高中数学易错点总结
高一数学常见易错点整理
高一数学常见易错点整理一、基础知识错误在高一数学学习的初期,学生常常会犯一些基础知识错误。
比如,对于数的性质、大小关系、运算规则等方面的理解可能不够准确。
这种错误容易导致后续计算和解题过程中出现问题。
为了提高学生的基础知识水平,以下是一些常见易错点的整理:1.1 负数的运算规则高一学生常常容易混淆负数的运算规则,例如,两个负数相乘是否为正数、两个负数相加是否为负数等。
正确理解负数的运算规则对于高一学生来说非常重要。
1.2 百分数和小数之间的转化百分数和小数之间的转化是高一数学中的重要知识点。
学生需要掌握百分数和小数之间的转换方法,以及在实际问题中的应用。
1.3 幂和指数的运算规则幂和指数的运算规则是高一数学中的基础内容,但也是学生容易出错的地方。
学生需要熟练掌握幂和指数的运算规则,尤其是在复合运算中的应用。
二、代数运算错误代数运算是高一数学中的关键内容,学生在进行代数运算时常常会犯一些易错点。
以下是一些常见的代数运算错误及解决方法:2.1 符号取反错误在运算过程中,学生常常容易忽略符号的取反操作,导致最终结果错误。
在进行代数运算时,学生需要注意各项前面的符号取反操作。
2.2 未合并同类项学生在进行多项式的运算时,常常忘记合并同类项,导致结果不正确。
学生需要注意同类项的特点,合并同类项后再进行运算。
2.3 未注意运算顺序学生在进行多项式的运算时,常常忽略运算顺序,直接进行加减乘除运算,导致结果错误。
学生需要根据运算法则正确确定运算顺序,并注意运算的优先级。
三、方程解题错误方程解题是高一数学中的重要内容,学生在方程解题中常常会犯一些易错点。
以下是一些常见的方程解题错误及解决方法:3.1 忘记检查解的合法性学生在解方程时,常常忘记检查解的合法性,直接将解代入方程,导致出现错误。
学生需要在解方程后,将解代入原方程检验是否满足,以确保解的正确性。
3.2 漏解或多解学生在解方程时,常常漏解或多解的情况。
学生需要仔细分析方程的特点,注意解的个数,并在解题过程中进行验证。
高中数学50个易错点汇总,高中生都避开这些坑!
高中数学50个易错点汇总,高中生都避开这些坑!一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围恒成立问题。
这几种基本应用你掌握了吗?11.解对数函数问题时,你注意到真数与底数的限制条件了吗?真数大于零,底数大于零且不等于1字母底数还需讨论二、不等式12.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
13.解分式不等式应注意什么问题?用“根轴法”解整式分式不等式的注意事项是什么?14.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
15.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
三、数列16.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?17.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。
18.数列单调性问题能否等同于对应函数的单调性问题?数列是特殊函数,但其定义域中的值不是连续的。
19.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
高中数学易错点盘点
高中数学易错点盘点考试临近,对于考点知识都清楚了?结合练习整理一下自己解题时的易错点以便考试时能做到尽可能少错。
以下是我整理的易错点供同学们参考,重要的是找出自身的易错点。
1. 集合中元素的特征认识不明元素具有确定性,无序性,互异性三种性质。
要看清楚集合的描述对象,到底是数集,还是点集,是求x范围呢,还是求y的范围。
2. 遗忘空集A包含于B时求集合A,容易遗漏A可以为空集的情况。
比如A 为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。
3. 忽视集合中元素的互异性一般检验的时候要检查元素是否互异。
4. 充分必要条件颠倒致误必要不充分和充分不必要的区别——:比如p可以推出q,而q 推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。
还容易错的是语序错误,例如,“p的充分条件是q”等价于“q 是p的充分条件”,q推出p,很多学生一看到充分条件就“前推后”,导致错误,要注意题目的措辞。
5. 对含有量词的命题否定不当比如说“至少有一个”的否定是“一个都没有”,“至少有两个”的否定是“至多有一个”,“至多有三个”的否定是“至少有四个”。
诸如此类。
6. 求函数定义域忽视细节致误根号内≥0,真数大于零,分母不为零,比较容易出错的是忽视分母。
7. 函数单调性的判断错误这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。
