SPC名词解释
(完整word)什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题
(完整word)什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题什么是SPC?SPC的作用是什么?SPC运用中应该注意的几个问题SPC即英文“Statistical Process Control"之缩写,意为“统计制程控制” SPC或称统计过程控制。
SPC主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。
为什么要用SPC,SPC的作用是什么?重视企业内部外部顾客,以顾客满意作为主要目标,这些目标必须不断地在价值上得以改进,运用SPC,能使我们致力于更有效的改进,同时,我们组织中的每一个人都必须确保不断改进及使用有效的方法.在我们的企业当中,很多都是不重视统计过程控制的,或者只是把统计过程控制当做一个口号或者一个用来通过各种认证用的手段,并没有真正的用到现实生产当中,也没有起到真正的作用.于是就产生了一个问题,如果仔细的审核所有的统计过程,会发现存在很多的问题.1、在作XBar—R图时,数据搜集不准确。
数据的搜集来自于现场,往往我们根据控制计划或者其他文件的要求,到现场察看数据采集情况,会发现现场的数据采集没有按照要求来进行。
有些企业会采用连续测量,100%测量的方式,同时也不做任何的纪录,只要检验人员发现没有问题,也不需要进行任何变动,一旦发现,则进行调整设备参数或采取别的措施。
而采用该方法是与SPC相违背的。
有些公司采用了100%检验不说,根据大体情况,再进行编制控制图,专门用来应付审核或者提交客户用,这样的SPC是没有作用的,同时还浪费更多的人力物力.所以,希望我们运用统计技术的企业,能够真正的将统计技术运用起来,而不仅仅是流露与形式。
2、做控制图时部分或者全部的曲线类似。
这也是数据经过编辑的一种可能。
详细全面的SPC详解
详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种用于管理和优化生产过程的方法,它的目的是通过使用统计工具来分析生产过程中的数据,从而控制和改进产品质量。
SPC强调预防原则,即通过预防措施来减少产品缺陷和不良情况的发生,而不是在出现问题后再进行纠正。
SPC的基本概念包括控制图、过程能力指数、规格界限等。
控制图是SPC的核心工具,它用于监控生产过程中的关键变量,并根据统计原理判断生产过程是否处于控制状态。
控制图通常由均值-标准差控制图和极差控制图两种类型组成。
过程能力指数是指生产过程满足产品规格要求的程度,它通常被用来评估生产过程的能力,以便进行改进。
规格界限则是根据产品要求和客户要求设定的界限,用于确定产品是否合格。
SPC的实施方法包括以下几个步骤:1.选择关键变量:首先需要选择需要监控的关键变量,例如产品尺寸、材料特性等。
2.设计控制图:根据选定的关键变量,设计适合的控制图,并确定控制界限。
3.收集数据:按照一定的时间间隔收集生产过程中的数据,并对数据进行记录和整理。
4.分析数据:根据控制图的规则,判断生产过程是否处于控制状态,并找出异常点。
5.采取措施:根据分析结果,采取适当的措施来改进生产过程,例如调整工艺参数、更换设备等。
6.监控和反馈:持续监控生产过程,并及时反馈相关信息,以确保生产过程的质量和稳定性。
SPC的优势在于它可以及时发现生产过程中的异常情况,从而采取措施防止问题的扩大。
此外,SPC还可以提高生产过程的稳定性和产品质量的一致性,减少浪费和成本。
未来,SPC将会在更多的领域得到应用和发展,例如智能制造、医疗保健、金融服务等行业。
总之,SPC是一种有效的过程管理和优化工具,可以帮助企业提高产品质量和生产效率。
学习和掌握SPC技能对于从事质量管理、生产管理、工艺优化等工作的专业人士来说是非常重要的。
SPC的基本概念与特点
SPC的根本概念与特点什么是SPCSPC,即统计过程控制〔Statistical Process Control〕,是一种通过统计方法对过程进行监控和管理的质量管理工具。
它通过收集和分析过程数据,以便实时地监测过程的稳定性和能力,并及时采取纠正措施,以保证产品或效劳的质量符合要求。
SPC基于统计学原理,利用数据分析的手段来判断过程的偏差和稳定性,采取控制图等图形化工具来展示过程变化的规律,并通过数学模型对过程进行预测和改良。
SPC的根本特点1.实时性SPC能够实时地监测过程的稳定性和能力,通过实时收集的数据进行分析,及时发现过程的偏差和异常情况,并及时采取纠正措施。
这使得SPC能够快速响应问题,防止质量问题的扩大和重复出现。
2.统计方法SPC基于统计学原理,利用统计方法对过程数据进行分析和判断。
通过对数据的测量、统计和分析,可以客观地了解过程的状态,并进行准确的判断和决策。
这使得SPC能够防止主观判断和盲目决策的问题,提高质量管理的科学性和准确性。
3.图形化工具SPC采用图形化工具展示过程变化的规律,常用的图形化工具包括控制图、趋势图、直方图等。
这些图形化工具直观地展示了过程的状态和变化趋势,使人们能够快速地理解和分析数据,辅助决策和改良。
图形化工具还能够帮助人们发现隐藏在数据中的规律和关联性,进一步优化和改良过程。
SPC通过数据的分析和建模,能够对过程进行预测和改良。
通过建立数学模型和趋势分析,可以预测过程的开展方向和变化趋势,为及时调整和改良提供依据。
这使得SPC能够提前发现潜在问题和缺陷,及时采取措施进行预防和纠正,确保产品或效劳的质量稳定。
5.过程稳定性SPC关注过程的稳定性,即过程的变异是否在可接受的范围内。
通过对数据的统计和分析,可以判断过程的稳定性,并得到稳定性指标,如均值、标准差、过程能力指数等。
这使得SPC能够帮助人们了解过程的状态和品质能力,及时调整和改良过程,提高产品或效劳的稳定性和一致性。
SPC的定义及应用范围
