《相交线与平行线》单元测试题

合集下载

平行线与相交线单元测试题

平行线与相交线单元测试题

平行线与相交线单元测试题一、选择题(每题2分,共10分)1. 平行线的定义是什么?A. 永远不会相交的直线B. 相交于一点的直线C. 垂直于同一条直线的直线D. 相交于一个点但角度不同的直线2. 如果两条直线相交,它们的角度和是多少度?A. 90度B. 180度C. 360度D. 45度3. 以下哪项不是平行线的性质?A. 平行线在任何地方都不相交B. 平行线之间的距离处处相等C. 平行线可以相交D. 通过平行线之一可以画出无数条平行线4. 两条平行线被第三条直线所截,所形成的内错角的特点是?A. 内错角相等B. 内错角互补C. 内错角和为90度D. 内错角和为180度5. 同位角的定义是什么?A. 两条平行线被第三条直线所截,同侧的角B. 两条直线相交形成的角C. 两条平行线被第三条直线所截,异侧的角D. 两条直线相交形成的同侧角二、填空题(每题2分,共10分)6. 当两条直线相交时,它们形成的角中,____角相等。

7. 如果两条直线相交,且其中一个角是90度,则这两条直线是____。

8. 平行线之间的距离在任何地方都是____。

9. 两条平行线被第三条直线所截,同旁内角的和是____。

10. 如果两条直线相交,且其中一个角是锐角,则这个角的对顶角是____。

三、判断题(每题1分,共5分)11. 平行线永远不会相交。

()12. 垂直线是相交线的一种特殊形式。

()13. 两条平行线之间的夹角总是90度。

()14. 同旁内角互补,即它们的和为180度。

()15. 如果两条直线相交形成的角是钝角,那么这个角的对顶角是锐角。

()四、简答题(每题5分,共10分)16. 解释什么是“对应角”,并给出一个例子。

17. 描述如何使用三角板来测量两条直线是否平行。

五、计算题(每题5分,共10分)18. 如果两条平行线被一条直线所截,形成的内错角分别为40度和140度,请计算同旁内角的度数。

19. 在一个直角三角形中,如果一个锐角是30度,求另一个锐角的度数。

相交线与平行线单元测试题(含答案)

相交线与平行线单元测试题(含答案)

相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。

(完整版)相交线与平行线单元测试卷(含答案)

(完整版)相交线与平行线单元测试卷(含答案)

12345678(第4题)ab cABCD(第7题)第五章《相交线与平行线》测试卷姓名 _______ 成绩 _______一、选择题(每小题4分,共 40 分) 1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图,在正方体中和AB 垂直的边有( )条.A.1B.2C.3D.4 3、如图AB ∥CD,∠ABE=120°,∠ECD=25°,则∠E=( )A.75°B.80°C.85°D.95°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( )A 、①②B 、①③C 、①④D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )BDA BCDE(第10题)水面入水点运动员(第14题)ABC D EFG H第13题7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是( )A 、3:4B 、5:8C 、9:16D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( )A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

单元测试:相交线与平行线-PDF

单元测试:相交线与平行线-PDF

13.画立体图形时注意虚线部分.
A1 A
·
14.GM∥HN.理由:因为 GM 平分∠BGF,HN 平分∠CHE,所以∠MGF=
1 1 ∠BGF,∠NHE= ∠CHE,又因为 AB∥CD,所以∠BGF=∠CHE(两直线 2 2
平行,内错角相等) ,所以∠MGF=∠NHE.所以 GM∥HN(内错角相等,两直线 平行). 15.如图,过 E 作 EF∥AB, 则∠1=∠A=30 (……) ; 因为 AB∥CD, 所以 EF∥CD(如果两条直线
A E B
C
0 0
D
16.如图, B处在A处的南偏西45 方向, C处在B处的北偏东80 方向( . 1) 求∠ABC. (2)要使CD∥AB,D处应在C处的什么方向?
北 A
C B 南
能力提升 1.如图,这个图形的周长Biblioteka 多少?6cm ㎝㎝D
4cm
4/9
2.如图,已知∠ABC.请你再画一个∠DEF,使 DE∥AB,EF∥BC,且 DE 交 BC 边 与点 P.探究:∠ABC 与 ∠DEF 有怎样的数量关系?并说明理由.
C.1300
D.1200
①不相交的两条直线平行; ②梯形的两底互相平行; ③同垂直于一条直线的两直线平行; ④同旁内角相等,两直线平行.其中真命题有( A.1 个 4.下列命题: ①两个连续整数的乘积是偶数;②带有负号的数是负数; ③乘积是 1 的两个数互为倒数;④绝对值相等的两个数互为相反数. 其中假命题有( ) A.1 个 B.2 个 C.3 个 D.4 个 ) B.2 个 C.3 个 D.4 个 )
2.图中 OA 表示运动员所跑的路程 y(米)与比赛时间 x(秒)之间的关系,当比 赛进行到第 6 秒时,这名运动员跑了多少米?按此速度计算,这名运动员的 100

人教版初一七年级相交线与平行线单元测试题全套

人教版初一七年级相交线与平行线单元测试题全套

abM P N123 87654321DCBAB EDA CF相交线与平行线测试题(一)姓名 班级 分数一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等 B .互余 C .互补 D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图6 图7 5、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠8 7、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )DB A C1ab1 2OABCD EF 2 1OB EA B C a b 12 3 A . 42138 、;B . 都是10 ;C . 42138 、或4210、;D . 以上都不对 8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180B .270C .360D .540二、填空题(每题3分,共18分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.图8 图9 图10 12、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______ 14、如图11,已知a b ∥,170∠=,240∠=,则3∠ 图11 图12 15、如图12所示,请写出能判定CE ∥AB 的一个条件 .1 2 b ac b ac d1 2 3 4 ABCDE16、如图13,已知AB CD //,∠α=____________ 三、解答题(共52分)17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( )若∠DAB+∠ABC=1800,则∥ ()②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. (8分)19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分(1321DCBAABCDO123EFHG FEDCBA(3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角?(5)若有2008条直线相交于一点,则可形成 多少对对顶角?21、(6分)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30º,求∠EAD ,∠DAC ,∠C 的度数。

