 第三章 水环境化学
1、沉淀池的应用 沉淀池通常为径流流经的简易水池。 沉淀池的位臵设臵: 有的沉淀池紧接排水管渠出口,仅比排水管渠更深、更宽 一些。还有的沉淀池就是开挖的深坑或沟渠,其位臵紧挨 着停车场、商场、房屋开发区或高速公路。 沉淀池作用: 由于沉淀池内水流经的横断面积要比排水渠大,径流经 过时流速会下降。这使得径流在流出沉淀池以前就有部分 沉积物沉淀到池底。 城市径流中许多污染物与固体悬浮物相关,因此固体悬 浮物沉淀后可使大量BOD、营养盐、碳氢化合物、金属和 农药得以去除。 * 断流期间,需周期性地将沉淀池内积累的沉积物挖出并装 运填埋。否则可能对地表径流的污染物流量产生影响 。

第三章水环境化学

第三章水环境化学
天然水体的pH值一般在6~9之间。 水中含有的各种碳酸化合物控制水的pH值并具有缓冲作用。
2020/4/10
12
§1.2天然水的性质
(4)水的硬度
水中所含钙、镁离子总量称为水的总硬度。
水的硬度分级
总硬度
水质
0~4度
很软水
4~8度
软水
8~16度
中等硬水
16~30度
硬水30度ຫໍສະໝຸດ 上很硬水常用“度”作为硬度单位。例如l0mg/L的CaO称为1德国度, l0mg/L的CaCO3称为法国度。
生物自净
在生物的作用下,污染物的数量减少,浓度下降,毒 性减轻或消失.
2020/4/10
23
§2.水中污染物的分布和存在形态
上个世纪60年代,美国学者曾把水体中的污染物划 分为八类:(1)耗氧污染物(一些能较快被微生物降解 成人C类O、2和动H物2O患的病有原机微物生)物;与(细2)致菌病)污;染(3)物合(成一有些机可物使; (4)植物营养物;(5)无机物及矿物质;(6)由土壤、岩石 等冲刷下来的沉淀物;(7)放射性物质;(8)热污染。 总的可以分为两大类:
2020/4/10
13
§1.3天然水体--海洋
海洋覆盖着70.8%的地球表面,总面积约 3 6 1 1 0 1 2 m2, 平 均 深 度 3 8 0 0 m, 总 体 积 为 13701015m3。
海水离子强度I约为0.7。海水pH值在表层为
8.1~8.3,在深层可下降到7.8。主要成分依次为
地下水中污染物质
• 耗氧污染物 • 病原体,如细菌、病毒、原生动物等 • 植物营养物质 • 有机化学物品 • 放射性物质
2020/4/10
19
§1.4天然水的水质