SPC的定义及应用范围什么是SPC?SPC(统计过程控制)指的是一种通过统计方法来监控和控制过程的质量的方法。
它旨在通过分析过程中的数据,以便更好地了解和理解过程的变异性,并采取适当的措施来控制和改进过程的稳定性和能力。
SPC是一种基于数据的方法,它使用统计技术来分析过程中的变异,并通过控制图和其他工具来监控过程的表现。
通过及时识别和解决问题,SPC可以帮助组织提高质量、降低成本,并提高客户满意度。
SPC的应用范围SPC可以应用于各种类型的过程和行业。
无论是制造业还是服务业,SPC都可以用来监控和改进过程的稳定性和能力。
以下是一些常见的应用范围:制造业在制造业中,SPC可以用来监控和控制生产过程中的关键参数。
通过采集和分析实时数据,可以及时发现过程中的异常和变异,并采取相应的纠正措施,以确保产品的一致性和质量。
SPC可以应用于各种制造领域,如汽车制造、电子制造、医疗设备制造等。
例如,在汽车制造中,SPC可以用来监控关键指标,如车身尺寸、涂装厚度等,以确保生产出符合规格的汽车。
服务业尽管SPC最初是为制造业设计的,但它同样适用于服务业。
在服务业中,过程的稳定性和能力同样重要。
通过收集客户反馈和关键指标数据,可以使用SPC来监控和改进服务过程。
例如,在酒店业中,可以使用SPC来检测房间清洁时间、客户满意度等指标,以确保提供高质量的服务。
在银行业中,SPC可以应用于监控关键指标,如服务等待时间、客户投诉率等,以提高客户满意度。
医疗在医疗行业中,SPC可以用于监控和改进各种过程,如手术过程、药品配制过程等。
通过收集和分析相关数据,可以及时发现问题并采取适当的措施,以确保病人的安全和满意度。
SPC在医疗行业中的应用可以帮助医院提供更高质量的医疗服务,减少手术错误和药物错误等。
总结SPC是一种通过统计方法来监控和控制过程质量的方法。
它适用于各种类型的过程和行业,包括制造业、服务业和医疗行业。
通过采集和分析数据,SPC可以帮助组织提高过程的稳定性和能力,从而提高质量、降低成本,并提高客户满意度。
SPC(统计过程控制)知识要点
SPC(统计过程控制)知识要点SPC是英文Statistical Process Control的字首简称,即统计过程控制。
SPC就是应用统计技术对过程中的各个阶段收集的数据进行分析,并调整制程,从而达到改进与保证质量的目的。
SPC强调预防,防患於未然是SPC的宗旨。
1- What:什么是SPCSPC:统计过程控制SPC说到底,就是一个图表,把生产过程中的数据,收集起来用图表的形式展现出来。
它的作用可以大致总结为:•方便大家从图表中,找出有异常的数据。
•跟进数据趋势,预见异常发生的可能。
•数据异常后,做出相应的改善对策SPC本质上就是一种特殊的趋势图,不过SPC给他们起一个更有气质的名字:控制图。
当然了,控制图还要和普通的趋势图有差异的,具体表现为以下几点:1.控制图都有上下控制线和中心线,UCL和LCL(具体会在6-How里面说明)2.控制图的数据收集规则、数据分析的规则,更加的繁琐,更加的严格3.控制图一定要有相应的改善输出2- Why:为什么要用SPC为了及时发现生产过程中,由特殊原因导致的异常,及时改善。
为了深入分析系统中的普通原因,进一步提高产品品质,为客户提供更好的产品。
(当成为一个工厂的品质副总时,如何将一线数据浮上来,你会自然而然的想到SPC)在思考为什么要用SPC时,我们的观点和认知,是随着职位不断成长的。
不要硬逼着自己去理解SPC手册里,那十几页鸡汤式的SPC 概述。
格局到了,自然就理解了。
但是SPC的作用是不会发生变化的,做就对了。
3- When:在什么时候用SPCSPC手册里面说,SPC只有在过程受控状态下,才能使用。
但是实际上,SPC就是一个图表,任何情况,任何产品,只要有数据就可以用SPC控制图。
只是它所体现出来的信息不同,使用者透过SPC发现问题的程度不一样。
举个通俗一点的例子。
张飞和关羽出征沙场,张飞去探路。
张飞趴在地上,用听音识距离之术,听了半晌得出一个结论:敌人距离我们还有250米。
SPC基本概念
判稳、判异,可以通过应用不合格数npT图替代。 ●计点控制图:当样本大小n变化时,由于u图、c图的
控制界限都呈凹凸状,不但作图不方便,更无法判 稳、判异,可以应用通用不合格数cT图替代。 ●有用的控制图: X s 、X R 、npT图、cT控制图
X R 控制图的两个阶段
分析用控制图 ●判断过程是否稳定不稳定,调至稳定 ●过程的过程能力指数是否满足要求,过 程能力指数满足要求称之为技术稳态
●中位极差图 X~ R 图, X~ 表示中位值。现在由于 计算机应用普及,故已淘汰,被均值-标准差图替代。
两种错误
一.第一种错误:虚发警报(false alarm)
UCL
α
β
LCL 二.第二种错误:漏发警报(alarm missing)
控制图的第二类错误
三、减少两种错误所造成的损失: ●UCL、LCL距离间隔大,α减小 β增大 ●UCL、LCL距离间隔小,α增大 β减小 ●UCL、LCL距离间隔3σ,α=0.27%
统计控制状态
●概念:只有偶因而无异因产生的变异的状态 ●优点:
----对产品的质量有完全把握 ----生产也是最经济的 ----在控制状态下,过程的变异最小
常用的控制图
分布 控制图代号 控制图名称
备注
正态
分布
(计 X R
量值)
均值—极差控制 图
X S
X~ R
均值—标准差控 制图
中位值—极差图
C C
B
LCL A
判异准则
4.连续3点中有2点落在中心线同一侧的B区以外
UCL A
B
CL
C C
B
LCL A
判异准则
5.连续5点中有4点落在中心线同一侧的C区以外
什么是SPC
概括SPC (统计过程控制)
SPC就是利用统计方法去:
1.分析过程的输出并指出其特性。 2.使过程在统计控制情况下成功地进行和维持。 3.有系统地减少该过程主要输出特性的变异。 SPC是以预防代替检验,制造业与其他行业一样,预防发生 错误永远比事后矫正为好,而且简单得多.