《相交线与平行线》单元测试题

《相交线与平行线》单元测试题

《相交线与平行线》单元测试题一.选择题(共10小题)1.下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.下列句子中不是命题的是()A.明年是2020年B.延长线段EFC.三角形的内角和是360度D.对顶角相等3.在同一平面内,已知点P在直线l上,过点P画直线l的垂线,可以画出多少条()A.1条B.2条C.3条D.4条4.如图,下列判断正确的是()A.∠3与∠6是同旁内角B.∠2与∠4是同位角C.∠1与∠6是对顶角D.∠5与∠3是内错角5.如图,点P是直线l外一点,从点P向直线l引P A,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是()A.P A B.PB C.PC D.PD6.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c7.如图,在下列给出的条件中,不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE8.如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=7cm,EC =4cm,那么平移距离为()A.3cm B.5cm C.8cm D.13cm9.如图,AC∥BD,AE∥BF,下列结论错误的是()A.∠A=∠B B.∠A+∠B=180°C.∠B=∠DPE D.∠A=∠APB 10.某同学的作业如下框,其中横线处应填的依据是()如图所示,当∠1=∠2时,∠3=∠4吗?为什么?请完成下面的说理过程.解,∵∠1=∠2(已知).∴直线a∥b(______________).∴∠3=∠4(两直线平行,同位角相等)A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行二.填空题(共6小题)11.如图所示,△EFG是由△ABC沿水平方向平移得到的,如果∠ABC=90°,AB=3cm,BC=2cm,则EF=,FG=,EG=.12.将命题“互为补角的两个角都是锐角”改写成“如果……,那么……”的形式是.13.如图,在三角形ABC中,∠C=90°,AC=3,BC=4,AB=5,则点A到BC的距离等于.14.如图,在长方体中,与棱AB平行的棱有条.15.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.16.如图,已知∠1=∠2=32°,∠D=78°,则∠BCD=.三.解答题(共8小题)17.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOD=88°,求∠BOD的度数.18.指出下列命题的题设和结论,并判断其真假,如果是假命题,请举出一个反例.(1)邻补角互补;(2)同旁内角互补.19.如图,△ABC,△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2,请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.20.如图,在直角三角形ABC中,∠C=90°,DE⊥AC交AC于点E,交AB于点D.(1)请分别写出当BC,DE被AB所截时,∠B的同位角、内错角和同旁内角.(2)试说明∠1=∠2=∠B的理由.21.如图,已知AB∥CD,射线AH交BC于点F,交CD于点D,从D点引一条射线DE,若∠B+∠CDE=180°,求证:∠AFC=∠EDH.证明:∵AB∥CD(已知)∴∠B=(两直线平行,内错角相等)∵∠B+∠CDE=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥(同旁内角互补,两直线平行)∴=∠EDH()∵=∠BFD(对顶角相等)∴∠AFC=∠EDH(等量代换)22.如图是两个重叠的直角三角形,将其中一个直角三角形沿着BC方向平移BE的长度就得到该图形,求阴影部分的面积(单位:厘米)23.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连结OF.(1)ED是否平行于AB,请说明理由;(2)若OD平分∠BOF,∠OFD=80°,求∠1的度数.24.如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即AB∥CD,各活动小组探索∠APD与∠A,∠C之间数量关系时,有如下发现:(1)在图②所示的图形中,若∠A=30°,∠D=35°,则∠APD=;(2)在图③中,若∠A=150°,∠APD=60°,则∠D=;(3)有同学在图②和图③的基础上,画出了图④所示的图形,其中AB∥CD,请判断∠α,∠β,∠γ之间的关系,并说明理由.。

(完整版)《相交线与平行线》单元测试卷含答案

(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°1 2 33.如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC. ∠B+∠ECB=180°D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为()A.向右平移1格再向下B.向右平移3格再向下C.向右平移2格再向下D.以上答案均可5.如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D.垂直于同一直线的两直线平行6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()A.a∥dB.a⊥cC.a⊥dD.b⊥d8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120 °B.130°C.140°D.150°9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°10.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()6 8 9 10二、填空题(每题3分,共21分)11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离为cm.11 14 1515.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.三、解答题(22~24题每题9分,其余每题8分,共59分)18.如图,在一条公路l的两侧有A,B两个村庄.(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.23.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射光线与平面镜的夹角等于反射光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么进入潜望镜的光线和离开潜望镜的光线是平行的.24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立?若不成立,请说明理由.参考答案一、1.【答案】B 2.【答案】C3.【答案】B解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B二、11.【答案】∠1=∠212.【答案】4解:a=3,b=1.13.【答案】垂直14.【答案】215.【答案】9016.【答案】14017.【答案】8062三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).相等),又因为∠E=∠EMC,所以∠BCD=∠ACD(等量代换).所以CD是∠ACB的平分线(角平分线定义).21.解:OD和OE互相垂直,即OD⊥OE.理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),所以∠ENM=∠E(等量代换),所以AE∥HM(内错角相等,两直线平行).所以∠EAM=∠AMH(两直线平行,内错角相等).又因为∠1=∠2,所以∠EAM+∠1=∠AMH+∠2(等式性质),即∠BAM=∠AMC.所以AB∥CD(内错角相等,两直线平行).所以∠AMD+∠BAP=180°(两直线平行,同旁内角互补).因为∠4=∠AMD(对顶角相等),所以∠4+∠BAP=180°(等量代换).23.解:根据题意,作出如图所示的几何图形,已知:AB∥CD,∠1=∠2,∠3=∠4.试说明:EF∥GH.说明过程:因为AB∥CD(已知),所以∠2=∠3(两直线平行,内错角相等).又因为∠1=∠2,∠3=∠4,所以∠1=∠2=∠3=∠4.因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),所以∠5=∠6,所以EF∥GH(内错角相等,两直线平行).即进入潜望镜的光线和离开潜望镜的光线是平行的.24.解:(1)如图①:过点P作MP∥AC,则MP∥BD,因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,①②(2)不成立.理由如下:如图②,过点P作MP∥AC,则MP∥BD, 因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,即:360°-∠APB=∠PAC+∠PBD.所以∠APB=∠PAC+∠PBD不成立.。

