东华大学自动控制原理实验二

合集下载

自动控制原理实验报告五个实验

自动控制原理实验报告五个实验

自动控制原理实验专业班级姓名学号实验时间:2010.10—2010.11一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线 18根典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。

2、掌握用运算放大器构成各种常用的典型环节的方法。

3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。

4、学会时域法测量典型环节参数的方法。

(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理实验原理及实验设计:1.比例环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节: Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤2、测量输入和输出波形图。

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2、学习在电子模拟机上建立典型环节系统模型的方法。

3、学习阶跃响应的测试方法。

二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。

记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。

2、PC机一台。

3、数字万用表一块。

4、导线若干。

五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。

2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。

3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。

自控原理实验二

自控原理实验二

实验二 二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。

二、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);3. ζ为一定时,观测系统在不同n ω时的响应曲线。

三、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(n n n S S S R S C ωζωω++= (2-1) 闭环特征方程:0222=++n n S ωζω 其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况:1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。

它的数学表达式为: 式中21ζωω-=n d ,ζζβ211-=-tg 。

2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。

3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。

(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。

2. 二阶系统的典型结构典型的二阶系统结构方框图和模拟电路图如下图所示。

自动控制原理实验报告答案

自动控制原理实验报告答案

自动控制原理实验报告答案实验报告
自动控制原理实验报告
实验目的:
1.掌握常见的系统传递函数及其特点。

2.了解PID控制器的结构、参数调节方法以及应用范围。

3.熟悉根轨迹和Nyquist稳定性判据,并能够应用这些方法进行控制系统设计。

实验器材:
1.计算机
2.控制系统实验装置
3.示波器
4.信号发生器
实验结果:
1.通过实验,我们得到了不同传递函数下的系统特性曲线,如
低通、高通、带通和带阻滤波器的频率响应曲线等。

2.在PID参数调节的实验中,我们学习了震荡法、根轨迹法、
频率法等方法,同时了解了实际的相应曲线特征和参数调节对系
统性能的影响。

3.在根轨迹方法实验中,我们通过手工计算和MATLAB仿真,掌握了如何绘制和分析控制系统的根轨迹图,并对掌握控制系统
稳定性提供了帮助。

4.通过Nyquist稳定性判据的实验,我们学会了如何分析控制系统的稳定性,如何设计系统的补偿器,并对控制系统的性能做出合理的分析和评价。

实验结论:
通过这次实验,我们深入了解了自动控制原理的基本原理、结构和特性,并通过实验学习了PID控制器调节参数的方法、如何设计控制系统的根轨迹和控制系统稳定性分析的方法。

同时,我们还练习了手工计算和MATLAB仿真的能力,为未来研究和实践中的控制系统设计提供了一定的帮助。

自动控制原理实验——二阶系统的动态过程分析

自动控制原理实验——二阶系统的动态过程分析

.实验二二阶系统的动态过程分析一、实验目的1.掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2.定量分析二阶系统的阻尼比和无阻尼自然频率n对系统动态性能的影响。

3.加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和 Simulink 实现方法。

二、实验内容1.分析典型二阶系统 G(s) 的和n变化时,对系统的阶跃响应的影响。

2.用实验的方法求解以下问题:设控制系统结构图如图 2.1 所示,若要求系统具有性能:p% 20%, t p1s,试确定系统参数K 和,并计算单位阶跃响应的特征量t d, t r和 t s。

图 2.1 控制系统的结构图3.用实验的方法求解以下问题:设控制系统结构图如图 2.2 所示。

图中,输入信号r (t)t ,放大器增益 K A 分别取 13.5,200 和 1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

.图 2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

2通常,二阶控制系统 G(s) n 2 可以分解为一个比例环节、一个22 ns n惯性环节和一个积分环节,其结构原理如图 2.3 所示,对应的模拟电路图如图 2.4 所示。

图 2.3 二阶系统的结构原理图图 2.4 二阶系统的模拟电路原理图图 2.4 中:u(t )r (t), u (t)c(t) 。

比例常数(增益系数)K R2 ,惯性时间常数 T1 R3C1,积分时间常数R1T2R4C2。

其闭环传递函数为:U c (s)KK TT21 (0.1)U r (s) T2 s(T1s 1) K 21s s KT1 TT1 2又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比和无阻尼自然频率 n 。

自动控制原理2 实验报告

自动控制原理2 实验报告

中国石油大学(北京)实验报告实验课程:自动控制原理2实验名称:采样控制系统分析班级:学号: 姓名:实验台号:成绩:实验日期:年月日实验1采样控制系统一、实验目的考察连续时间系统的采样控制中,零阶保持器的作用与采样时间间隔Ts对系统稳定性的影响。