总结 SPC (统计过程控制)
这些波动源对加工的影响最后都集中反映在直径 测量值
Seite 21
变差种类
普通原因与特殊原因 普通原因:过程中变异因素是在统计的控制状态
下,其产品之特性有固定的分配。
特殊原因:过程中变异因素不在统计的控制状态
下,其产品之特性没有固定的分配。
12
普通原因
随着时间的推移具有稳定性的可重复的分布过程中许多 变差的原因。
n
xi
x i1 n
SPC – Introduction
基本统计概念
• Md 中位数(median) 顺序数列中的中心项的数值
• Mo 众数(mode) 资料中出现最多的数值
SPC – Introduction
基本统计概念
• 2 方差/变异(variance)
n
n2
(xi x)2
i 1
n
作用
原料
人 机 法 环 测量
好
PROCESS
测量 结果
不好
不要等产品做出來后再去看它好不好!! 而是在制造的時候就要把它制造好!!!
品质失败的结果
外部成本
维护成本升高 返工
过程波动引 起品质不良
内部成本
报废返工停工 加强检验
市场份额下降 资金周转期长
客户失望
高的检验成本 重复修理 存货增多
spc什么意思
spc什么意思SPC是英文“Statistical Process Control”的缩写,直译为“统计过程控制”。
SPC是一种在质量管理中使用的统计方法,用于监控和控制产品和过程的质量变异。
SPC的目标是通过对过程进行实时监测和分析,从而及时发现异常和变异,并采取适当的措施来纠正问题,确保产品的质量符合要求。
SPC方法最早在20世纪20年代由质量管理专家Walter A. Shewhart提出,并在20世纪50年代由W. Edwards Deming进一步发展和推广。
SPC方法在当时对于工业部门来说是一个重大的突破,因为它打破了传统的质量检查和产品抽样测试的模式,引入了统计分析和实时监控的思想。
SPC方法的应用使得生产过程更加可控和稳定,并帮助企业提高产品的质量并降低成本。
SPC方法的核心概念是“过程可控性”和“异常检测”。
过程可控性指的是通过对过程中的关键参数进行实时监测和统计分析,确保过程在可控的范围内。
如果过程处于可控状态,那么产品的质量就有较高的稳定性。
异常检测是指通过对过程中的数据进行分析,发现异常点和变异,并及时采取控制措施,防止质量问题的扩大。
SPC方法使用统计工具如控制图、直方图和散点图来帮助分析数据,识别异常和变异,并帮助质量管理人员做出决策。
SPC方法通过实时监测和分析数据,可以帮助企业及时发现质量问题,并采取纠正措施。
这有助于降低产品缺陷率,提高产品质量。
同时,SPC方法的应用还可以优化生产过程,提高生产效率和产能利用率。
通过实时监测和控制关键过程参数,企业可以预防和减少质量异常和制程缺陷,降低生产成本和废品率。
除了对产品质量的监控和控制,SPC方法还可以用于改进过程。
通过对过程数据的分析,企业可以识别并改进生产中的瓶颈和不良环节,进一步提高产品质量和生产效率。
此外,SPC方法还可以用于优化供应链管理。
通过实时监控关键指标和指标的变异性,企业可以更好地控制供应链中的质量问题,并与供应商进行合作,共同提高产品质量。
SPC常用术语解释及其作用
SPC常用术语解释及其作用1. SPC是什么?SPC(Serial Port Communication) 是一种用于在计算机和外部设备之间进行数据传输的通信方式。
它通过串行口〔也称为串口或COM口〕来完成数据的传输和接收。
SPC常用于与外部设备进行通信,如传感器、打印机、模块等。
2. 常用术语解释2.1 波特率〔Baud Rate〕波特率是指每秒钟传输的比特数。
它表示数据的传输速率,通常以波特〔Baud〕为单位。
常见的波特率有9600、115200等,它决定了数据的传输速度。
2.2 数据位〔Data Bits〕数据位指的是数据的传输位数。
在SPC通信中,数据位的选择通常有7位和8位两种。
数据位的选择取决于所使用设备的要求。
2.3 停止位〔Stop Bits〕停止位用于表示数据传输的结束位。