相交线、平行线单元测试

相交线、平行线单元测试

图 2 A BC图7AO B 《相交线与平行线》单元测试时间:120分钟 满分:120分一、选择题(每题3分,共30分)1. 体育课上,老师测量跳远成绩的依据是( ).A 、平行线间的距离相等B 、两点之间,线段最短C 、垂线段最短D 、两点确定一条直线2. 如图1,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A 、同位角相等,两直线平行 B 、内错角相等,两直线平行 C 、同旁内角互补,两直线平行 D 、两直线平行,同位角相等3. 如图2所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到 ( ) A 、② B 、③ C 、④ D 、⑤ 4.如图3,若∠1=70°,∠2=110°,∠3=70°,则有( ). A 、a ∥b B 、c ∥d C 、a ⊥d D 、任两条都无法判定是否平行 5.一副三角扳按如图4方式摆放,且∠1的度数比∠2的度数大54°,则∠1=( ) A 、 18° B 、54° C 、72° D 、70° 6.如图5,图中对顶角共有( )对A 、6B 、11C 、12D 、137. 如图6,直线AB ,CD 与EF 相交于G ,H ,下列条件:①∠1=∠2;②∠3=∠6;③∠2=∠8;④∠5+∠8=180º,其中能判定AB ∥CD 的是( ) A 、①③ B 、①②④ C 、①③④ D 、②③④8.如图7,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A 是1200,第二次拐的角∠B 是1500第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( ) A 、1200 B 、1300 C 、1400 D 、15009. 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为( ). A 、4 B 、3 C 、2 D 、110.如图8探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状 有关,如图所示是一探照灯灯碗的纵剖面,从位于O 点的灯泡发出的两束光线OB OC 、经图 1图3 图4 图 5图6灯碗反射以后平行射出.如果图中ABO DCO αβ∠=∠=,,则BOC ∠的度数为( )A 、180αβ--B 、αβ+C 、1()2αβ+D 、90()βα+-二、填空题(每题3分,共18分) 11.如图9,当剪刀口∠AOB 增大21°时,∠COD 增大 。

七年级数学下册《相交线与平行线》单元测试卷(附答案)

七年级数学下册《相交线与平行线》单元测试卷(附答案)