二、实验步骤1、典型单位负反馈连续时间系统的开环传递函数为G(s)=K/(s2+s),借助于Matlab 仿真,并分析并验证K对系统性能的影响。

步骤:Matlab相关命令:Gs=tf([1],[1 1 0]) ;pzmap(Gs);figure(1)rlocus(Gs);K值变化时的阶跃相应曲线for k=[0,0.01,0.05,0.10,0.15,0.20,0.25]num=[k];den=[1,1,0]Gs=tf(num,den);figure(1)margin(Gs);figure(2)t=0:0.001:500;step(Gs,t);grid;hold onend2、将上述连续系统离散化,成为带零阶保持器的采样系统。

借助于Matlab仿真,调整采样周期T 和增益K 的大小,观察T 和K 对系统稳定性和调节性能的影响。

调整系数,给出[1]p384-385习题7-24和7-26的答案。

实验步骤:(1) 确定有零阶保持器的开环系统脉冲传递函数G(z)。

))(1()1()(T T e z z z e K z G -----=Matlab 相关命令:for k=[0,0.01,0.05,0.10,0.15,0.20,0.25]num=[k*0.1,0];den=[1,-1.9,0.9];G1=tf(num,den);G=tf2zp(num,den);Gd=c2d(G,0.1,’zoh ’);G0=feedback(Gd,a);t=0:0.1:50;u=1;tsim(G0,u,t,0);gridfor k=[0,0.01,0.05,0.10,0.15,0.20,0.25]G=tf([5],[1 1 0]);Gd=c2d(G,0.1,'zoh');G0=feedback(Gd,1);t=0:0.1:50;step(G0,t); gridxlabel('t');ylable('c(t)');title(‘ramp response ’)hold onend当T=0.1,0.5,1,2时分别重复上面的命令习题7-247-24(1)求出脉冲传递函数:程序代码:rlocus(G)G0=tf([1],[1 10 0 ]);G=c2d(G0,0.1,'zoh')G =0.003679 z + 0.002642----------------------z^2 - 1.368 z + 0.3679Sample time: 0.1 secondsDiscrete-time transfer function.(2)求闭环系统的z特征方程feedback(G,1)ans =0.003679 z + 0.002642----------------------z^2 - 1.364 z + 0.3705Sample time: 0.1 secondsDiscrete-time transfer function.(3)计算使系统稳定的K的最大值rlocus(G)(4)K=78(5)求闭环脉冲传递函数并绘出单位阶跃响应曲线程序代码:G0=tf([78],[1 10 0 ]);G=c2d(G0,0.1,'zoh')Gd= feedback(G,1);t=0:0.1:6;step(Gd,t)Gd =0.2869 z + 0.2061---------------------z^2 - 1.081 z + 0.574Sample time: 0.1 seconds Discrete-time transfer function. 阶跃响应曲线:(6)系统闭环极点以及超调量程序代码:G0=tf([120],[1 10 0 ]);G=c2d(G0,0.1,'zoh');Gd=feedback(G,1);t=0:0.1:6;step(Gd,t)Transfer function:0.4415 z + 0.3171----------------------z^2 - 0.9264 z + 0.685 Sampling time: 0.1b = [0.4415 0.3171];a = [1 -0.9264 0.685]; [b,a] = eqtflength(b,a); [z,p,k] = tf2zp(b,a)z =-0.7182p =0.4632 + 0.6859i0.4632 - 0.6859i k =0.4415超调量为53.8%. (7) t=0:0.1:6;step(Gd,t)7-267-26.程序代码:G0=tf([1],[1 1 0]);G=c2d(G0,0.2,'zoh');Gd=feedback(G,1);t=0:0.2:20;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.4,'zoh');Gd=feedback(G,1);t=0:0.4:20;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.6,'zoh');Gd=feedback(G,1);t=0:0.6:25;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,0.8,'zoh');Gd=feedback(G,1);t=0:0.8:30;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,1.0,'zoh');Gd=feedback(G,1);t=0:1.0:30;step(Gd,t)hold onG0=tf([1],[1 1 0]);G=c2d(G0,1.2,'zoh');Gd=feedback(G,1);t=0:1.2:30;step(Gd,t)hold on实验图形记录:(1)T=0.2s%21%;8.38s T σ==(2)T=0.4s%26%;8.53s T σ==(3)T=0.6s%31%;11.4s T σ==(4)T=0.8ss(5)T=1.0s(6)%40%;15.3s T σ==(7)T=1.2ssT 从0.2s 到1.2s3、计算机控制系统如图5-7所示,采样周期T=0.1s ,试分析不同的PID 调节器及不同参数对系统性能的影响,并分析各种情况下PID 参数的选择方法。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