8. 函数奇偶性判定中常见的两种错误判定主要注意:1,定义域必须关于原点对称,2,注意奇偶函数的判断,化简要小心负号。
9. 求解函数值域时忽视自变量的取值范围总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。
如果用了换元法求函数值域,一定要先求出“新元”的范围。
10. 抽象函数中推理不严谨致误注意赋值法的运用,一般赋0,±1,-x,1/x等。
11. 函数,方程和不等式的转换不熟练二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么△=b的平方-4ac大于等于小于0种种。
高中数学常见易错点总结(原创)
高中数学常见易错点总结1、在应用条件A ∪B =B <=> A ∩B =A <=> A B 时,易忽略A 是空集Φ的情况,并且要时刻注意集合的三要素中的互异性和无序性;2、明确命题的否定与否命题关系的区别。
3、理解集合的表示法,区分集合中代表元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;},,12|),{(2Z y Z x x x y y x E ∈∈++== }12|{2++==x x x x D ;4.求解与函数有关的问题易忽略定义域优先的原则.比如在求函数单调区间和值域时5.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”。
单调区间不能用集合或不等式表示.两个单调区间之间要用逗号相连6、函数具有奇偶性的必要条件是其定义域关于原点对称。
如果不具备这个条件,一定是非奇非偶函数。
7.均值不等式a b +≥2ab (0,0a b >>)取等号的条件是“一正,二定,三相等”。
在解题过程中,务必要先检验取等号的三个条件是否成立。
常规的解法是①如果积或和不是定值,设法构造“定值”;② 若是0,0a b >>不能保证,可构造“正数”或利用导数求解;③若是等号不能成立,可根据“对勾函数”图象,利用单调性求解。
8.“数形结合”是重要思想方法之一,在解题时应充分利用函数性质,画准图形,不能主观臆造,导致图形“失真”,从而得出错误的答案。
9.用换元法解题时,易忽略换元前后的等价性,也就是换元之后的自变量的取值范围10、要注意分段函数是一个函数而不是几个函数,如果自变量取值不能确定,要对自变量取值进行分类讨论,同时还要关注分界点附近函数值变化情况。
11、曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;而曲线过某一点的切线是指过这个点的曲线的所有切线,此时的切线可能不止一条。
因此求曲线的切线时,首先要区分是什么类型的切线。
高中数学易错知识点总结 直线与方程
高中数学易错知识点总结直线与方程易错点1:忽略90°倾斜角的特殊情形例1:求经过点A(m,3)和B(1,2)的直线的斜率,并指出倾斜角α的取值范围。
错误解法】根据斜率公式,直线AB的斜率k为:k = (3-2)/(m-1)①当m>1时,k>0,因此直线的倾斜角α的取值范围是0°<α<90°;②当m<1时,k<0,因此直线的倾斜角α的取值范围是90°<α<180°。
错误原因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别研究,得出每一类结果,最终解决整个问题。
本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负。
也可以分为m=1,m>1,m<1三种情况进行讨论。
参考答案】详见试题解析。
易错点2:忽略斜率不存在的特殊情形例2:已知直线l1经过点A(3,a)和B(a-2,3-a),直线l2经过点C(2,3)和D(-1,a-5),若l1⊥l2,求a的值。
错误解法】由l1⊥l2⇔k1·k2=-1,所以a=0.k2 = (3-a-3)/(a-2+1) = (a-6)/(a-1),k1不存在。
错误原因分析】只有在两条直线斜率都存在的情况下,才有l1⊥l2⇔k1·k2=-1,还有一条直线斜率为0,另一条直线斜率不存在的情况也要考虑。
试题解析】由题意知l2的斜率一定存在,则l2的斜率可能为0,下面对a进行讨论。
当k2=0时,a=5,此时k1不存在;当k2≠0时,由k1·k2=-1可得a=4或a=-2.因此,a的取值为4、-2或5.2.由两条直线平行或垂直求参数的值:在解这类问题时,需要先考虑斜率不存在的可能性,是否需要分情况讨论;解题后,需要检验答案的正确性,看是否出现增解或漏解。
3.两条直线的位置关系可以通过斜截式或一般式来表示。
高中数学常见易错点提醒