七年级数学下册《相交线与平行线》单元测试卷(附答案)一、选择题(每题3分,共30分)1.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行2.如图,将一个含有30°角的直角三角尺放置在两条平行线a,b上.若∠1=135°,则∠2的度数为()A.95°B.110°C.105°D.115°3.如图,将△ABC沿BC方向平移1个单位得△DEF,若△ABC的周长等于10,则四边形ABFD 的周长为()A.12 B.10 C.9 D.84.下面四个图案中,能由如图经过平移得到的是()A.B. C. D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.4 B.5 C.6 D.以上都不对9.甲、乙、丙3人从图书馆各借了一本书(如下表所示),他们相约在每个星期天相互交换读完的书,经过数次交换后,他们都读完了这3本书.已知甲读的第三本书是乙读的第二本书,则丙读的第二本书是()甲乙丙书A书B书C A.书A B.书B C.书C D.无法确定10.下列各项正确的是()A.直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.同一平面内,两条直线的位置关系只有相交和平行两种D.有公共顶点且相等的两个角是对顶角二、填空题(每题3分,共24分)11.如图,已知∠1+∠2=180°,则图中与∠1相等的角共有_____个.12.如图,在图中标注的∠1、∠3、∠4、∠5中,当∠2 =∠_______时,AE∥BF.13.如图,已知a∥b,∠1=45°,则∠2=_________.14.“互补的两个角一定是同旁内角”是命题(填“真”或“假”).15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有个交点.17.如图所示,l1∥l2,点A,E,D在直线l1上,点B,C在直线l2上,满足BD平分∠ABC,BD⊥CD,CE平分∠DCB,若∠BAD=128°,那么∠AEC=.18.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠CEF=70°,则∠GFD′=°.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,直线AB与CD相交于点O,OE平分∠BOC,∠AOD=110°,求∠AOE的度数.20.已知,如图a∥b,c∥d,∠1=73°,求∠2和∠3的度数.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.完成下列画图(1)如图,将△ABC向右平移4个单位,再向上平移2个单位长度,得到△A′B′C′,线段AB 与A′B′位置及数量关系是.(2)如图,一辆汽车在笔直的公路AB上由A向B行驶,M、是位于公路AB一侧的村庄.设汽车行驶到点P时,离村庄M的距离最小,请在图中公路AB上画出点P的位置,并说明数学原理.24.在ABC 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E . ①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________. (2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CCABCDAAAC二、填空题:11.312.413.45°. 解析:∵a∥b,∠1=45°,∴∠2=∠1=45°.14.解:如图,∠1=∠2=90°,∵∠1+∠2=180°,∴∠1与∠2互补,但它们是一对内错角,不是同旁内角,∴“互补的两个角一定是同旁内角”是假命题,故答案为:假.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有个交点,∴8条直线两两相交,交点的个数最多为=28.故答案为:28.17.【分析】根据平行线的性质和角平分线的性质,可以得到∠AEC的度数,本题得以解决.【解答】解:∵l1∥l2,∴∠BAD+∠ABC=180°,∵∠BAD=128°,∴∠ABC=52°,∵BD平分∠ABC,∴∠DBC=26°,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=64°,∵CE平分∠DCB,∴∠ECB=32°,∵l1∥l2,∴∠AEC+∠ECB=180°,∴∠AEC=148°,故答案为:148°.【点评】本题考查平行线的性质、角平分线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】由AD∥BC可得∠AFE=∠CEF,∠CEF+∠DFE=180°,由翻折可得∠D'FE=∠DFE,进而求解.【解答】解:∵AD∥BC,∴∠AFE=∠CEF=70°,∵∠CEF+∠DFE=180°,∴∠DFE=180°﹣∠CEF=110°,由翻折可得∠D'FE=∠DFE=110°,∴∠GFD'=∠D'FE﹣∠AFE=110°﹣70°=40°,故答案为:40.【点评】本题考查角的相关计算,解题关键是掌握平行线的性质.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.【答案】解:∵∠AOD=110°,∴∠COB=110°,∠AOC=70°,∵OE平分∠BOC,∴∠COE=55°,∴∠AOE=70°+55°=125°.故答案为:∠AOE=125°.20.【答案】解:∵a∥b,∴∠1=∠2=73°,∵c∥d,∴∠3=180°-73°=107°.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B ,∴∠2+∠5+∠6=3∠B +∠B +∠B =180°, ∴∠B =36°, ∴∠2=108°, ∵∠1+∠2=180°, ∴∠1=72°.23.(1)解:如图,△A ′B ′C ′即为所求作;线段AB 与A ′B ′位置及数量关系分别是平行且相等, 故答案为:平行且相等. (2)解:如图,点P 即为所求.数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短, 24.(1)①如图所示.②70,CAB ︒∠=20DAB ︒∠=,50CAD ︒∴∠=.70CDA CAB ︒∠=∠=,18060C CAD CDA ︒︒∴∠=-∠-∠=.DE AC ⊥,第 11 页 共 11 页 9030CDE C ︒︒∴∠=-∠=. 故答案为50,︒30︒.(2)CDA CAB ∠=∠, 且,CDA CDF ADF ∠=∠+∠CAB CAD BAD ∠=∠+∠, CDF ADF CAD BAD ∴∠+∠=∠+∠. ,CDF CAD ∠=∠,ADF BAD ∴∠=∠FD AB ∴∥.。

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

2023-2024学年小学数学西师版四年级上6 相交与平行单元测试(含答案解析)

2023-2024学年小学数学西师版四年级上6 相交与平行单元测试(含答案解析)

2023-2024学年西师版小学数学单元测试学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;一、选择题(本大题共计2小题,每题3分,共计6分)1.在两条平行线之间再画几条和平行线垂直的线段,这些线段的长度()A. 都相等B. 不相等C. 无法确定【答案】A【解析】解:由分析可知:在两条平行线之间再画几条和平行线垂直的线段,这些线段的长度都相等;故选:A.2.测量直线外一点到这条直线的距离,要先从这一点到直线画()A. 任意直线B. 任意射线C. 任意线段D. 垂直线段【答案】D【解析】解:从直线外一点到这条直线的距离,是指这一点到这条直线的垂直线段的长度;故选:D.二、填空题(本大题共计13小题,每题3分,共计39分)3.两条直线相交成直角,这两条直线的交点叫________.【答案】垂足【解析】解:由垂足的含义可知:两条直线相交成直角,这两条直线的交点叫垂足;故答案为:垂足。

4.如图中,直线________和直线________互相平行,直线________和直线________互相垂直。

【答案】c, d, a, c(或d)【解析】解:如图中,直线c和直线d互相平行,直线a和直线c或d)互相垂直。

故答案为:c、d、a、c(或d)5.同一平面内,两条直线相交成直角时,这两条直线________.其中一条直线是另一条直线的________,这两条直线的交点叫________.【答案】互相垂直, 垂线, 垂足【解析】解:同一平面内,两条直线相交成直角时,这两条直线互相垂直。

其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足;故答案为:互相垂直,垂线,垂足。

6.观察下面几幅生活中的图片:在同一平面内,两条直线的位置关系有________和________.只有一个公共点的两条直线叫做________,这个公共点叫做________.在同一平面内,不相交的两条直线叫做________.【答案】相交平行相交线交点平行线【解析】略7.两条平行线之间有4条与平行线垂直的线段(如图),这四条线段的长度________,这四条线段互相________.【答案】相等, 平行【解析】解:两条平行线之间有4条与平行线垂直的线段(如图),这四条线段的长度相等,这四条线段互相平行;故答案为:相等,平行。

