50道奥数题与答案解析

合集下载

小学毕业50道奥数题及解答分析

小学毕业50道奥数题及解答分析

小学毕业50道奥数题及解答分析1. 小明有15支红色铅笔和8支蓝色铅笔,请问他一共有多少支铅笔?答案:小明一共有23支铅笔。

解析:将红色铅笔和蓝色铅笔的数量相加即可。

2. 一本书有256页,小明每天读10页,请问他需要多少天才能读完这本书?答案:小明需要读完这本书的时间是256÷10=25.6天。

解析:将书的总页数除以每天能读的页数即可得到所需的天数,注意要考虑到小数。

3. 小王有45支铅笔,他把这些铅笔平均分给他的5个朋友,请问每个朋友能分到几支铅笔?答案:每个朋友能分到的铅笔数量是45÷5=9支。

解析:将铅笔的总数除以朋友的总数即可得到每个朋友能分到的铅笔数量。

4. 一箱苹果有120个,小红拿走了其中的3/4,请问小红拿走了多少个苹果?答案:小红拿走的苹果数量是120×3/4=90个。

解析:将苹果的总数乘以3/4即可得到小红拿走的苹果数量。

5. 一条绳子长12米,小明用了其中的2/3,请问小明用了多长的绳子?答案:小明用的绳子长度是12×2/3=8米。

解析:将绳子的总长度乘以2/3即可得到小明用的绳子长度。

6. 一个长方形的长为15厘米,宽为8厘米,请问它的面积是多少?答案:这个长方形的面积是15×8=120平方厘米。

解析:将长方形的长与宽相乘即可得到面积。

7. 一辆小轿车每小时行驶60千米,请问它行驶100千米需要多少小时?答案:这辆小轿车行驶100千米需要100÷60≈1.67小时。

解析:将需要行驶的距离除以每小时行驶的速度即可得到所需的时间,注意要考虑到小数。

8. 一个豆袋里有120颗红豆和80颗黑豆,小明从中随机取出1颗,请问他取到红豆的概率是多少?答案:他取到红豆的概率是120/(120+80)=0.6。

解析:将红豆的数量除以总豆子的数量即可得到取到红豆的概率。

9. 小华有25本故事书,她要把这些书平均放在5个箱子里,请问每个箱子里应该放几本书?答案:每个箱子里应该放25÷5=5本书。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

奥数题大全及答案

奥数题大全及答案

奥数题大全及答案奥数题大全及答案 11、棵梧桐树,共栽多少棵树?米栽1一条路长100米,从头到尾每隔101。

路分成100÷10=10段,共栽树10+1=11棵。

2、12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3×(12-1)=33棵。

3、一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?200÷10=20段,20-1=19次。

4、蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5、在花圃的周围方式菊花,每隔1米放1盆花。

花圃周围共20米长。

需放多少盆菊花?20÷1×1=20盆奥数题大全及答案 21、某种商品的价格是:每1个1分钱,每5个4分钱,每9个7分钱。

小赵的钱最多恰好能买50个,小李的钱最多恰好能买500个,问小李的钱比小赵的钱多多少分?答案:350分。

分析:当钱数一定,要想买的最多,就要采取最划算的策略:每9个7分钱,首先要考虑50和500中可以分成多少份9个。

然后看它们各自的余数是不是5的倍数,如果是,就按每5个4分钱累计,如果还有余数,才考虑每1个1分钱。

按此方法,可以把小李和小赵两人各有多少钱计算出来。

详解:因为50÷9=5……5,所以小赵有钱5×7+4=39(分)。

又因为500÷9=55……5,所以小李有钱55×7+4=389(分)。

因此小李的钱比小赵多389-39=350(分)。

2、有3个不同的数字,排列3次,组成了3个三位数,这3个三位数相加之和为789,又知运算中没有进位,那么这3个数字连乘所得的积是多少?答案:10或者12解析:由题意,3个三位数的百位之和为7,十位数之和为8,个位数之和为9,而在每个三位数里,3个数字都各出现了一次。

所以我们把百位之和、十位之和、个位之和再加在一起,就应该等于把三个数字各加了3次,也就等于3个数字之和的3倍。

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。

根据题意可得0.01x = 0.1x - 9。

整理得到0.09x = 9,解得x = 100。

2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 3,解得x = 300。

3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。

4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 0.02,解得x = 2。

5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。

解析:可以将四个小数都化为百分数进行比较。

0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。

显然,1%是最小的。

6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。

7. 将0.35表示成分数形式。

解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。

8. 填入下面的括号中:(2-3)÷(-2)=()。

解析:(2-3)÷(-2) = -1/(-2) = 1/2。

9. 计算:(-2)+3-5×(-4)÷(-2)。

解析:根据运算法则,先进行乘法和除法,再进行加法和减法。

(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。

10. 计算:(-12)-0.5×(2-3)+4÷2。

解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。

50道奥数题及答案解析

50道奥数题及答案解析

50道奥数题及答案解析以下是50道奥数题及答案解析。

希望对你有帮助。

1. 小明有三只球,他把其中一只球放进一个盒子里。

请问,小明有多少种放置球的方式?答案解析:小明可以把球放在第一只、第二只或者第三只盒子中,所以有3种放置方式。

2. 如果A和B是两个正整数,且A的平方减去B的平方等于15,问A和B的值分别是多少?答案解析:设A>B,由(A+B)(A-B)=15得出,只有3和5满足要求,所以A=4,B=1。