高中数学常见易错点提醒易错点 充要条件判断不准1.“x 2=x +2”是“x x +2=x 2”的________条件.错解1 由x 2=x +2⇒x =x +2⇒x 2=x x +2得出“x 2=x +2”是“x x +2=x 2”的充分条件.错解2 由x x +2=x 2⇒x +2=x ⇒x +2=x 2得出“x 2=x +2”是“x x +2=x 2”的必要条件.找准失分点 错解1中,事实上x 2=x +2不能⇒x =x +2;错解2中,x x +2=x 2也不能⇒x +2=x .正解 方程x 2=x +2的解集为{-1,2},x x +2=x 2的解集为{0,2},所以“x 2=x +2”是“x x +2=x 2”的既不充分也不必要条件.答案 既不充分也不必要易错点 函数概念不清致误2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是 . 错解 由f (1-x 2)>f (2x )得1-x 2>2x ,即-1-2<x <-1+2.找准失分点 在解决分段函数的问题时,先要判断其在各个定义域内的单调性,其次要看所求参数或取值范围是否满足相对应的定义域,此题容易无视1-x 2>0.正解 画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象知:若f (1-x 2)>f (2x ),则⎩⎨⎧1-x 2>01-x 2>2x , 即-1<x <-1+2.易错点 混淆“切点”致误3.求过曲线y =x 3-2x 上的点(1,-1)的切线方程.错解 ∵y ′=3x 2-2,∴k =y ′|x =1=3×12-2=1,∴切线方程为y +1=x -1,即x -y -2=0.找准失分点 错把(1,-1)当切点.正解 设P (x 0,y 0)为切点,则切线的斜率为y ′|x =x 0=3x 20-2.∴切线方程为y -y 0=(3x 20-2)(x -x 0), 即y -(x 30-2x 0)=(3x 20-2)(x -x 0).又知切线过点(1,-1),把它代入上述方程,得-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1,或x 0=-12. 故所求切线方程为y -(1-2)=(3-2)(x -1), 或y -(-18+1)=(34-2)(x +12),即x -y -2=0,或5x +4y -1=0. 易错点 图象变换方向或变换量把握不准致误4.要得到y =sin(-3x )的图象,需将y =22(cos 3x -sin 3x )的图象向______平移______个单位(写出其中的一种特例即可).错解 右 π4或右 π12找准失分点 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12. 题目要求是由y =sin ⎝⎛⎭⎫-3x +π4→y =sin(-3x ). 右移π4平移方向和平移量都错了;右移π12平移方向错了. 正解 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12, 要由y =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12得到y =sin(-3x )只需对x 加上π12即可,因而是对y =22(cos 3x -sin 3x )向左平移π12个单位. 答案 左 π12易错点 错误理解向量的平移就是点的平移致误5.已知点A (3,7),B (5,2),向量AB →按a =(1,2)平移后所得向量是 .错解 (3,-3)正解 向量AB →平移后所得向量还是向量AB →=(2,-5).易错点 应用a n =S n -S n -1 (n ≥2)时,无视n ≥2从而导致错误6.已知数列{a n }的前n 项和S n =2n +1,求数列的通项a n .错解 a n =S n -S n -1=2n -1.正解 n =1时,a 1=S 1=21+1=3,n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -1,∴a n =⎩⎪⎨⎪⎧3,n =1,2n -1,n ≥2易错点 在等比数列求和时无视对公比是否为1的讨论7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=S 9,则数列的公比q 是________. 错解 -1 找准失分点 当q =1时,符合要求.很多考生在做此题时都想当然地认为q ≠1.正解 ①当q =1时,S 3+S 6=9a 1,S 9=9a 1,∴S 3+S 6=S 9成立.②当q ≠1时,由S 3+S 6=S 9 得a 1(1-q 3)1-q +a 1(1-q 6)1-q =a 1(1-q 9)1-q∴q 9-q 6-q 3+1=0,即(q 3-1)(q 6-1)=0.∵q ≠1,∴q 3-1≠0,∴q 6=1,∴q =-1.答案 1或-1易错点 无视等比数列中的隐含条件致误8.各项均为实数的等比数列{a n }的前n 项和为S n ,若S 10=10,S 30=70,则S 40=________.错解 150或-200找准失分点 数列S 10,S 20-S 10,S 30-S 20,S 40-S 30的公比q 10>0.忽略了此隐含条件,就产生了增解-200.正解 记b 1=S 10,b 2=S 20-S 10,b 3=S 30-S 20,b 4=S 40-S 30,b 1,b 2,b 3,b 4是以公比为r =q 10>0的等比数列.