自动控制原理实验指导书(五个实验)

自动控制原理实验指导书(五个实验)

自动控制原理实验指导书电力学院自动控制原理实验室二○○八年三月目录实验一典型环节的电路模拟与软件仿真 (2)实验二线性定常系统的瞬态响应 (6)实验三线性系统稳态误差的研究 (8)实验四系统频率特性的测量 (11)实验五线性定常系统的串联校正 (13)附: THBDC-1控制理论.计算机控制技术实验平台简介 (16)实验一典型环节的电路模拟与软件仿真一、实验目的1.熟悉并掌握THBDC-1型控制理论·计算机控制技术实验平台及上位机软件的使用方法。

2.熟悉各典型环节的电路传递函数及其特性,掌握典型环节的电路模拟与软件仿真研究。

3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THBDC-1型控制理论·计算机控制技术实验平台2.PC机1台(含上位机软件) USB数据采集卡37针通信线1根16芯数据排线USB接口线3.双踪慢扫描示波器1台(可选)4.万用表1只三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等典型环节按一定的关系连接而成。

熟悉这些环节对阶跃输入的响应,对分析线性系统将是十分有益的。

在附录中介绍了典型环节的传递函数、理论的阶跃响应曲线和环节的模拟电路图。

五、实验步骤1.熟悉实验台,利用实验台上的各电路单元,构建所设计比例环节(可参考本实验附录)的模拟电路并连接好实验电路;待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。

2.把采集卡接口单元的输出端DA1、输入端AD2与电路的输入端U i相连,电路的输出端U o则与采集卡接口单元中的输入端AD1相连。

连接好采集卡接口单元与PC上位机的通信线。

自动控制原理(实验指导书)

自动控制原理(实验指导书)

⾃动控制原理(实验指导书)⽬录实验⼀典型环节的模拟研究(验证型)(2)实验⼆典型系统的瞬态响应和稳定性(设计型)(9)实验三动态系统的数值模拟(验证型)(15)实验三动态系统的频率特性研究(综合型)(16)实验四动态系统的校正研究(设计型)(18)附录XMN—2学习机使⽤⽅法简介(20)实验⼀典型环节的模拟研究⼀、实验⽬的:1、了解并掌握XMN-2型《⾃动控制原理》学习机的使⽤⽅法,掌握典型环节模拟电路的构成⽅法,培养学⽣实验技能。

2、熟悉各种典型线性环节的阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响。

⼆、实验设备Uo(S)=(K+TS 1)S1?)1()()(21210210CS R R RR R R R S U S U i +++≈(1-19)⽐较式(1-17)和(1-19)得K=21R R R +T=C R R R R ?+2121 (1-20)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。

则由式(1-17)得到111)()(23111022100210++?+++=S C R S C R C R C R S C R R R R S U S U i (1-24) 考虑到R 1》R 2》R 3,则式(1-24)可近似为S C R R R S C R R R S U S U i 2021100101)()(++≈(1-25)⽐较式(1-23)和(1-25)得K P =1R R , T 1=R 0C 1T D =2021C R R R ? (1-26)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。

则由式(1-23)得到U o (S)=(K P +ST 11+T D S )S 1?五、实验报告要求:1、实验前计算确定典型环节模拟电路的元件参数各⼀组,并推导环节传递函数参数与模拟电路电阻、电容值的关系以及画出理想阶跃响应曲线。