第2章 相交线与平行线单元测试

第2章 相交线与平行线单元测试

第2章 相交线与平行线单元测试一、选择题:1.如果一个角的补角是150°,那么这个角的余角的度数是( )A.30°B.60°C.90°D.120°2.下列语句中,是对顶角的语句为( )A.有公共顶点并且相等的角B.两条直线相交,有公共顶点的角C.顶点相对的角D.两条直线相交,有公共顶点没有公共边的两个角3.如图1,下列说法错误的是( )A.∠1和∠3是同位角;B.∠1和∠5是同位角C.∠1和∠2是同旁内角;D.∠5和∠6是内错角564321G FE D C B A DCB O A(1) (2) (3)4.如图2,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,那么图中与∠AGE 相等的角有( )A.5个B.4个C.3个D.2个5.如图3,OB ⊥OD ,OC ⊥OA ,∠BOC=32°,那么∠AOD 等于( )A.148°B.132°C.128°D.90°4.点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直 线m 的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:1.∠1与∠2互余,∠2与∠3互补,∠1=63°,∠3= .2.∠α和∠β互为补角,又是对顶角,则它们的两边所在的直线 . ∴∠1=∠2( )4.已知,如图,AD ∥BC ,∠BAD=∠BCD ,请说明AB ∥CD 的理由.理由:∵AD ∥BC(已知) ∴∠1=( )( ) 4321D C B A又∵∠BAD=∠BCD(已知)∴∠BAD-∠1=∠BCD-∠2( )即:∠3=∠4∴AB∥CD( )三、解答题2.已知一个角的余角的补角比这个角的补角的一半大90°,则这个角的度数等于多少度?。

相交线与平行线单元测试题及答案

相交线与平行线单元测试题及答案

相交线与平行线单元测试题及答案题目 1给定以下图示中的两条线段AB和CD,请判断它们是否相交。

A C\\ /\\ /\\ /X/ \\/ \\/ \\B DA. 相交B. 不相交答案:A. 相交题目 2给定以下图示中的两条线段EF和GH,请判断它们是否相交。

E\\\\\\\\\\\\\\\\FG\\\\\\\\\\\\\\\\\\HA. 相交B. 不相交答案:B. 不相交题目 3给定以下图示中的两条线段IJ和KL,请判断它们是否相交。

I----J| || || |K----LA. 相交B. 不相交答案:B. 不相交题目 4给定以下图示中的两条线段MN和OP,请判断它们是否相交。

M N\\ /\\ /\\ /X/ \\/ \\/ \\O PA. 相交B. 不相交答案:A. 相交题目 5给定以下图示中的两条线段QR和ST,请判断它们是否相交。

Q\\\\\\\\\\\\\\\\\\RS\\\\\\\\\\\\\\\\\\TA. 相交B. 不相交答案:B. 不相交题目 6给定以下图示中的两条线段UV和WX,请判断它们是否平行。

U-------VW-------XA. 平行B. 不平行答案:A. 平行题目 7给定以下图示中的两条线段YZ和AB,请判断它们是否平行。

Y-------ZA---BA. 平行B. 不平行答案:B. 不平行题目 8给定以下图示中的两条线段CD和EF,请判断它们是否平行。

C---DE---------------FA. 平行B. 不平行答案:A. 平行题目 9给定以下图示中的两条线段GH和IJ,请判断它们是否平行。

G--------HI--------JA. 平行B. 不平行答案:A. 平行题目 10给定以下图示中的两条线段KL和MN,请判断它们是否平行。

K--------LM---------------NA. 平行B. 不平行答案:B. 不平行以上为相交线与平行线单元测试题及答案。

相交线与平行线单元测试题

相交线与平行线单元测试题

相交线与平行线单元测试题一、选择题(每题2分,共20分)1. 下列说法中,正确的是:A. 经过直线外一点,有且只有一条直线与已知直线平行B. 经过直线外一点,有且只有一条直线与已知直线相交C. 经过直线外一点,可以画无数条直线与已知直线平行D. 经过直线外一点,可以画无数条直线与已知直线相交2. 如果两直线相交,那么它们相交所成的角是:A. 锐角B. 直角C. 钝角D. 任意角3. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线:A. 平行B. 相交C. 垂直D. 无法判断4. 平行线的性质中,下列说法不正确的是:A. 平行线之间的距离处处相等B. 平行线永不相交C. 两条平行线可以确定一个平面D. 平行线之间的夹角是锐角5. 对于两条平行线,下列说法正确的是:A. 它们之间的距离在任何地方都是相同的B. 它们可以相交C. 它们之间的夹角可以是任意角D. 它们可以确定一个平面二、填空题(每题2分,共10分)6. 如果两条直线相交成直角,则称这两条直线互相______。

7. 两条直线相交,如果其中一个角是锐角,则其他三个角分别是______。

8. 平行线之间的距离是指______。

9. 两条直线相交所成的角中,最大的角是______。

10. 如果两条直线被第三条直线所截,那么内错角相等的条件是这两条直线______。

三、判断题(每题1分,共10分)11. 两条直线相交所成的角都是锐角。

()12. 平行线在任何地方的距离都是相等的。

()13. 两条直线相交,形成的对顶角相等。

()14. 两条平行线之间的夹角是直角。

()15. 如果两条直线被第三条直线所截,同位角相等,则这两条直线平行。

()四、简答题(每题5分,共20分)16. 解释什么是“同位角”、“内错角”和“同旁内角”,并说明它们在判断两条直线是否平行时的作用。

17. 描述如何使用直角三角板来检验两条直线是否平行。

18. 给出两条直线相交的几何图形,并说明如何确定它们相交所成的角的大小。

相交线与平行线单元测试题

相交线与平行线单元测试题

相交线与平行线单元测试题一、选择题(每题2分,共10分)1. 两条直线在同一平面内,且不相交,这两条直线叫做平行线。

以下哪项描述不正确?A. 平行线在任何情况下都不会相交B. 平行线之间的距离处处相等C. 平行线可以无限延伸D. 平行线可以相交2. 根据平行线的性质,以下哪个命题是正确的?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上都是3. 如果两条直线相交成30度角,那么这两条直线的对顶角是:A. 30度B. 60度C. 90度D. 120度4. 已知直线AB与CD相交于点O,那么OA与OB的关系是:A. OA=OBB. OA垂直于OBC. OA平行于OBD. 无法确定5. 在平面几何中,以下哪个条件不能判定两直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线没有交点二、填空题(每题2分,共10分)6. 如果两条直线相交所构成的同位角不相等,则这两条直线_________。