通常使用的停止位有1位和2位两种。
选择停止位的原那么是根据设备的要求进行设置。
2.4 校验位〔Parity Bits〕校验位是用于检验数据传输是否正确的位。
常用的校验位有偶校验位、奇校验位和无校验位三种。
校验位的选择取决于所使用设备的要求。
2.5 流控〔Flow Control〕在SPC通信中,流控用于控制数据传输的流动。
常用的流控方式有硬件流控和软件流控两种。
硬件流控是利用RTS〔请求发送〕和CTS〔去除发送〕信号进行控制,而软件流控是利用XON和XOFF字符进行控制。
3. SPC常用术语的作用3.1 波特率的作用波特率决定了数据的传输速度,选择适当的波特率可以确保数据的准确传输。
如果波特率设置过低,可能会导致数据传输速度过慢,影响整体通信效率;而如果波特率设置过高,那么可能会导致数据传输过程中出错。
3.2 数据位、停止位和校验位的作用数据位、停止位和校验位共同作用于数据传输的准确性和稳定性。
通过正确地设置数据位、停止位和校验位,可以防止数据传输过程中出现丧失、错位或错误的情况。
3.3 流控的作用流控用于控制数据的流动,可以保证发送方和接收方之间的数据同时进行。
SPC简介
计 不合格品数控 pn 较常用,计算简单,操作工人易
数
制图
于理解
值 不合格品率控
p
计算量大,管理界限凹凸不平
控
制图
制 缺陷数控制图
C
较常用,计算简单,操作工人易 于理解,使用简便
图 单位缺陷数控
U
计算量大,管理界限凹凸不平
制图
适用场合
适用于产品批量较大而 且稳定正常的工序。
质量管理七种工具
常用的七种工具
直方图是用来分析 数据信息的常用工 具,它能够直观地 显示出数据的分布 情况。
新七种工具
关联图用于将关
系纷繁复杂的因 素按原因-结果或 目的-手段等目的 有逻辑地连接起
来的形 式表示出来的一种 图示工具。它既可 以用来描述现有过 程,亦可用来设计 一个新过程。
过程控制标准的文件编制成明确易懂、便于操作的手册,使各道工序 使用。如美国LTV公司共编了600本上述手册。
步骤 5:对过程进行统计监控。主要应用控制图对过程进行监控。
若发现问题,则需对上述控制标准手册进行修订,及反馈到步骤4。
步骤6:对过程进行诊断并采取措施解决问题。可注意以下几点:
(1) 可以运用传统的质量管理方法,如七种工具,进行分析。 (2) 可以应用诊断理论,如两种质量诊断理论,进行分析和诊断。
新七种工具
头脑风暴法也称集 思广益法,它是采 用会议的方式,引 导每个人广开言路、 激发灵感,畅所欲 言地发表独立见解 的一种集体创造思 维的方法。
直方图
• 直方图(Histogram)—是用一系列宽度相等、 高度不等的矩形表示数据分布的图形。矩形的宽 度表示数据范围的间隔,矩形的高度表示在给定 间隔内的数据频数。我们常用的是频数直方图。 (直方图适用于连续性数据)
SPC
四,实施SPC的两个阶段 实施SPC的两个阶段 SPC
1.SPC分为两个阶段:一是分析阶段, 二是监控阶段. 2.分析阶段的主要目的在于: 1),使过程处于统计稳态 2),使过程能力足够 3.两个阶段所使用的控制图:分析用控制图和控制用控制图. 4.两个阶段区别: 分析阶段: 生产准备 数据收集 控制图应用 过程能力分析 寻找原 因 进行改进 重新准备生产及分析 监控阶段 监控阶段: 观察波动情况是否受控 如失控 寻找原因 消除影响 预 防控制
6.引起变异的原因—特殊原因
特殊原因(Special Cause):又称非机遇原因(Assignable Cause),系 ),系 特殊原因 :又称非机遇原因( ), 统原因,可避免原因,人为原因等. 统原因,可避免原因,人为原因等.
7
二,SPC技术原理 SPC技术原理
1,统计过程控制(SPC): ,统计过程控制( ):是一种借助数理统计方法的过程控制工具.它对生 ): 产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采 取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到 控制质量的目的.