3. 一个矩形的宽度是20厘米,周长是70厘米。

请问这个矩形的长度是多少?答案解析:设矩形的长度为L,则2(L+20)=70,解得L=15厘米。

4. 甲、乙两位学生正在一起排队,甲比乙在队伍中靠前4人,甲在队伍中的位置是第7位,问乙在队伍中的位置是第几位?答案解析:甲比乙靠前4人,所以乙在队伍中的位置是第7+4=11位。

5. 有一个三位数恰好能被5和7整除,且每一位上的数字都不相同,问这个三位数是多少?答案解析:我们知道这个三位数必须是5和7的倍数,即35的倍数。

35的倍数中,只有105满足题目要求,所以答案是105。

6. 一个年龄为x岁的人,这个人的年龄2倍之后再加2岁得到的结果是44,那么这个人现在多少岁?答案解析:设这个人的年龄为x岁,则2x+2=44,解得x=21岁。

7. 在一个等差数列中,它的首项是4,公差是3,第10项是多少?答案解析:第n项的公式为a(n) = a(1) + (n-1)d,代入a(1)=4,d=3,n=10得到a(10) = 4 + (10-1)3 = 4 + 27 = 31。

8. 一个数字的百位、十位和个位分别是1、2和3。

把这个数字的百位和个位互换,得到的新数字是多少?答案解析:将百位和个位互换得到新数字是321。

9. 两个数之和是8,它们的差是4,这两个数分别是多少?答案解析:设这两个数分别为x和y,则x+y=8,x-y=4。

解以上方程组,得到x=6,y=2。

50道奥数题及答案详细解析

50道奥数题及答案详细解析

50道经典奥数题及答案详细解析1.一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?想:由条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在间隔中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?想:根据在间隔中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4.李方和张强付同样多的钱买了同一种铅笔,李方要了13支,张强要了7支,李方又给张强0.6元钱。

每支铅笔多少钱?想:根据两人付同样多的钱买同一种铅笔和李方要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李方要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆制止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

50道经典初中奥数题及答案详细解析

50道经典初中奥数题及答案详细解析

50道经典初中奥数题及答案详细解析现在很多孩子都在补习奥数,奥数在小升初有着重要作用,以下是无忧考网分享的50道经典奥数题及答案详细解析,快来猜猜你和孩子的水平吧。

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

精选 50 道奥数题(附解题分析)

精选 50 道奥数题(附解题分析)

精选50道奥数题(附解题分析)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2.3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

小学数学50道经典奥数题及解析

小学数学50道经典奥数题及解析

小学数学50道经典奥数题及解析1. 小明的妈妈给他买了一些贴纸,其中3/4是花纹贴纸,剩下的是字母贴纸。

如果小明得到了60个字母贴纸,那么他一共收到了多少个贴纸?解析:假设小明一共收到了x个贴纸,则有3/4x是花纹贴纸,剩下的x - 3/4x = 1/4x 是字母贴纸。

根据题目可得:1/4x = 60。

解方程可得:x = 240。

所以小明一共收到了240个贴纸。

2. 某个数的三分之一加上四分之一等于40,这个数是多少?解析:设这个数为x,根据题目可得:1/3x + 1/4x = 40。

化简方程可得:7/12x = 40。

解方程可得:x = 40 * 12 / 7 = 68.57。

所以这个数约等于68.57。

3. 甲、乙、丙三个人合作种地,甲每天种地的1/5,乙每天种地的1/4,丙每天种地的1/3。

如果三个人连续工作8天,他们一共种了多少地?解析:甲、乙、丙三个人每天种地的比例为1/5:1/4:1/3。

将分母相同化简后相加可得:12/60 + 15/60 + 20/60 = 47/60。

所以三个人连续工作8天一共种了(47/60) * 8 = 6.27 地。

4. 一个两位数,各位数字的和是9,除以6的余数是3。

这个两位数是多少?解析:设这个两位数为10a + b,其中a为十位上的数字,b为个位上的数字。

根据题目可得:a + b = 9,并且(10a + b) % 6 = 3。

列举10的倍数加上3的倍数得到的数,最终找到满足条件的两位数为33。

所以这个两位数是33。

5. 甲、乙、丙三个人一起喝了一桶水,甲喝了其中的1/4,乙喝了剩下的1/3,丙喝了剩下的1/2。

如果桶中还有1升水,那么这桶水一共有多少升?解析:设桶中水的总体积为x,根据题意可得:(3/4) * (2/3) * (1/2) * x = 1。

化简方程可得:x = 4/3。

所以这桶水一共有(4/3 + 1) = 7/3升,约等于2.33升。

小升初最常考的奥数题100道及答案(完整版)