7. 平行于同一条直线的两条直线_________。

8. 两条直线相交,如果其中一个角是直角,则这两条直线_________。

9. 如果直线a与直线b相交,且a垂直于直线b,则直线a与直线b所成的角是_________度。

10. 两条平行线被第三条直线所截,同旁内角的度数之和为_________。

三、判断题(每题1分,共5分)11. 两条直线相交所形成的角中,对顶角相等。

()12. 平行线的性质可以推出同位角相等,内错角相等,同旁内角互补。

()13. 如果两条直线相交,那么它们一定在某一点相交。

()14. 两条直线相交所形成的角中,邻角互补。

()15. 平行线之间的距离处处相等,这是平行线的一个性质。

()四、简答题(每题5分,共10分)16. 解释什么是“相交线”,并给出相交线的基本性质。

17. 解释什么是“平行线”,并说明平行线的性质有哪些。

五、解答题(每题15分,共15分)18. 在平面直角坐标系中,已知直线L1: y = 2x + 3 和直线L2: y = -x + 5,请判断这两条直线是否平行或相交,并给出证明。

《相交线与平行线》的单元测试题(含答案)

《相交线与平行线》的单元测试题(含答案)

相交线与平行线 单元测试一、填空题1.a 、b 、c 是直线,且a ∥b ,b ⊥c ,则a 与c 的位置关系是________.2.如图5—1,MN ⊥AB ,垂足为M 点,MN 交CD 于N ,过M 点作MG ⊥CD ,垂足为G ,EF 过点N 点,且EF ∥AB ,交MG 于H 点,其中线段GM 的长度是________到________的距离, 线段MN 的长度是________到________的距离,又是_______的距离,点N 到直线MG 的距离是___.3.如图5—2,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________. 4.因为AB ∥CD ,EF ∥AB ,根据_________,所以_____________. 5.命题“等角的补角相等"的题设__________,结论是__________. 6.如图5—3,给出下列论断:①AD ∥BC :②AB ∥CD ;③∠A =∠C .以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.7.如图5-4,直线AB 、CD 、EF 相交于同一点O ,而且∠B O C=23∠AOC ,∠DOF =13∠AOD ,那么∠FOC =_____ _ 度.8.如图5—5,直线a 、b 被c 所截,a ⊥l 于M ,b ⊥l 于N ,∠1=66°,则∠2=________.9.如图5-6,∠ACB =90°,CD ⊥AB ,则图中与∠A 互余的角有 个,它们分别是 .∠A =∠ ,根据是 .10.如图5—7,一棵小树生长时与地面所成的角为80°,它的根深入泥土,如果根和小树在同一条直线上,那么∠2等于 °.11.如图5—8,量得∠1=80°,∠2=80°,由此可以判定 ∥ ,它的根据是 .量得∠3=100°,∠4=100°,由此可以判定 ∥ ,它的根据是 .G H NMFEDC BAFEODCBA 图5-1 图5-2DCBAFEO DCBAclNMb a21图5-3 图5-4 图5-512.猜谜语:(打本章两个几何名称)剩下十分钱: ;斗牛 . 13.a 、b 、c 是直线,且a ∥b , b ∥c , 则a ___c ; a 、b 、c 是直线,且a ⊥b , b ⊥c , 则a ___c ;14. 如图5—9,直线AD 、BC 交于O 点,∠+∠=︒AOB COD 110,则∠COD 的度数为 .15. 如图5-10,直线AB 与CD 交于O 点,∠-∠=︒3180,则∠2= .16. 如图5—11,直线AB 、EF 相交于O 点,CD AB ⊥于O 点,∠=︒'EOD 12819,则∠∠BOF AOF,的度数分别为 .二、选择题17.若a ⊥b ,c ⊥d 则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对 18.如图5-12,∠ADE 和∠CED 是( )A .同位角B .内错角C .同旁内角D .互为补角 19.如图5—13,l l 1211052140//,,∠=∠=,则∠=α( ) A . 55B . 60C . 65D . 7020.如图5-14,能与∠α构成同旁内角的角有( ) A . 5个 B .4个 C . 3个 D . 2个21.如图5—15,已知AB CD //,∠α等于( ) A .75B . 80C . 85D . 95AB 120°α25°CDBMCA N P D22.如图5—16,AB CD MP AB MN ////,,平分∠∠=∠=AMD A D ,,4030,则∠NMP 等于( ) A . 10B . 15C . 5D . 75.23.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( ) A . 42138、B . 都是10C . 42138、或4210、D . 以上都不对24.如图5—17,a ∥b ,∠1与∠2互余,∠3=1150,则∠4等于( )A .1150B . 1550C . 1350D .125025.如图5—18,∠1=150, ∠AOC =900,点B 、O 、D 在同一直线上,则∠2的度数为( )A .750B .150C .1050D . 1650图5-13 d第(18)题4321cba 第(20)题DCBAO第(19)题DCBA21图5-17 图5-18 图5-19图5-15 图5-1626.如图5—19,能表示点到直线(或线段)距离的线段有( )A . 2条B .3条C .4条D .5条 27.下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角, 则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等 28.如图5—20,如果AB ∥CD ,那么图中相等的内错角是( )A .∠1与∠5,∠2与∠6;B .∠3与∠7,∠4与∠8;C .∠5与∠1,∠4与∠8;D .∠2与∠6,∠7与∠329.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题B .②、③是正确命题C .①、③是正确命题D .以上结论皆错30.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行;②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内, 一条直线不可能与两条相交直线都垂直,其中说法错误个数有( )A .3个B .2个C .1个D .0个 三、解答题31.