2、实验观测记录。

自动控制原理实验报告

自动控制原理实验报告

《自动控制原理实验》实验报告班级:自动化0901姓名:***学号:*********东华大学信息学院实验一 MATLAB 中数学模型的表示MP2.1考虑两个多项式2()21p s s s =++ ,()1q s s =+使用 MATLAB 计算下列各式:程序: (a )>> A=[1 2 1];B=[1 1]; >> C=conv(A,B)运行结果: C =1 3 3 1 (b)>> num=[1 1]; >> den=[1 2 1]; >> z=roots(num); >> p=roots(den); >> z,p运行结果: z =-1 p =-1 -1 (c)>> value=polyval(p,-1) 运行结果: value = 0程序:(a)>> num1=[1];num2=[1 2];den1=[1 1];den2=[1 3];[num,den]=series(num1,den1,num2,den2);[num,den]=cloop(num,den,-1);printsys(num,den)运行结果:num/den =s + 2----------------s^2 + 5 s + 5(b)step(num,den)运行结果:(a)>> num1=[1]; den1=[1 1];num2=[1]; den2=[1 0 2];[num3,den3]=series(num1,den1,num2,den2);num4=[4 2]; den4=[1 2 1];[num5,den5]=feedback(num3,den3,num4,den4,-1);num6=[1]; den6=[1 0 0];num7=[50]; den7=[1];[num8,den8]=feedback(num6,den6,num7,den7,1);[num9,den9]=series(num5,den5,num8,den8);num10=[1 0 2]; den10=[1 0 0 14];[num11,den11]=feedback(num9,den9,num10,den10,-1);num12=[4]; den12=[1];[num13,den13]=series(num11,den11,num12,den12)F=tf(num13,den13)运行结果:Transfer function:4 s^5 + 8 s^4 + 4 s^3 + 56 s^2 + 112 s + 56 ----------------------------------------------------------------------------------------------------s^10 + 3 s^9 - 45 s^8 - 129 s^7 - 198 s^6 - 976 s^5 - 2501 s^4 - 3558 s^3 - 4841 s^2 - 6996 s – 2798(b)[p,z]=pzmap(num13,den13); pzmap(num13,den13);grid on运行结果:p =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517>> zz =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i(c)>> Z=roots(num13)Z =1.2051 +2.0872i1.2051 -2.0872i-2.4101-1.0000 + 0.0000i-1.0000 - 0.0000i>> P=roots(den13)P =7.0710-7.07101.2047 +2.0871i1.2047 -2.0871i0.2984 + 1.4750i0.2984 - 1.4750i-2.4108-1.5219 + 0.9395i-1.5219 - 0.9395i-0.5517绘制系统的单位阶跃响应,参数Z=3,6和12。

自动控制原理实验讲义

自动控制原理实验讲义

实验一二阶系统的瞬态瞬态响应分析一、实验目的1 、熟悉二阶模拟系统的组成。

2 、研究二阶系统分别工作在ξ=1,0<ξ<1,ξ>1三种状态下的单位阶跃响应。

3 、分析增益K 对二阶系统单位阶跃响应的超调量σp、峰值时间tp和整时间ts 。

4、研究系统在不同K值时对斜坡输入的稳态跟踪误。

二、实验设备l )、控制理论电子模拟实验稍一台2 )、慢扫描示波器一台3 )、万用表一只三、实验原理图1-1 为二阶系统的模拟电路图,它是由惯性环节、积分环节和反相器组成。

图1-2为图1-1的原理方框图,图中K=R2/R1,121C R T =,232C R T =由图1-2求得二阶系统的闭环传递函数:211221222110)()(T T KS T S T T KK S T S T T KS U S U ++=++=(1)而二阶系统标准传递函数为:对比式(1)和(2),得21T T K n =ω,K T T 124=ξ若令T1=0.2S ,T2=0.5S ,则k n 10=ω,k 625.0=ξ调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,还可以得到过阻尼(ξ>1)、临界(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。

(1)当k>0.625,0<ξ<1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:)1sin(111)(2120ξξωξξω-+--=--tg t e t u d t n式中21ξωω-=n d 图1-3为二阶系统欠阻尼状态下的单位阶跃响应曲线(2)当k=0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:t w n n e t u -+-=)1(10ω如图1-4为二阶系统工作临界阻尼单位阶跃响应曲线。

(3)、当k<0.625时,ξ>1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢.三、实验内容与步骤1 、根据图1-1,调节相应的参数,使系统的开环传递函数为:()0.5(0.21)KG S S S =+2 、令ui( t ) = lv ,在示波器上观察不同K ( K =10 ,5, 2 ,0.5)时的阶跃响应的波形,并由实验求得相应的σp 、tp 和ts 的值。

东华大学自控实验——第二份实验报告

东华大学自控实验——第二份实验报告

《自动控制原理实验》实验报告(二)一、Simulink仿真二、自控原理模拟实验(线性系统的时域分析)姓名:刘克勤学号:110901112班级:自动化1104班指导老师:石洪瑞东华大学信息学院12345678910MP5.6为了保持飞机的航向和飞行高度,人们设计了如图MP5.6所示的飞机自动驾驶仪。

(a) 假设框图中的控制器是固定增益的比例控制器()2c G s = ,输入为斜坡信号(),0.5/dt at a s θ== ,利用matlab 计算并以曲线显示系统的斜坡响应,求出10s 后的航向角误差。