10
五,过程控制和过程能力
11
五,过程控制和过程能力
统计受控和过程受控的关系
控制 满足要求 可接受 不可接受 1类 2类 3类 4类 受控 不受控
通过检查并消除变差的特殊原因使过程处于受统计控制的状态, 通过检查并消除变差的特殊原因使过程处于受统计控制的状态,使 其性能可预测; 其性能可预测; 通过比较过程变差与产品公差的关系,可了解过程能力; 通过比较过程变差与产品公差的关系,可了解过程能力;
5
一,概念
5.引起变异的原因—普通原因
普通原因(机遇原因,偶然原因,不可避免原因,非人为原因等. 普通原因(机遇原因,偶然原因,不可避免原因,非人为原因等. 此种原因所引起的变异(波动)称为正常波动( 此种原因所引起的变异(波动)称为正常波动(Natural Variations); );
SPC(统计过程控制):基本概念及在质量管理中的作用介绍
SPC(统计过程控制):基本概念及在质量管理中的作用介绍一、SPC概述SPC(Statistical Process Control, 统计过程控制)是用于控制生产过程稳定性、提高产品质量的一种管理工具。
它是一种基于统计原理的质量控制技术,通过对质量数据进行分析并处理,帮助生产部门发现异常情况,及时进行纠正和改进。
SPC的主要作用是通过对生产的各项指标进行监控,及时发现异常情况并予以解决,达到减少产品次品率、提高生产效率的目的。
1.1 SPC的定义和发展历程统计过程控制(SPC)是由美国生产者联盟(APQC)制定的标准,是指在生产、服务等等过程中,使用一系列统计方法,对生产过程各项指标进行定量分析、监控,以便及时发现问题并采取纠正和预防措施,以提高质量、提高效率和降低成本。
自20世纪75年以来,SPC 已广为应用于各种制造和服务行业,被广泛认可和推广。
1.2 SPC的基本原理和方法SPC的基本原理是通过收集和分析生产过程中的数据,判断过程是否处于正常状态,如果出现异常情况则采取行动控制,达到稳定生产并控制品质的目的。
其基本方法有控制图、质量测量、过程分析、数据收集和统计方法等。
二、SPC在质量管理中的作用2.1 SPC在质量管理体系中的地位与作用SPC在现代企业的质量管理中处于非常重要的地位,其作用几乎贯穿了整个质量管理体系。
首先,质量管理的核心目标是实现全过程质量控制,SPC可以有效的实现这一目标。
其次,SPC可以帮助企业实现质量的持续改进,提高产品的稳定性和一致性,为企业提供坚实的基础。
再次,SPC可以为企业的产品质量提供科学的依据,使企业在市场竞争中更具有说服力。
2.2 SPC在改进质量管理性能方面的作用SPC对于改进质量管理性能具有很好的作用。
通过对生产过程的监控,SPC可以发现不稳定的因素和不良的趋势,为及时采取行动提供依据。
此外,通过对数据的分析,进一步提高了质量管理的效益,不断完善生产过程,并持续不断地提高产品质量。
SPC简单快速理解
- 12/32 -
- 9/32 -
SPC的使用
三、SPC的使用: 选定抽检频次,每次抽检5支,计算5支平均值,然后将得出的平均值在控制图上描点。 使用中的注意点: 1.出现锥度等问题,先要求其调整机床,待正常后才能测量统计。 2.无法达到要求的产品,选取一个有效控制点进行测量。 判异原则:准则 1:一点落在 A 区以外(图 4.3-1)。在许多应用中,准则 1 甚至是惟一的判 异准则。准则 1 可对过程中的 单个失控做出反应,如计算错误、测量误差、原材料不合格、 设备故障等。 准则 2:连续 9 点落在中心线同一侧(图 4.3-2)。出现图 4.3-2 准则 2 的现象,主要是 过程平均值μ减小的缘故。
0.67≤Cp<1.00
0.67≤Cp<1.00
IV
V
过程能力不足,表示技术管理能力已很差,应采 取措施立即改善
过程能力严重不足,表示应采取紧急措施和全面 检查,必要时可停工整顿
Байду номын сангаас
- 8/32 -
SPC控制图的做法
二、SPC控制图的做法:σ值的两种计算方法 2.实际计算控制线: 前提:保证过程处于统计控制状态,不考虑Cp值。 第一步:连续测量50支-125支数值。 第二步:除去超过产品标准的数据 第三步:将合格数据输入Excel表中。 第四步:在空白处输入STDEV(框选数据) 回车 然后通过UCL=μ+3σ CL=μ LCL=μ-3σ 计算相应控制线,绘制控制图。
三、SPC的使用: 准则 7:连续 15 点在 C 区中心线上下(图 4.3-7)。造成这种现象的原因可能 有数据虚假或数 据分层不够等。 准则 8:连续 8 点在中心线两侧,但无一在 C 区中(图 4.3-8)。造成这种现象的主要原因也是 因 为数据分层不够。
什么是SPC
什么是SPCSPC即英文“Statistical Process Control”之缩写,意为“统计制程控制” SPC或称统计过程控制。
SPC主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。
在生产过程中,产品的加工尺寸的波动是不可避免的。
它是由人、机器、材料、方法和环境等基本因素的波动影响所致。
波动分为两种:正常波动和异常波动。
正常波动是偶然性原因(不可避免因素)造成的。
它对产品质量影响较小,在技术上难以消除,在经济上也不值得消除。
异常波动是由系统原因(异常因素)造成的。
它对产品质量影响很大,但能够采取措施避免和消除。
过程控制的目的就是消除、避免异常波动,使过程处于正常波动状态。
[编辑]SPC起源与发展1.1924年修华特博士在贝尔实验室发明了品质控制图。
2.1939年修华特博士与戴明博士合写了《品质观点的统计方法》。
3.二战后美英将品质控制图方法引进制造业,并应用于生产过程。
4.1950年,戴明到日本演讲,介绍了SQC的技术与观念。
5.SQC是在发生问题后才去解决问题,是一种浪费,所以发展出了SPC。
6.美国汽车制造商福特、通用汽车公司等对SPC很重视,所以SPC得以广泛应用。
7.ISO9000(2000)体系亦注重过程控制和统计技术的应用(如8.1,8.2.3)。
[编辑]3σ原理简介当过程仅仅俺有正常变异时,过程的质量特性是呈现正态分布的,其分布状态如下:休哈特建议用界限±3σ来控制过程,就是说,在10000个产品中不超过27个不合格品出现,就认为改生产过程是正常的,若达到27个以上,就认为过程失控。
[编辑]SPC技术原理控制(SPC)是一种借助数理统计方法的过程控制工具。
它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。
SPC是什么意思?SPC的作用是什么?