小升初最常考的奥数题100道及答案(完整版)

小升初最常考的奥数题100道及答案(完整版)1. 已知一张桌子的价钱是一把椅子的10 倍,又知一张桌子比一把椅子多288 元,一张桌子和一把椅子各多少元?答案:桌子320 元,椅子32 元。

解析:设一把椅子的价格为x 元,则一张桌子的价格为10x 元。

根据一张桌子比一把椅子多288 元,可列出方程:10x - x = 288,解得x = 32,那么桌子的价格为10x = 320 元。

2. 3 箱苹果重45 千克。

一箱梨比一箱苹果多5 千克,3 箱梨重多少千克?答案:60 千克。

解析:一箱苹果的重量为45÷3 = 15 千克,一箱梨比一箱苹果多5 千克,所以一箱梨重15 + 5 = 20 千克,3 箱梨的重量为20×3 = 60 千克。

3. 甲乙二人从两地同时相对而行,经过4 小时,在距离中点4 千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?答案:2 千米。

解析:甲比乙在4 小时内多走了4×2 = 8 千米,那么甲每小时比乙快8÷4 = 2 千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了7 支,李军又给张强0.6 元钱。

每支铅笔多少钱?答案:0.15 元。

解析:两人付同样多的钱,应得到同样多的铅笔,一共买了13 + 7 = 20 支铅笔,平均每人10 支。

李军多要了13 - 10 = 3 支,给张强0.6 元,所以每支铅笔的价格为0.6÷3 = 0.2 元。

5. 甲乙两辆客车上午8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2 点。

甲车每小时行40 千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)答案:250 千米。

解析:下午2 点即14 点,从上午8 点到下午2 点经过了6 小时。

小学奥数经典应用题含答案解析

小学奥数经典应用题含答案解析

小学奥数经典应用题含答案解析奥数题100道01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。

【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。

02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。

【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。

03、同学们进行广播操比赛,全班正好排成相等的6行。

小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。

从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。

04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。

第600颗是( )颜色。

【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。

05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。

【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。

06、一只蜗牛在10米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。

【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。

07、锯一根10米长的木棒,每锯一段要2分钟。

如果把这根木棒锯成相等的5段,一共要( )分钟。

【解析】把这根木棒锯成相等的5段,只需要锯4次,每次要2分钟,所以一共需要4×2=8分钟。

小学五年级数学50道奥数题(附解析答案)

小学五年级数学50道奥数题(附解析答案)

小学五年级数学50道奥数题(附解析答案)小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

小升初50道经典奥数题和答案详细解析

小升初50道经典奥数题和答案详细解析

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

奥数题及答案(合集15篇)

奥数题及答案(合集15篇)

奥数题及答案(合集15篇)奥数题及答案1加工零件:(中等难度)甲、乙、丙3名工人准备在同样效率的3个车床上车出7个零件,加工各零件所需要的'时间分别为4,5,6,6,8,9,9分钟。

3人同时开始工作,问最少经过多少分钟可车完全部零件?加工零件答案:加工所有的零件供需:4+5+6+6+8+9+9=47分钟,平均到三台车床上加工,平均每台加工时间为分钟。

由于加工各零部件需要整数分钟,因此最快需16分钟完成,但是无论怎么分组,都做不到。

因此延长1分钟,即17分钟,有(6,9),(6,9),(4,5,8),满足题意。

所以,最少经过17分钟可完成全部零件。

奥数题及答案2一大块金帝牌巧克力可以分成若干大小一样的正方形小块。

小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。

小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。

那么他们开始吃第1小块的'时间是几时几分?分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。

那么,20*20=400分钟=6小时40 分钟,14时40分-6小时40分=8时。

解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。

奥数题及答案31、难度:一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?2、难度:甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?1、难度:一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?2、难度:甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶小时的`路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间:奥数题及答案4一、按规律填数.1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )3)1、4、5、8、9、()、13、()、()4)2、4、5、10、11、()、()5)5,9,13,17,21,( ),( )二、等差数列1.在等差数列3,12,21,30,39,48,…中912是第几个数?2.求1至100内所有不能被5或9整除的整数和3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和三、平均数问题1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.23,26,30,33A、B、C、D 4个数的平均数是多少?5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 .四、加减乘除的简便运算1)100-98+96-94+92-90+……+8-6+4-2=()2)1976+1977+……20xx-1975-1976-……-1999=()3)26×99 =()4)67×12+67×35+67×52+67=()5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)五、数阵图1、△、□、〇分别代表三个不同的数,并且;△+△+△=〇+〇;〇+〇+〇+〇=□+□+□;△+〇+〇+□=60 求:△= 〇= □=2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果.所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数.六、和差倍问题1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?2.一个长方形,周长是30厘米,长是宽的.2倍,求这个长方形的面积.3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?七、年龄问题1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?八、假设问题1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?5.育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?奥数题及答案5请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的'一个。