(b) 为了减小稳态跟踪误差,可以采用较复杂的比例积分控制器(PI),即()2112c K G s K s s=+=+ 试重复(a)中的仿真计算,并比较这两种情况下的稳态跟踪误差。

图MP5.6 飞机自动驾驶仪框图(a) 解:Simulink 仿真原理图 :运行结果如下:12345678910(b)解:Simulink 仿真原理图 :运行结果如下:MP5.7 导弹自动驾驶仪速度控制回路的框图如图MP5.7所示,请用MATLAB/Simulink 求系统的单位阶跃响应,并求出峰值PtM 、超调量..%P O ,峰值时间P T 、调整时间S T 。

.图MP5.7 导弹自动驾驶仪速度控制回路解:Simulink仿真原理图:仿真结果:00.10.20.30.40.50.60.70.80.91峰值时间:Tp=0.1062;峰值:Mp=1.294;超调量:P.O.=(1.294-1)/1=0.294=29.4% 。

00.51 1.52 2.53 3.54 4.55系统稳态值为1,根据2%的误差准则,系统稳定到0.98时的调整时间约为:Ts=2.539。

0102030405060MP5.8 设计如下系统的Simulink 仿真图,求系统的阶跃响应曲线及超调量、调整时间。

图MP5.8 非单位反馈控制系统解:Simulink 仿真原理图:运行结果:由系统稳态值为0.5,根据2%的误差准则,系统稳定到0.51的时间即为调整时间Ts=39.05。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告 Final revision on November 26, 2020实验报告课程名称: 自动控制原理 实验项目: 典型环节的时域相应 实验地点: 自动控制实验室实验日期: 2017 年 3 月 22 日 指导教师: 乔学工实验一 典型环节的时域特性一、实验目的1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。

对比差异,分析原因。

3.了解参数变化对典型环节动态特性的影响。

二、实验设备PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。

三、实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。

1.比例环节 (P) (1)方框图 (2)传递函数:K S Ui S Uo =)()((3)阶跃响应:)0()(≥=t K t U O 其中 01/R R K =(4)模拟电路图:(5)理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。

② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图(2)传递函数:TSSUiSUo1)()(=(3)阶跃响应:)0(1)(≥=ttTtUo其中CRT=(4)模拟电路图(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。

②取R0 = 200K;C = 2uF。

3.比例积分环节 (PI)(1)方框图:(2)传递函数:(3)阶跃响应:(4)模拟电路图:(5)理想与实际阶跃响应曲线对照:①取 R0 = R1 = 200K;C = 1uF。

理想阶跃响应曲线实测阶跃响应曲线无穷②取 R0=R1=200K ;C=2uF 。

理想阶跃响应曲线 实测阶跃响应曲线4.惯性环节 (T) (1) 方框图 (2) 传递函数:1)()(+=TS KS Ui S Uo 。

自动控制原理实验2

自动控制原理实验2

给定二阶系统电模拟图
与二阶系统的标准形式比较,可得如下 关系: ωn = 1/T = 1/(R1*C1) ξ = 1/2K = R1/2R2 同时改变C1和C2的大小,可改变无 阻尼自振频率ωn的大小,改变R2的大小 可改变ξ的大小。
四、实验步骤
1 、 令 T=0.1 秒 ( R1=R3=100K,C1=C2=1µF)。 分 别 设置ξ=0.1, 0.5, 0.7, 1,观测输入幅值为±2V的阶跃信 号,读出并记录各ξ值时的超调量和过渡过程时间ts (取∆=0.05),并绘制出ξ=0.1, 0.7, 1三种情况时的波 形。 2 、令T=0.05秒,( C1=C2=0.5µF)重新进行上述测试 。
实 验 二
典型二阶系统的瞬态响应
一、实验目的: 实验目的:
1.熟悉二阶系统的瞬态响应,观察二阶系统两 个重要参数ξ 和ωn 对系统动态特性的影响; 2.定量分析ξ和T与超调MP、过渡过程时间ts 的 关系。 3. 测出性能指标:超调量MP,峰值时间tp和调节 时间ts。
二、实验要求: 实验要求: 1.观测各种典型环节的阶跃 响应曲线; 2.观测参数变化对典型环 节阶跃响应的影响;
三、实验仪器: 实验仪器:
1.自控系统教学模拟机 1台; 2.超低频双线示波器 1台; 3.万用表 DF4211方程:
T
2
d 2 c (t ) dc ( t ) + 2ξ T + c (t ) = r (t ) dt 2 dt
传递函数:
五、实验报告要求: 实验报告要求:
1.记录实验线路及原始数据、测试数据 及波形图; 2.对实验中出现的现象进行讨论,计算 T=0.1秒时,ξ=0.1, 0.7, 1情况下的σ% 和ts (∆=0.05),与实测数据比较;