SPC是什么意思?SPC的作用是什么?SPC(Statistical Process Control)即统计过程控制,主要是指应用统计分析技术对生产过程进行适时监控,科学区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定从而达到提高和控制质量的目的。
工业革命以后,随着生产力的进一步发展,大规模生产的形成,如何控制大批量产品质量成为一个突出问题,单纯依靠事后检验的质量控制方法已不能适应当时经济发展的要求,必须改进质量管理方式。
于是,英、美等国开始着手研究用统计方法代替事后检验的质量控制方法。
1924年,美国的休哈特博士提出将3Sigma原理运用于生产过程当中,并发表了著名的“控制图法”,对过程变量进行控制,为统计质量管理奠定了理论和方法基础。
SPC非常适用于重复性的生产过程,它能够帮助组织对过程作出可靠的评估,确定过程的统计控制界限判断过程是否失控和过程是否有能力;为过程提供一个早期报警系统,及时监控过程的情况,以防止废品的产生,减少对常规检验的依赖性,定时以观察以及系统的测量方法替代大量检测和验证工作。
SPC实施意义:可以使企业:降低成本;降低不良率,减少返工和浪费;提高劳动生产率;提供核心竞争力;赢得广泛客户。
实施SPC两个阶段:分析阶段:运用控制图、直方图、过程能力分析等使过程处于统计稳态,使过程能力足够。
监控阶段:运用控制图等监控过程。
SPC的作用:① 确保制程持续稳定、可预测。
② 提高产品质量、生产能力、降低成本。
③ 为制程分析提供依据。
④ 区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
spc概述——精选推荐
S P C一、含义:SPC 统计过程控制(Statistical Process Control )作用:SPC 是利用数理统计方法对过程中的各个阶段进行监控,科学的区分生产过程中产品质量的正常波动与异常波动;及时对异常趋势提出预警,消除异常因素,使过程恢复到可接受的稳定水平,从而达到提高和控制质量的目的。
特点:强调全过程监控预--整个过程[可应用于一切管理过程]、实现预防["事前"控制]。
SPC 手册是由美国三大汽车公司编写并由AIAG 发行的。
好处:1、“检验法”:是只对于结果控制:1.质量难以保证[全检可信度差],2.质量成本高[检验出的不合格品已造成浪费]。
公司不但浪费时间和金钱,而且面对业内的对手失去竞争优势。
2、SPC 法:定时的观察和系统的测量方法用在过程中最容易产生产品缺陷的关键部位,可用来减少甚至可能取消大量的视觉检查和验证的操作[依赖]。
改进质量和降低成本。
二、背景:一般说来,先进的技术科学可以提高产品质量指标的绝对值,而先进的质量科学则可以在现有条件下将其质量波动调整到最小。
预防原则是现代化质量管理的核心与精髓,旨在依据适当的信息来源,找出发生潜在不合格的原因,制定预防措施,有效地消除潜在不合格的原因,防止不合格发生,从而可保证产品质量、降低产品成本、保证生产进度。
为了保证预防原则的实施,20世纪20年代美国贝尔电话实验室成立了两个研究质量的课题小组:休哈特[过程控制组]提出了过程控制理论及控制过程的具体工具(控制图),道奇与罗米格[产品控制组]提出了抽样检验理论和抽样检验表。
休哈特和道奇是统计质量控制的奠基人。
休哈特首先在生产过程管理中应用正态分布特性,被誉为统计过程控制之父。
LSL失函数新观念老观念三、生产过程中的两种波动过程存在波动—随机正态/不随机—正常/异常波动—产生原因—例子/特性—改进[正常波动(规范放宽/6sigma改进)、异常波动(8D方法对6因分析)]1、生产过程中的质量特性存在波动过程是由人员、设备、原料、方法和环境等因素构成,各基本因素客观上是在波动的,则过程也是在随之波动的。
SPC资料
SPC简介SPC即英文“Statistical Process Control”之缩写,意为“统计过程控制” SPC或称统计过程控制。
SPC主要是指应用统计分析技术对软件开发与测试过程进行实时监控,科学的区分出软件开发与测试过程中产品质量的随机波动与异常波动,从而对软件开发与测试过程的异常趋势提出预警,以便开发与测试管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高与控制质量的目的。
在软件开发与测试过程中,缺陷率、生产率的波动是不可避免的。
它是由人、技术、流程、工具、方法与环境等基本因素的波动影响所致。
波动分为两种:正常波动与异常波动。
正常波动是偶然性原因(不可避免因素)造成的。
它对产品质量影响较小,在技术上难以消除,在经济上也不值得消除,正常波动是稳定状态。
异常波动是由系统原因(异常因素)造成的。
它对产品质量影响很大,但能够采取措施避免与消除。
过程控制的目的就是消除、避免异常波动,使过程处于稳定状态。
SPC可以为企业带的好处SPC 强调全过程监控、全系统参与,并且强调用科学方法(主要是统计技术)来保证全过程的预防。
SPC不仅适用于质量控制,更可应用于一切管理过程(如产品设计、市场分析等)。
正是它的这种全员参与管理质量的思想,实施SPC可以帮助企业在质量控制上真正作到"事前"预防与控制,SPC可以:· 对过程作出可靠的评估;· 确定过程的统计上下限,判断过程是否失控与过程是否有能力;· 为过程提供一个早期报警系统,及时监控过程的情况以防止废品的发生;· 减少对常规检验的依赖性,定时的观察以及系统的度量方法替代了大量的检测与验证工作;有了以上的预防与控制,我们的企业当然是可以:· 降低成本· 降低不良率,减少返工与浪费· 提高劳动开发与测试率· 提供核心竞争力· 赢得广泛客户· 更好地理解与实施质量体系一. 为何要使用SPC1) 什么是SPCSPC(Statistical Process Control)统计制程控制,是企业提高质量管理水平的有效方法。
详细全面的SPC详解