小学四年级奥数100题(附答案)

小学四年级奥数100题(附答案)

小学四年级奥数100题(附答案)1、已知6辆大卡车5趟可以运走50吨沙,9辆小卡车4趟可以运走48吨沙。

现在有大小卡车一共60辆,这些卡车一起运送3趟可以运走沙261吨。

求有多少辆大卡车?答案:21辆解析:每辆大卡车每趟可以运5吨沙,每辆小卡车每趟可以运4吨沙。

因此,这些车一次可以运(6*5+9*4)=66吨沙。

那么,60辆车3趟可以运(60*3*66)=吨沙。

根据题意,3趟可以运走261吨沙,因此一趟可以运(261/3)=87吨沙。

每趟可以运的大卡车数量为(87/5)=17.4,向下取整得到17辆。

每趟可以运的小卡车数量为(87/4/3)=7.25,向上取整得到8辆。

因此,每趟可以运的车数量为25辆,那么大卡车的数量为(25-8)=17辆。

所以,答案为(17/5)*3=21辆。

2、某处楼梯一共有10级台阶,若每步走1级或2级台阶,8步正好走完。

那么,走此楼梯有多少种不同的走法?答案:28解析:因为每步可以走1级或2级台阶,所以第一步有两种情况,第二步也有两种情况,以此类推,第八步也有两种情况。

因此,总共有2的8次方=256种情况。

但是,因为8步正好走完,所以最后两步必须分别走1级和2级,这两步的情况只有一种。

因此,最终的答案为(256/2)=128种情况。

但是,因为最后两步的情况只有一种,所以需要除以2,得到最终答案为128/2=28种不同的走法。

3、A和B两个同学同时从甲地出发到乙地,A每分钟行50米,B每分钟行60米,B到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲乙两地相距多少米?答案:550米解析:因为B到达乙地后立即返回,所以两人相遇时,B离乙地的距离等于甲乙两地的距离。

设甲乙两地的距离为x米,则A和B相遇时,A已经走了10*50=500米,B已经走了10*60=600米。

因此,A和B相遇时,他们之间的距离为(600-500)=100米。

根据题意可得,这100米等于甲乙两地之间的距离,因此甲乙两地相距550米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。

这堆煤有多少千克?14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。

结果小红却买了8支铅笔和5本练习本,找回0.45元。

求一支铅笔多少元?15.学校组织外出参观,参加的师生一共360人。

一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。

都乘卡车需要几辆?都乘大客车需要几辆?16.某筑路队承担了修一条公路的任务。

原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。

这条公路全长多少米?17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。

如果3个纸箱加2个木箱装的鞋同样多。

每个纸箱和每个木箱各装鞋多少双?18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。

每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。

每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。

这两个数分别是多少?21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。

桶里原有水多少千克?24.小红和小华共有故事书36本。

如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。

原来每桶油重多少千克?26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。

原有男工多少人?女工多少人?28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。

如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。

三种球各有多少个?31.在一根粗钢管上接细钢管。

如果接2根细钢管共长18米,如果接5根细钢管共长33米。

一根粗钢管和一根细钢管各长多少米?32.水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?33.学校举办歌舞晚会,共有80人参加了表演。

其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?34.学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。

双科都参加的有多少人?35.学校买了4张桌子和6把椅子,共用640元。

2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?38.光明小学举办数学知识竞赛,一共20题。

答对一题得5分,答错一题扣3分,不答得0分。

小丽得了79分,她答对几道,答错几道,有几题没答?39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。

问小明从家里到学校有多远?42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。

这个长方形纸板原来的面积是多少?44.妈妈买苹果和梨各3千克,付出20元找回7.4元。

每千克苹果2.4元,每千克梨多少元?45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。

甲的速度是乙的2倍,甲乙两人每小时各行多少千米?46.盒子里有同样数目的黑球和白球。

每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。

一共取了几次?盒子里共有多少个球?47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。

问这盒铅笔最少有多少支?50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。

求这块平行四边形地原来的面积?50道奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。

根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。

又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:3.5-(4.5- 3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。

7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。

若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨。

8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。

由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米。

相关文档
最新文档