031环境化学第三章水环境化学

031环境化学第三章水环境化学
在pH=7时[Fe3+]=9.1×103(1.0×10-7)3=9.1×10-18mol/L
3、天然水中溶解的重要气体 重 点
亨利定律,即一种气体在液体中的溶解度正比于与
液体所接触的该种气体的分压。
在计算气体的溶解度时,需要对水蒸气的分压加以校正。根据
水在不同温度下的X分(压g,)就可按X亨利(定a律q)计算出气体在水中的
因此,水中H2CO3*-HCO3--CO32-体系可用下面的 反应和平衡常数表示:
CO2(g)
CO2(aq)+H2O
H++HCO3-
H++CO32-
CO2(g)+ H2O → H2CO3* pK0=1.46
(K0 包括: CO2(g)+H2O →CO2(aq) KH 和 CO2(aq)+H2O → H2CO3 平衡常数,
P↑↓R
C106 H O 263 110 N16 P 138O2
(二)天然水的性质
1、碳酸平衡(重点)
➢对于CO2-H2O系 统,水体中存在着 CO2( aq)、 H2CO3 、 HCO3- 和 CO32- 等 四 种 化 合 态 , 常 把 CO2(aq) 和H2CO3合并为H2CO3*,实际上H2CO3含量极低,主 要是溶解性气体CO2(aq)。
2、封闭体系的碳酸平衡
1) 用 、0 和1 分 别2 代表上述三种化合态在总量中所占比例, 可以给出下面三个表示式
=[0 H2CO3*]/{[H2CO3*]+[HCO3-]+[CO32-]} =[1HCO3-]/{[H2CO3*]+[HCO3-]+[CO32-]} =[2 CO32-]/{[H2CO3*]+[HCO3-]+[CO32-]} 2)若用CT表示各种碳酸化合态的总量,则有[H2CO3*]=C0 T ,[HCO3-]=CT1 和[CO32-]=CT2 。 3)把K1、K2的表达式代入上面的三个式子中,就可得到作为 酸离解常数和氢离子浓度的函数的形态分数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章水环境化学
α0 =[H2CO3* ]/{[H2CO3* ]+[HCO3- ]+[CO32- ]} α1= [HCO3- ] /{[H2CO3* ]+[HCO3- ]+[CO32- ]} α2 = [CO32- ] /{[H2CO3* ]+[HCO3- ]+[CO32- ]}
第3章水环境化学
(2)天然水中的碱度和酸度
1、水中的颗粒物的类别
矿物微粒和黏土ቤተ መጻሕፍቲ ባይዱ物 金属水合氧化物 腐殖质
悬浮沉积物
其他
第3章水环境化学
腐殖质(Humic Substances)
带负电荷的高分子弱电解质,多含有– COOH、–OH等。在pH高,离子强度低条件 下,羟基、羧基大多离解,负电荷相互排斥, 构型伸展,亲水性强。
第3章水环境化学
2、水环境中颗粒物的吸附作用
第三章 水环境化学
(Water Environmental Chemistry)
第3章水环境化学
第一节 天然水的基本特征及污染物的存在形态
一、天然水体的基本特征 (Basic Character of Natural Waters)
1、天然水的组成(Constitution of Natural Waters)
(Adsorption of Particals in Water Environmen) 表面吸附
离子交换吸附
专属吸附
第3章水环境化学
(1)吸附等温线和等温式
(Adsorption Isotherms and Isothermal Equation)
吸附是指溶质在界面层浓度升高的现象,水 体中颗粒物对溶质的吸附是一个动态平衡过 程。
八大离子:
K+、Na+、Ca2+、Mg2+、HCO3-、NO3-、Cl-和SO42-
总含盐量(TDS):
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
第3章水环境化学
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
絮凝:由聚合物促成的聚集。
第3章水环境化学
胶体颗粒凝聚方式
(Flocculation Way of Colloid Particulate)
1、压缩双电层的聚集 2、专属吸附凝聚 3、胶体相互凝聚 4. “边对面”絮凝
(Acidity and Alkalinity in Natural Waters)
碱度(Alkalinity)
指水中能与强酸发生中和作用 的全部物质,即接受质子的物质总 量,包括强碱、弱碱及强碱弱酸盐。
第3章水环境化学
测定方法:
酸碱滴定,双指示剂法
H+ + OH- = H2O H+ + CO32- = HCO3H+ + HCO3- = H2CO3
CO2、CO32-、HCO3-、H2CO3 常把CO2和H2CO3合并为H2CO3*。
第3章水环境化学
H2CO3*— HCO3-—CO32-体系可用下面的 反应和平衡常数表示:
CO2 + H2O = H2CO3* H2CO3* = H+ + HCO3HCO3- = H+ + CO32-
pK0 = 1.46 pK1 = 6.35 pK2 = 10.33
第3章水环境化学
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
第3章水环境化学
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
第3章水环境化学
2、金属污染物 (Metal Pollutant)
第3章水环境化学
L型(Langmuir)等温式
G G0C /( A C)
1/ G 1/ G0 ( A/ G0 )(1/ C)
G0—单位表面上达到饱和时的最大吸附量 A—常数
第3章水环境化学
3、沉积物中重金属的释放
(Release of Heavy Metals in Sediment)
沉积物中的重金属可能重新进入水 体,这是产生二次污染的主要原因。 不仅对于水生生态系统,而且对于饮 用水的供给都是很危险的。
第3章水环境化学
在一定的温度下,当吸附达到平衡时,颗粒物 表面上的吸附量(G)与溶液中溶质平衡浓度 (C) 之间的关系用吸附等温式表达。
H型( Henry)等温式(直线型)
G kC 式中:K——分配系数
F型(Freundlich)等温式
1
G kC n
用对数表示:
lg G lg k 1 lg C n
第3章水环境化学
诱发释放的主要因素:
(1)盐浓度升高; (2)氧化还原条件的变化; (3)降低pH值; (4)增加水中配合剂的含量。
第3章水环境化学
二、水中颗粒物的聚集
(Aggregation of Particals in Water)
胶体颗粒的聚集亦可称为凝聚或絮凝。
凝聚:由电介质促成的聚集。
是指水中能与强碱发生中和作用的全 部物质,亦即放出H+或经过水解能产生H+ 的物质的总量。
强酸 弱酸 强酸弱碱盐
第3章水环境化学
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第3章水环境化学
第3章水环境化学
第二节 水中无机污染物的迁移转化
(Transport and Transformation of inorganic Pollutants)
一、颗粒物与水之间的迁移 (Transport Between Particles and Water)
(酚酞终点) (甲基橙终点)
第3章水环境化学
总碱度 = [ HCO3-] + 2[CO32-] + [ OH-] – [H+] 酚酞碱度=[OH-]+[CO32-]-[H2CO3*] – [H+] 苛性碱度= [OH-]- [ HCO3-] - 2[CO32-] – [H+]
第3章水环境化学
酸度 (Acidity)
相关文档
最新文档