详细全面的SPC详解SPC(Statistical Process Control,统计过程控制)是一种以数据为基础,通过统计分析手段对生产过程进行监控和改善,以提升产品质量和生产效率的管理方法。
它广泛应用于制造业、服务业、医疗健康等领域,是质量管理和六西格玛等理论的核心组成部分。
监控生产过程:SPC通过对生产过程中的数据进行分析,可以实时监控生产过程,及时发现异常情况,避免不良品的产生,提高产品质量。
预防性控制:SPC通过分析生产过程中的数据,可以找出潜在的问题和风险,提前采取措施进行预防性控制,避免问题的发生。
优化生产流程:SPC可以帮助企业优化生产流程,提高生产效率。
通过对生产过程的数据进行分析,可以找出瓶颈环节,针对性地进行改进。
降低成本:通过SPC的监控和优化,企业可以降低废品率,减少返工和维修成本。
同时,提高生产效率也可以降低生产成本。
提高客户满意度:SPC可以帮助企业提高产品质量和服务水平,从而提高客户满意度。
这对于企业的长期发展至关重要。
制定计划:明确SPC实施的目标、范围、时间安排等。
数据采集:收集与生产过程相关的数据,包括原材料、设备、工艺参数、产品质量等信息。
数据分析:运用统计分析方法对采集到的数据进行处理和分析,找出潜在的问题和风险。
制定措施:根据数据分析结果,制定相应的措施进行改进和优化。
实施改进:将制定的措施付诸实践,对生产过程进行改进和优化。
监控效果:对改进后的生产过程进行监控,评估改进效果是否达到预期目标。
持续改进:在实施过程中不断总结经验,持续改进和提高。
控制图:用于实时监控生产过程中的数据变化,及时发现异常情况。
控制图包括均值-极差图、均值-标准差图、中位数-极差图等。
因果图:用于分析生产过程中各因素之间的因果关系,找出潜在的问题和风险。
流程图:用于描述生产过程中的各个步骤和环节,帮助企业优化生产流程。
直方图:用于展示数据的分布情况,帮助企业了解生产过程中的数据特征和规律。
SPC的名词解释
SPC的名词解释SPC,全称为统计过程控制(Statistical Process Control),是一种用数学和统计学原理来监测和控制过程稳定性的方法。
它的目标是通过分析过程中的数据来确保产品或服务的质量稳定,并及时发现和纠正可能引发质量问题的异常情况。
SPC广泛应用于各个行业,尤其在制造业中被视为保证产品质量的重要手段。
SPC最早由美国统计学家沃尔特·A·斯霍维恩(Walter A. Shewhart)在20世纪20年代提出。
他认识到,质量控制不仅仅是检验产品是否符合规格,更重要的是要控制和改进整个生产过程。
斯霍维恩引入了统计学的概念和方法,通过对过程中的变异进行分析,建立了SPC的理论框架。
在SPC中,最基本的概念是过程和变异。
过程是指由输入、加工和输出组成的一系列操作,用于生产产品或提供服务。
而变异则是指在这个过程中出现的不确定性,包括可控和不可控的因素。
SPC的关键在于通过分析和管理变异,使得过程能够达到预期的稳定状态。
SPC使用一系列统计工具来实现对过程的监测和控制。
常用的工具包括控制图、直方图、散点图等。
控制图是SPC的核心工具,通过图形化地展示过程中所收集的数据,可以帮助人们直观地判断过程是否处于稳定状态。
例如,控制图上的上下限可以帮助识别异常点,并及时采取纠正措施。
SPC的另一个重要概念是过程能力指数(Process Capability Index),用于评估一个过程的稳定性和能力。
过程能力指数可以对过程的输出与规格要求进行比较,指导改进和优化。
过程能力的提高可以降低质量问题的风险,提高产品或服务的一致性和可靠性。
尽管SPC在制造业中应用最为广泛,但其原理和方法同样适用于其他行业。
例如,在服务行业,可以通过收集和分析客户反馈数据,对服务过程进行监测和控制,提高服务质量。
在医疗领域,SPC可以应用于手术过程、药物生产和疾病监测等环节,确保医疗服务的安全性和效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPC名词解释
准确度Accuracy
成品改善ActiononOutput
制程中对策ActionontheProcess
人员变异AppraiserVariation
计数值AttributeData
平均数Average
中位数平均AverageofMedian
全距平均AverageofRange
标准差平均AverageofStandardDeviation
平均数-全距管制图Average-RangeControlChart
二项分配BinomialDistribution
平均数-标准差制图Average-StandardDeviationControlChart 中心线CenterLine;CL
中央极限定理CentralLimitTheorem
管制界限ControlLimITS
持续改善ContinualImprovement
管制图ControlChart
分散Dispersion
管制计划ControlPlan
计件CountbyPieces
计点CountbyPoints
关键制程特性CriticalProcessCharacteristics
共同原因CommonCause
每百万缺点数管制图DefectPartsPerMillionControlChart
分配Distribution
关键产品特性CriticalProductParameter
仪器变异EquipmentVariation
连续随机变数ContinuousRandomVariable
估计平均数EstimatedAverage
离散随机变数DiscreteRandomVariable
单位缺点数DefectsPerUnit
单位缺点数管制图DefectsPerUnitControChart
指数分配ExponentialDistribution
估计不良率EstimatedProcessPercentDefectives
次数分配FrequencyDistribution