∴b 1+b 2+b 3=10+10r +10r 2=S 30=70,∴r 2+r -6=0,∴r =2或r =-3(舍去),∴S 40=b 1+b 2+b 3+b 4=101-241-2=150. 答案 150易错点 直线倾斜角与斜率关系不清致误9.已知直线x sin α+y =0,则该直线的倾斜角的变化范围是__________.错解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,直线的倾斜角的变化范围是⎣⎡⎦⎤π4,34π.找准失分点 直线斜率k =tan β(β为直线的倾斜角)在[0,π)上是不单调的且不连续. 正解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,当-1≤k <0时,倾斜角的变化范围是⎣⎡⎭⎫34π,π;当0≤k ≤1时,倾斜角的变化范围是⎣⎡⎦⎤0,π4. 故直线的倾斜角的变化范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π. 答案 ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π 易错点 无视斜率不存有情形致误10.已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.错解 直线l 1的斜率k 1=-t +21-t, 直线l 2的斜率k 2=-t -12t +3, ∵l 1⊥l 2,∴k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1,解得t =-1. 答案 -1 找准失分点 (1)盲目认为两直线的斜率存有,无视对参数的讨论.(2)无视两直线有一条直线斜率为0,另一条直线斜率不存有时,两直线垂直这个情形.正解 方法一 (1)当l 1,l 2的斜率都存有时,由k 1·k 2=-1得,t =-1.(2)若l 1的斜率不存有,此时t =1,l 1的方程为x =13,l 2的方程为y =-25, 显然l 1⊥l 2,符合条件;若l 2的斜率不存有,此时t =-32, 易知l 1与l 2不垂直,综上t =-1或t =1.方法二 l 1⊥l 2⇔(t +2)(t -1)+(1-t )(2t +3)=0⇔t =1或t =-1.答案 -1或1。
高中数学第八章立体几何初步易错知识点总结(带答案)
高中数学第八章立体几何初步易错知识点总结单选题1、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D.2、已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的体积为( ) A .√3πB .√33C .√33πD .√3 答案:C分析:求出圆锥的底面半径和圆锥的母线长与高,再计算圆锥的体积. 解:设圆锥的底面半径为r ,圆锥的母线长为l , 由πl =2πr ,得l =2r ,又S =πr 2+πr ⋅2r =3πr 2=3π, 所以r 2=1,解得r =1;所以圆锥的高为ℎ=√l 2−r 2=√22−12=√3, 所以圆锥的体积为V =13πr 2ℎ=13π×12×√3=√33π. 故选:C .3、一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是( )A.平行B.相交C.异面D.相交或异面答案:D分析:根据空间中两直线的位置关系,即可求解:如图(1)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为相交直线;如图(2)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为异面直线,综上,一条直线与两条异面直线中的一条平行,则它和另一条直线的位置关系是相交或异面.故选: D.4、若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是()A.一定平行B.一定相交C.平行或相交D.以上判断都不对答案:C分析:利用面面平行的判定即得.一个平面内的两条直线分别平行于另一个平面内的两条直线,若这两条直线相交且这两条直线平行于另一个平面,则可得这两个平面平行;若这两条直线平行,则这两个平面可能相交也可能平行;故选:C.5、在长方体ABCD−A1B1C1D1中,AB=4,AD=3,AA1=5,点P在长方体的面上运动,且满足AP=5,则P的轨迹长度为()A.12πB.8πC.6πD.4π答案:C分析:由题设,在长方体表面确定P 的轨迹,应用弧长公式计算轨迹长度.如图,P 在左侧面的轨迹为弧A 1N ⏜,在后侧面的轨迹为弧NC ⏜,在右侧面的轨迹为弧MC ⏜,在前侧面内的轨迹为弧A 1M ⏜.