东华大学自动控制原理实验复习题

东华大学自动控制原理实验复习题

系统性能分析1.频率曲线主要包括三种:Nyquist 图、Bode 图。

1)Nyquist 图的绘制与分析MATLAB 中绘制系统Nyquist 图的函数调用格式为:nyquist(num,den) 频率响应w 的范围由软件自动设定 nyquist(num,den,w) 频率响应w 的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图例4-1:已知系统的开环传递函数为25262)(23++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2];[z,p,k]=tf2zp(num,den); p nyquist(num,den)极点的显示结果及绘制的Nyquist 图如图4-1所示。

由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MA TLAB 语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); %即在10-1和101之间,产生100个等距离的点 nyquist(num,den,w)图4-1 开环极点的显示结果及Nyquist 图Nyquist DiagramReal AxisI m a g i n a r y A x i s2)Bode 图的绘制与分析系统的Bode 图又称为系统频率特性的对数坐标图。

Bode 图有两张图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

MATLAB 中绘制系统Bode 图的函数调用格式为:bode(num,den) 频率响应w 的范围由软件自动设定 bode(num,den,w) 频率响应w的范围由人工设定[mag,phase,w]=bode(num,den,w) 指定幅值范围和相角范围的伯德图例4-2:已知开环传递函数为)10016()12.0(30)(2+++=s s s s s G ,试绘制系统的伯德图。

自控原理第2次实验

自控原理第2次实验

自控原理实验报告实验一.典型环节模拟研究1.实验目的1.了解和掌握各典型环节模拟电路的构成方法,传递函数表达式及输出时域函数表达式;2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

2.实验内容1.典型比例环节模拟电路及阶跃曲线。

传递函数2,典型惯性环节阶跃响应曲线传递函数CR T R R K TS KU U G i O 1011(S)(S)(S)==+==01(S)(S)(S)R R K KU U G i O ===3,积分环节阶跃响应曲线传递函数4,典型比例积分环节阶跃响应曲线传递函数5、比例微分响应曲线传递函数CR T TSU U G i i O 01(S)(S)(S)===CR T R R K TiSK U U G i i O 101)11((S)(S)(S)==+==)11((S)(S)(S)STS K U U G i O τ++==CR R R R R )(T 32121D ++=CR 3=τ021R R R K +=3321D )//(R K R R R +=0.06SK T D D =⨯=τ6,PID(比例积分微分)环节阶跃响应曲线传递函数实验二.二阶系统瞬态响应和稳定性1.实验目的1.了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

2.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

3.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp 、tp 、ts 的计算。

观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp 、tp 值,并与理论计算值作比对。

2、实验内容1)Ⅰ型二阶闭环系统模拟电路见图,观察阻尼比ξ对该系统的过渡过程的影响。

改变输入电阻R 来调整系统的开环增益K ,从而改变系统的结构参数。

2)改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K ,填入实验报告。

东华大学石红瑞自控实验二

东华大学石红瑞自控实验二

实验二 控制系统的时域分析(瞬态响应和稳定性)MP 5.1 考虑闭环传递函数()2232T s s s =++ 请用解析方法和MATLAB 的impulse 函数,分别计算系统的脉冲响应,并比较所得的结果。

解析方法:用反拉普拉斯变换求解:程序:>>syms s;>> G=2/(s^2+3*s+2);>> F=ilaplace(G)结果:F =2*exp(-t) - 2*exp(-2*t)用impulse 函数求解:程序:>>num=[2];den=[1 3 2];sys=tf(num,den);>>impulse(sys)>> grid on图形:02468101200.050.10.150.20.250.30.350.40.450.5Impulse ResponseTime (seconds)A m p l i t u d eMP5.2 某单位负反馈系统的开环传递函数为()()2510s G s s s +=+ 当输入为斜坡信号()21R s s=时,(利用lsim 函数)计算闭环系统在02t s ≤≤时间段的响应,并求出系统的稳态误差。