如图5—21,过P 点,画出OA 、OB 的垂线.2.32.如图5-22,过P 点,画出AB 、CD 的垂线.3. B C DBA33.如图5-23,是一条河,C 河边AB 外一点:(1)过点C 要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB ,将水引到C 处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)87654321D CB A 图5-20 图5-21图5-22图5-2334.如图5—24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBA35.如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.36.如图5—26,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .B37.如图5-27,已知:AB //CD ,AB =CD ,求证:AC 与BD 互相平分.C38.如图5—27,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .图5-24图5-26图5-262 ABECFDHG 139.如图5—28,已知:在∆ABC 中,∠=︒C 90,AC =BC ,BD 平分∠CBA ,DE AB ⊥于E ,求证:AD +DE =BE .40.如图5—29,已知:AB //CD ,求证:∠B +∠D +∠BED =360︒(至少用三种方法)EABCD图5-27 图5-28图5-29参考答案一、填空题 1.互相垂直2.点M ,直线CD 点M,直线EF 平行线AB 、EF 间 线段GN 的长度 3.4个 ∠EOB 、 ∠DOF 、∠ABD 、∠CBD4.两条直线都与第三条直线平行,这两条直线也互相平行 CD ∥EF 5.两个角是相等两角的补角 这两个角相等6.如果一个四边形的两组对边平行,那么它的对角相等;或若一个四边形的一组对边平行,一组对角相等,那么它的另一组对边也互相平行 7.156 8.114°9.两;∠ACD 和∠B;∠BCD ;同角的余角相等 10.10°11.AB ∥CD;同位角相等,两直线平行;EF ∥GH ;内错角相等,两直线平行 12.余角;对顶角 13.∥;∥14.55︒(点拨: ∠=∠∴∠=∠=︒AOB COD AOB COD 55)15.50︒(点拨: ∠+∠=︒∠-∠=︒⎧⎨⎩311803180,∴∠=︒∠=︒⎧⎨⎩1503130,又︒=∠∴∠=∠50221 )16. 3819'︒;14141'︒(点拨:9138909112890'︒=︒-'︒=∠-∠=∠∴︒=∠AOD EOD AOE AOD ,9138'︒=∠=∠∴AOE BOF ,又 ∠+∠=︒BOF AOF 180,141419138180'︒='︒-︒=∠∴AOF )二、选择题 17.C 18.B 19.C 20.A 21.C 22.C 23.D 24.B 25.C 26.D 27.C 28.D 29.A 30.D三、解答题 31.如图5—12.32.如图5—233.略.34.(1)CD∥AB因为CD⊥MN,AB⊥MN,所以CDN=∠ABM=90°所以CD∥AB(2)平行因为∠CDN=∠ABN=90°,∠FDC=EBA所以∠FDN=∠EBN所以FD∥EB35.(1)平行因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义)所以∠1=∠CDB所以AE∥FC(同位角相等两直线平行)(2)平行,因为AE∥CF,所以∠C=∠CBE(两直线平行,内错角相等)又∠A=∠C 所以∠A=∠CBE所以AF∥BC(两直线平行,内错角相等)(3)平分因为DA平分∠BDF,所以∠FDA=∠ADB因为AE∥CF,AD∥BC所以∠FDA=∠A=∠CBE,∠ADB=∠CBD所以∠EBC=∠CBD36.证明:答图5-1∠=∠∴∠=∠=∴+=+==∠=∠=∴≅∴∠=∠⎧⎨⎪⎩⎪12(已知)(等角的补角相等)(已知)即在和中,(已知)(已证)(已证)()(全等三角形的对应角相等)ECB FDA AC BD AC CD BD CDAD BCADF BCE DF CE FDA ECB AD BC ADF BCE SAS A B ∆∆∆∆37. 证明: AB CD //(已知)∴∠=∠∠=∠∠=∠=∠=∠∴≅∴==⎧⎨⎪⎩⎪BAO DCO ABO CDO ABO CDO BAO DCO AB CD ABO CDO ABO CDO ASA AO CO BO DO ,(两直线平行,内错角相等)在和中(已证)(已知)(已证)(),(全等三角形对应边相等)∆∆∆∆即AC 与BD 互相平分. 38. 证明: ∠=∠12(已知)∠=∠∴∠=∠∴∴∠=∠12AHB AHB AF ED D AFC (对顶角相等)(等量代换)(同位角相等,两直线平行)(两直线平行,同位角相等)//又 ∠=∠A D (已知)∴∠=∠∴∴∠=∠A AFC AB CD B C (等量代换)(内错角相等,两直线平行)(两直线平行,内错角相等)//39. 证明: BD CBA 平分(已知)∠∴∠=∠⊥∴∠=︒∠=︒EBD CBD DE AB DEB C (角平分线的定义)(已知)(垂直的定义)(已知)9090∴∠=∠DEB C (等量代换) 在∆∆DEB DCB 和中∠=∠∠=∠=∴≅⎧⎨⎪⎩⎪DEB C EBD CBD DB DB DEB DCB AAS (已证)(已证)(公共边)()∆∆∴==+==∴+=DE DC BE BC AD DC AC BC AD DE BE ,(全等三角形的对应边相等)(已知)(等量代换)40. 证明:(1)连结BD ,如图5—3AB CD ABD CDB BED ABD CDB BED ABE CDE BED //(已知)(两直线平行,同旁内角互补)(三角形内角和为)即∴∠+∠=︒∠+∠+∠=︒︒∴∠+∠+∠+∠+∠=︒∠+∠+∠=︒1801218018012360360(2)延长DE 交AB 延长线于F ,如图5—4AB CD F D ABE FEB F BED FBE F ABE CDE BED//(已知)(两直线平行,同旁内角互补),(三角形一个外角等于和它不相邻的两个内角的和)∴∠+∠=︒∠=∠+∠∠=∠+∠∴∠+∠+∠180=∠+∠+∠+∠+∠FEB F CDE FBE F=︒+︒=︒180180360(3)过点E 作EF//AB ,如图5—5- 11 -AB CD //∴AB EF CD ////(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠+∠=︒∠+∠=︒∴∠+∠+∠+∠=︒+︒=︒∴∠+∠+∠=︒B BEF D DEF B BEF D DEF B D BED 180180180180360360(两直线平行,同旁内角互补)。