易知|NC ⏜|=14π×4×2=2π,|MC ⏜|=14π×3×2=3π2,又sin∠A 1AN =cos∠NAD =35,cos∠A 1AM =sin∠MAB =35,∴∠A 1AN +∠A 1AM =π2,则|A 1N ⏜|+|A 1M ⏜|=14π×5×2=5π2,∴P 的轨迹长度为6π, 故选:C.6、如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,BD =2,DE =1,点P 在线段EF 上.给出下列命题:①存在点P ,使得直线DP//平面ACF ; ②存在点P ,使得直线DP ⊥平面ACF ;③直线DP 与平面ABCD 所成角的正弦值的取值范围是[√55,1];④三棱锥A−CDE的外接球被平面ACF所截得的截面面积是9π8.其中所有真命题的序号()A.①③B.①④C.①②④D.①③④答案:D分析:当点P是线段EF中点时判断①;假定存在点P,使得直线DP⊥平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出△ACF外接圆面积判断④作答.取EF中点G,连DG,令AC∩BD=O,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则DO//GF且DO=GF,即四边形DGFO是平行四边形,即有DG//FO,而FO⊂平面ACF,DG⊄平面ACF,于是得DG//平面ACF,当点P与G重合时,直线DP//平面ACF,①正确;假定存在点P,使得直线DP⊥平面ACF,而FO⊂平面ACF,则DP⊥FO,又DG//FO,从而有DP⊥DG,在Rt△DEF中,∠DEF=90∘,DG是直角边EF上的中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,则线段EF上的动点P在平面ABCD上的射影在直线BD上,于是得∠PDB是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,∠PDB=∠DPE,sin∠PDB=sin∠DPE=DEDP =√DE2+EP2=√1+EP2,而0<EP≤2,则√55≤sin∠PDB<1,当P与E重合时,∠PDB=π2,sin∠PDB=1,因此,√55≤sin∠PDB≤1,③正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,BF⊥BD,BF⊂平面BDEF,则BF⊥平面ABCD,BC=√2,在△ACF中,AF=CF=√BC2+BF2=√3,显然有FO⊥AC,sin∠FAC=FOAF =√BO2+BF2AF=√2√3,由正弦定理得△ACF外接圆直径2R=CFsin∠FAC =√2,R=2√2三棱锥A−CDE的外接球被平面ACF所截得的截面是△ACF的外接圆,其面积为πR2=9π8,④正确,所以所给命题中正确命题的序号是①③④.故选:D小提示:名师点评两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.7、已知α,β是两个不同的平面,则下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过已知平面的一条斜线有且只有一个平面与已知平面垂直C.平面α不垂直平面β,但平面α内存在直线垂直于平面βD.若直线l不垂直于平面α,则在平面α内不存在与l垂直的直线答案:B分析:举特例说明判断A;由平面的基本事实及线面垂直的性质推理判断B;推理说明判断C;举例说明判断D作答.正方体ABCD−A1B1C1D1中,直线A1B1、直线B1C1都平行于平面ABCD,而直线A1B1与B1C1相交,A不正确;如图,直线l是平面α的斜线,l∩α=O,点P是直线l上除斜足外的任意一点,过点P作PA⊥α于点A,则直线OA是斜线l在平面α内射影,直线l与直线OA确定平面β,而PA⊂平面β,则平面β⊥平面α,即过斜线l有一个平面垂直于平面α,因平面的一条斜线在此平面内的射影是唯一的,则直线l与直线OA确定的平面β唯一,所以过已知平面的一条斜线有且只有一个平面与已知平面垂直,B正确;如果平面α内存在直线垂直于平面β,由面面垂直的判断知,平面α垂直于平面β,因此,平面α不垂直平面β,则平面α内不存在直线垂直于平面β,C 不正确; 如图,在正方体ABCD −A 1B 1C 1D 1中,平面ABCD 为平面α,直线BC 1为直线l ,显然直线l 不垂直于平面α,而平面α内直线AB,CD 都垂直于直线l ,D 不正确. 故选:B8、已知正四面体P −ABC 内接于球O ,点E 是底面三角形ABC 一边AB 的中点,过点E 作球O 的截面,若存在半径为√3的截面圆,则正四面体P −ABC 棱长的取值范围是( ) A .[√2,√3]B .[√3,√6] C .[2√2,2√3]D .[2√3,2√6] 答案:C分析:根据条件设正四面体的棱长为a ,用棱长a 表示出其外接球的半径R =√64a ,过E 点作外接球O 的截面,只有当OE ⊥截面圆所在的平面时,截面圆的面积最小,此时此时截面圆的半径为r =12a ,最大截面圆为过球心的大圆,半径为R =√64a ,根据题意则12a ≤√3≤√64a ,从而可得出答案. 