估计标准差EstimatedStandardDeviation
漏斗实验FunnelExperiment
高级统计方法(Advanced Statistical Methods):
比基本的统计方法更复杂的统计过程分析及控制技术,包括更高级的控制图技术、回归分析、试验设计、先进的解决问题的技术等。
计数型数据(Attributes Data):
可以用来记录和分析的定性数据,例如:要求的标签出现,所有要求的紧固件安装,经费报告中不出现错误等特性量即为计数型数据的例子。
其他的例子如一些本来就可测量(即可以作为计量型数据处理)只是其结果用简单的“是/否”的形式来记录,例如:用通过/不通过量规来检验一根轴的直径的可接受性,或一张图样上任何设计更改的出现。
计数型数据通常以不合格品或不合格的形式收集,它们通过p、np、c和u控制图来分析(参见计量型数据)。
均值(Average)(参见平均值Mean):
数值的总和被其个数(样本容量)除,在被平均的值的符号上加一横线表示。
例如,在一个子组内的x值的平均值记为X,X(X两横)为子组平均值的平均值,X(X上加一波浪线)为子组中位数的平均值。
R为子组极差的平均值。
认知(Awareness):
个人对质量和生产率相互关系的理解,把注意力引导到管理义务的要求和达到持续改进的统计思想上。
基本的统计方法(Basic Statistical Methods):
通过使用基本的解决问题的技术和统计过程控制来应用变差理论,包括控制图的绘制和解释(适用于计量型数据和计数型数据)和能力分析。
二项分布(Binomial Distribution):
应用于合格和不合格的计数型数据的离散型概率分布。
是p和np控制图的基础。
因果图(Cause-Effect Diagram):
一种用于解决单个或成组问题的简单工具,它对各种过程要素采用图形描述来分析过程可能的变差源。
也被称作鱼刺图(以其形状命名)或石川图(以其发明者命名)。
中心线(Central Line):
控制图上的一条线,代表所给数据平均值。
特性(Characteristic):
一个过程或其输出的明显特性,可按这个特性收集计量型或计数型数据。
普通原因(Common Cause):
造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中,它表现为随机过程变差的一部分。
连续的(Consecutive):
连续生产的产品单元,是选择子组样本的基础。
质量和生产率持续改进(Continual Improvement in Quality and Productivity):一种可操作的宗旨,它充分利用公司内的人才,用不断提高效率的方式来为顾客生产质量不断提高的产品,从而归还受益者投资。
这是一个动态的战略,使公司提高现在及未来市场条件中的能力。
与任何静态的战略不同,它认为2(显然地或隐含地)一些特殊的不合格中不可避免的。
控制(Control):
用来表示一个过程特性的图象,图上标有根据那个特性收集到的一些统计数据,如一条中心线,一条
或两条控制限。
它能减少I尖错误和II类错误的净经济损失。
它有两个基本的用途:一是用来判定一个过程是否一直受统计控制;二是用来帮助过程保持受控状态。
控制图(Control Limit):
控制图上的一条线(或几条线),作为制定一个过程是否稳定的基础。
如有超出了控制极限变差存在,则证明过程受特殊因素的影响。
控制限是通过过程数据计算出来的,不要与工程的技术规范相混淆。
累计和(CUSUM):
一种先进的统计方法,它利用当前的和最近的过程数据来检验过程均值中不大的变化或变异性,CUSUM代表偏离目标值的变差的“累积和”,它把当前和最近的数据看得同等重要。
探测(找出)(Detection):
一种被动(事后)型的策略,它企图在产品生产出来后发生不能接受的输出,并将其与好的输出分开(参见预防)。
分布(Distrbution):
描述具有稳定系统变差的输出的一种方式,其中单个值是不可预测的,但一组单值就可形成一种图形,并可用位置、分布宽度和形状这些术语来描述。
位置一般用均值来表示,或者用中位数表示。
分布宽度用样本的标准差或样本极差表示,形状包括许多特性,比如对称性及峰度,但经常使用常见分布的名称来概括,如:正态分布,二项分布,或泊松分布。
单值(Individual):
一个单个的产品或一个特性的一次测量,通常用符号X表示。
位置(Location):
分布中心趋势典型值的一般概念。
平均值(Mean):
一组测量值的均值。
中位数(Median):
将一组测量值从小到大排列后,中间的值即为中位数。
如果数据库的个数为偶数,一般将中间两个数的平均值作为中位数。
子组中位数是构成简单的有关过程位置的控制图的基础。
中位数加波浪号(~)的符号表示;如X就是一分组的中位数。
移动极差(Moving Range):
两个或多个连续样本值中最大值与最小值之差,这种差是按这样方式计算的:每当得到一个额外的数据点时,就在样本中加上这个新的点,同时删除其中时间上“最老的”点,然后计算与这点有关的极差,因此每个极差的计算至少与前一个极差的计算共用一个点的值。
一般说来,移动极差用于单值控制图,并且通常用两点(连续的点)来计算移动极差。
不合格品(Nonconformity):
一个具体出现的不符合规范要求或其他检验标准的情况,有时称为缺陷。
一个不合格品中能有多处不合格。
例如:一扇门也许有几处凹痕和缝,对化油器进行功能检验可发现一些潜在的不合格。
分析产品不合格的系统,用c和u控制图。
正态分布(Normal Distribution):
靠近均数分布的频数最多,离开均数越远,分布的数据越少,左右两侧基本对称,这种中间多、两侧逐渐减少的基本对称的分布,称为正态分布。
操作性定义(Operational Definition):
根据可观察、可测量、可操作的特征来界定变量含义的方法。
即从具体的行为、特征、指标上对变量的操作进行描述,将抽象的概念转换成可观测、可检验的项目。