(完整版)《相交线与平行线》单元测试卷含答案

(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1。

如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D。

对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为( )A.40°B.35° C。

50°D。

45°31 2 3。

如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC。

∠B+∠ECB=180° D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为( )A。

向右平移1格再向下 B。

向右平移3格再向下C.向右平移2格再向下D.以上答案均可5。

如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D。

垂直于同一直线的两直线平行6。

如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是( )A.40°B.70°C.80° D。

140°7。

同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是( )A。

a∥d B。

a⊥c C。

a⊥d D。

b⊥d8。

如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120 ° B。

130° C.140° D。

150°9。

如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )A。

30° B.60° C。

80° D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册《相交线与平行线》单元测试题班级:姓名:得分:
一、填空题
1.两条直线相交,有_____对对顶角,三条直线两两相交,有_____对对顶角.
2.如图1,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____.
3.已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于_____.
4.如图2,若l1∥l2,∠1=45°,则∠2=_____.
图1 图2 图3
5.如图3,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.
6.一个角的余角比这个角的补角小_____.
7.如图4,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_____.
图4 图5
8.如图5,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.
9.如图6,AD∥BC,AC与BD相交于O,则图中相等的角有_____对.
图6 图7
10.如图7,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.
11.如图8,DAE是一条直线,DE∥BC,则∠BAC=_____.
12.如图9,AB∥CD,AD∥BC,则图中与∠A相等的角有_____个.
图8 图9 图10
13.如图10,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角.
14.如图11,(1)∵∠A=_____(已知),
图11
∴AC∥ED( )
(2)∵∠2=_____(已知),
∴AC∥ED( )
(3)∵∠A+_____=180°(已知),
∴AB∥FD( )
(4)∵AB∥_____(已知),
∴∠2+∠AED=180°( )
(5)∵AC∥_____(已知),
∴∠C=∠1( )
二、选择题
15.下列语句错误的是( )
A.锐角的补角一定是钝角
B.一个锐角和一个钝角一定互补
C.互补的两角不能都是钝角
D.互余且相等的两角都是45°
16.下列命题正确的是( )
A.内错角相等
B.相等的角是对顶角
C.三条直线相交,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
17.两平行直线被第三条直线所截,同位角的平分线( )
A.互相重合
B.互相平行
C.互相垂直
D.相交
18.如果∠1与∠2互补,∠1与∠3互余,那么 ( )
A.∠2>∠3
B.∠2=∠3
C.∠2<∠3
D.∠2≥∠3
19.如图12,已知∠1=∠B,∠2=∠C,则下列结论不成立的是( )
图12
A.AD∥BC
B.∠B=∠C
C.∠2+∠B=180°
D.AB∥CD
20.如图13,直线AB、CD相交于点O,EF⊥AB于O,且∠COE=50°,则∠BOD等于( )
图13
A.40°
B.45°
C.55°
D.65° 21.如图14,若AB ∥CD ,则∠A 、∠E 、∠D 之间的关系是( )
图14
A.∠A +∠E +∠D =180°
B.∠A -∠E +∠D =180°
C.∠A +∠E -∠D =180°
D.∠A +∠E +∠D =270° 三、解答题
22.如图15,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.
图15
23.如图16,已知AB ∥CD ,∠B =65°,CM 平分∠BCE ,∠MCN =90°,求∠DCN 的度数.
图16
24.如图17,∠1=
2
1
∠2,∠1+∠2=162°,求∠3与∠4的度数.
图17
25.如图18,CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线EF 与AB 有怎样的位置关系,为什么?
图18
26.如图19,AB ∥CD ,HP 平分∠DHF ,若∠AGH =80°,求∠DHP 的度数.
图19
27.根据下列证明过程填空:
如图20,BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C
图20
证明:∵BD⊥AC,EF⊥AC( )
∴∠2=∠3=90°
∴BD∥EF( )
∴∠4=_____( )
∵∠1=∠4( )
∴∠1=_____( )
∴DG∥BC( )
∴∠ADG=∠C( )
28.阅读下面的证明过程,指出其错误.
图21
已知△ABC
求证:∠A+∠B+∠C=180°
证明:过A作DE∥BC,且使∠1=∠C
∵DE∥BC(画图)
∴∠2=∠B(两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°
*29.已知:如图22,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,
求证:DA⊥AB.
图22
参考答案
一、1.两六 2.30° 3.160° 4.135 5.115° 115° 6.90° 7.53° 8.80°
9.四 10.40° 11.46° 12.3 13.四二四
14.(1)∠BED同位角相等,两直线平行
(2)∠DFC内错角相等,两直线平行
(3)∠AFD同旁内角互补,两直线平行
(4)DF两直线平行,同旁内角互补
(5)ED两直线平行,同位角相等
二、15.B 16.D 17.B 18.A 19.B 20.A 21.C
三、22.40° 23.32.5° 24.54° 72°
25.平行证明略 26.50° 27.已知同位角相等,两直线平行∠5 两直线平行,同位角相等已知∠5 等量代换内错角相等,两直线平行两直线平行,同位角相等
28.错误:过A作DE∥BC,且使∠1=∠C,应改为:过A作DE∥BC.∵∠1=∠C(画图),理由错,应改为:两直线平行,内错角相等 29.略。

相关文档
最新文档