程序:num=[1 5];den=[1 10 0 0];sys1=tf(num,den);sys=feedback(sys1,[1]);t=0:0.01:2;u=t;lsim(sys,u,t);grid on;图形:稳态误差的求解:syms s;G=(s+5)/(s^2*(s+10));Kv=s*G;ess=limit(1/Kv,s,0)ess =0 %稳态误差为0 00.20.40.60.81 1.2 1.4 1.6 1.8200.20.40.60.811.21.41.61.82Linear Simulation ResultsTime (seconds)A m p l i t u d eMP5.3 某2阶系统如图MP5.3所示,它的极点位置同瞬态响应之间存在着对应关系。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本知识,了解控制系统的结构和工作原理,以及掌握控制系统的设计和调试方法。

实验仪器,本次实验所使用的仪器有PID控制器、执行器、传感器等。

实验原理,自动控制系统是指通过传感器采集被控对象的信息,经过控制器处理后,通过执行器对被控对象进行调节,以达到设定的控制目标。

其中PID控制器是通过比较被控对象的实际值和设定值,计算出误差,并根据比例、积分、微分三个参数来调节执行器输出的控制信号,使被控对象的实际值逐渐趋近设定值的一种控制方式。

实验步骤:1. 将PID控制器与执行器、传感器连接好,并确认连接正确无误。

2. 设置被控对象的设定值,并观察实际值的变化情况。

3. 调节PID控制器的参数,观察被控对象的响应情况,找到最佳的控制参数组合。

4. 对不同类型的被控对象进行实验,比较不同参数组合对控制效果的影响。

实验结果与分析:通过实验我们发现,合适的PID参数组合能够使被控对象的实际值快速稳定地达到设定值,并且对不同类型的被控对象,需要调节的参数组合也有所不同。

在实际工程中,需要根据被控对象的特性和控制要求来选择合适的PID参数,并进行调试和优化。

结论:本次实验使我们进一步了解了自动控制原理,掌握了PID控制器的基本原理和调试方法,对控制系统的设计和调试有了更深入的理解。

同时也认识到在实际工程中,需要根据具体情况来选择合适的控制方法和参数,进行调试和优化,以达到最佳的控制效果。

通过本次实验,我们对自动控制原理有了更深入的认识,对控制系统的设计和调试方法有了更加清晰的理解,相信这对我们今后的学习和工作都将有所帮助。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB 函数 1. 基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

传递函数的表示方法:考虑下列系统:)s )(s (s s s s )s (R )s (C 3246542+++=+++= num=[1 4];den=[1 5 6];G=tf(num,den)z=[-4];p=[-2 -3];k=1;g=zpk(z,p,k)num=[1 4];den=conv([1 2],[1 3]);g1=tf(num,den)也可。

用MATLAB求控制系统的瞬态响应:阶跃响应--求系统阶跃响应的指令有:step(num,den) 时间向量t的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t的范围可以由人工给定(例如t=0:0.1:10)[y,x]=step(num,den) 返回变量y为输出向量,x为状态向量在MATLAB程序中,先定义num,den数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:2()25()425C s R s s s =++ 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。

则matlab 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线 grid %画网格标度线xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名则该单位阶跃响应曲线如图2-1所示:若要绘制系统t 在指定时间(0-10s )内的响应曲线,则用以下语句:num=[0 0 25]; den=[1 4 25]; t=0:0.1:10;step(num,den,t)即可得到系统的单位阶跃响应曲线在0-10s 间的部分,如图2-2所示。

图2-1 二阶系统的单位阶跃响应图2-2 定义时间范围的单位阶跃响应① 求系统脉冲响应的指令有:impulse (num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出 impulse (num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10) [y,x]=impulse(num,den) 返回变量y 为输出向量,x 为状态向量 [y,x,t]=impulse(num,den,t) 向量t 表示脉冲响应进行计算的时间 例:试求下列系统的单位脉冲响应:2()1()()0.21C s G s R s s s ==++ 在matlab 中可表示为num=[0 0 1]; den=[1 0.2 1]; impulse(num,den) gridtitle(‘Unit -impulse Response of G(s)=1/(s ^2+0.2s+1)’) 由此得到的单位脉冲响应曲线如图2-3所示。

② 求脉冲响应的另一种方法应当指出,当初始条件为零时,G (s)的单位脉冲响应与sG(s)的单位阶跃响应相同。

考虑在上例题中求系统的单位脉冲响应,因为对于单位脉冲输入量,R(s)=1所以22()11()()()0.210.21C s s C s G s R s ss s s s ====⨯++++ 因此,可以将G(s)的单位脉冲响应变换成sG(s)的单位阶跃响应。

向MA TLAB 输入下列num 和den ,给出阶跃响应命令,可以得到系统的单位脉冲响应曲线如图2-4所示。

num=[0 1 0]; den=[1 0.2 1];step(num,den) gridtitle(‘Unit -step Response of sG(s)=s/(s^2+0.2s+1)’)图2-3 二阶系统的单位脉冲响应 图2-4 单位脉冲响应的另一种表示法MATLAB 没有直接调用求系统斜坡响应的功能指令。

在求取斜坡响应时,通常利用阶跃响应的指令。

基于单位阶跃信号的拉氏变换为1/s ,而单位斜坡信号的拉氏变换为1/s 2。

因此,当求系统G(s)的单位斜坡响应时,可以先用s 除G(s),再利用阶跃响应命令,就能求出系统的斜坡响应。

例如,试求下列闭环系统的单位斜坡响应。

11)()(2++=s s s R s C对于单位斜坡输入量,R(s)=1/s 2,因此s s s s s s s s C 1)1(1111)(222⨯++=⨯++=在MATLAB 中输入以下命令,得到如图2-5所示的响应曲线:num=[0 0 0 1]; den=[1 1 1 0]; step(num,den)title(‘Unit -Ramp Response Cuve for System G(s)=1/(s^2+s+1)’)2. 特征参量ζ和n ω对二阶系统性能的影响 标准二阶系统的闭环传递函数为:222()()2n n nC s R s s s ωζωω=++ 二阶系统的单位阶跃响应在不同的特征参量下有不同的响应曲线。

ζ对二阶系统性能的影响设定无阻尼自然振荡频率1(/)n rad s ω=,考虑5种不同的ζ值:ζ=0,0.25,0.5,1.0和2.0,利用MATLAB 对每一种ζ求取单位阶跃响应曲线,分析参数ζ对系统的影响。

为便于观测和比较,在一幅图上绘出5条响应曲线(采用“hold ”命令实现)。

图2-5 单位斜坡响应num=[0 0 1]; den1=[1 0 1]; den2=[1 0.5 1]; den3=[1 1 1]; den4=[1 2 1]; den5=[1 4 1];t=0:0.1:10; step(num,den1,t)gridtext(4,1.7,'Zeta=0'); holdstep(num,den2,t) text(3.3,1.5,'0.25') step(num,den3,t) text(3.5,1.2,'0.5') step(num,den4,t) text(3.3,0.9,'1.0') step(num,den5,t) text(3.3,0.6,'2.0')title('Step-Response Curves for G(s)=1/[s^2+2(zeta)s+1]') 由此得到的响应曲线如图2-6所示。

n ω对二阶系统性能的影响同理,设定阻尼比0.25ζ=时,当n ω分别取1,2,3时,利用MATLAB 求取单位阶跃响应曲线,分析参数n ω对系统的影响。

num1=[0 0 1]; den1=[1 0.5 1]; t=0:0.1:10;step(num1,den1,t); grid; hold ontext(3.1,1.4,’wn =1’)num2=[0 0 4]; den2=[1 1 4]; step(num2,den2,t); hold on text(1.7,1.4,’wn=2’)num3=[0 0 9]; den3=[1 1.5 9]; step(num3,den3,t); hold on text(0.5,1.4,’wn=3’) 由此得到的响应曲线如图2-7所示。

图2-6 ζ不同时系统的响应曲线图2-7 n ω不同时系统的响应曲线3. 系统稳定性判断 1)直接求根判稳roots()控制系统稳定的充要条件是其特征方程的根均具有负实部。

因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。

MATLAB 中对多项式求根的函数为roots()函数。

若求以下多项式的根43210355024s s s s ++++,则所用的MATLAB 指令为: >> roots([1,10,35,50,24])ans =-4.0000 -3.0000 -2.0000 -1.0000特征方程的根都具有负实部,因而系统为稳定的。

2)劳斯稳定判据routh ()(略) 三、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 243237()4641s s G s s s s s ++=++++可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。

2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响。

2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。

3.系统的特征方程式为432235100s s s s ++++=,试判别该系统的稳定性。

(提示:特征方程的根都具有负实部系统才能稳定)四、实验报告1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的MATLAB 运算结果。

2. 记录各种输出波形,根据实验结果分析参数变化对系统的影响。

3.总结判断闭环系统稳定的方法,说明增益K 对系统稳定性的影响。

4.写出实验的心得与体会。

五、预习要求1. 预习实验中基础知识,运行编制好的MATLAB语句,熟悉MATLAB指令及step( )和impulse( )函数。

2. 结合实验内容,提前编制相应的程序。

3.思考特征参量ζ和ω对二阶系统性能的影响。

n4.熟悉闭环系统稳定的充要条件及学过的稳定判据。

相关文档
最新文档