如图,在正四面体P −ABC 中,设顶点P 在底面的射影为O 1, 则球心O 在PO 1上,O 1在CE 上,且|PO 1|=23|CE |,连接OE 、OC ,设正四面体的棱长为a ,则|CE |=√32a ,|PO 1|=23|CE |=√33a 则正四面体的高PO 1=√PC 2−O 1C 2=a 2−(√33a)2=√63a , 设外接球半径为R ,在Rt △OO 1C 中,OC 2=OO 12+O 1C 2,即R 2=(√63a −R)2+(√33a)2,解得R =√64a , ∴在Rt △OO 1E 中,OE =√OO 12+O 1E 2=(√612a)2+(√36a)2=√24a ,过E点作外接球O的截面,只有当OE⊥截面圆所在的平面时,截面圆的面积最小,此时截面圆的半径为r=√R2−OE2=(√64a)2−(√24a)2=12a,最大截面圆为过球心的大圆,半径为R=√64a,由题设存在半径为√3的截面圆,∴12a≤√3≤√64a,解得2√2≤a≤2√3,故选:C.小提示:关键点睛:本题考查正四棱锥的外接球的截面圆的半径范围问题,解答本题的关键是用正四棱锥棱长a表示出其外接球的半径R=√64a,得出过E点的球的截面圆的半径的范围,从而得解,属于中档题.多选题9、在正方体ABCD−A1B1C1D1中,AB=4,E,F分别为BB1,CD的中点,P是BC1上的动点,则()A.A1F⊥平面AD1EB.平面AD1E截正方体ABCD−A1B1C1D1的截面面积为18C.三棱锥P−AD1E的体积与P点的位置有关D .过作正方体ABCD −A 1B 1C 1D 1的外接球的截面,所得截面圆的面积的最小值为5π 答案:AB解析:建立坐标系,利用向量法可判断A ;取B 1C 1中点G ,连接D 1G,GE ,利用平面性质可知等腰梯形AD 1GE 即为截面,求出其面积即可判断;根据平行间的距离不变可判断C ;设外接球心为O ,过O 作OOʹ⊥AE ,垂足为Oʹ,则以Oʹ为圆心,O ′A 为半径的圆是过AE 面积最小的截面圆,求出其面积即可判断D. 对于A ,如图,以A 为原点,AD,AB,AA 1为坐标轴建立空间直角坐标系,则A (0,0,0),E (0,4,2),A 1(0,0,4),F (4,2,0),D 1(4,0,4), ∴AE ⃗⃗⃗⃗⃗ =(0,4,2),A 1F ⃗⃗⃗⃗⃗⃗⃗ =(4,2,−4),AD 1⃗⃗⃗⃗⃗⃗⃗ =(4,0,4),∵AE ⃗⃗⃗⃗⃗ ⋅A 1F ⃗⃗⃗⃗⃗⃗⃗ =0×4+4×2+2×(−4)=0,∴A 1F ⊥AE , ∵AD 1⃗⃗⃗⃗⃗⃗⃗ ⋅A 1F ⃗⃗⃗⃗⃗⃗⃗ =4×4+0×2+4×(−4)=0,∴A 1F ⊥AD 1, ∵AE ∩AD 1=A ,∴A 1F ⊥平面AD 1E ,故A 正确;对于B ,如图,取B 1C 1中点G ,连接D 1G,GE ,则GE//C 1B 且GE =12C 1B =2√2,可知C 1B//AD 1,所以A,D 1,G,E 共面,则等腰梯形AD 1GE 即为截面,可求得其面积为18,故B 正确;AE对于C ,可知在正方体中,BC 1//AD 1,又BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E ,所以BC 1//平面AD 1E ,因为P 是BC 1上的动点,所有P 到平面AD 1E 的距离为定值,故三棱锥P −AD 1E 的体积与P 点的位置无关,故C 错误; 对于D ,设外接球心为O ,过O 作OOʹ⊥AE ,垂足为Oʹ,则以Oʹ为圆心,O ′A 为半径的圆是过AE 面积最小的截面圆,则O (2,2,2),设Oʹ(0,y,12y),∴OOʹ⃗⃗⃗⃗⃗⃗⃗ =(−2,y −2,12y −2),AE ⃗⃗⃗⃗⃗ =(0,4,2), ∴OOʹ⃗⃗⃗⃗⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =(y −2)×4+(12y −2)×2=0,解得y =125,则OʹA =√(125)2+(65)2=6√55,故截面圆的最小面积为π×(6√55)2=36π5,故D 错误.小提示:本题考查立体几何的综合问题,属于中档题.10、如图,点E 为正方形ABCD 边CD 上异于点C 、D 的动点,将△ADE 沿AE 翻折成△SAE ,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB ⊥SE B .存在点E 和某一翻折位置,使得AE ∥平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S ﹣AB ﹣C 的大小为60° 答案:ACD分析:对于A ,当E 为CD 中时,当翻折到AD =BS =α时,SB ⊥SE ;对于B ,由CE ∥AB ,且CE <BC ,得AE 与BC 相交;对于C ,对于C ,DF ⊥AE ,交AE 于G ,S 在平面ABCD 的投影O 在FG 上,连结BO ,则∠SBO 为直线SB 于平面 ABC 所成角,由此能求出cosα=23;对于D ,过点O 作OM ⊥AB ,交AB 于点M ,则∠SMO 为二面角S﹣AB ﹣C 的平面角,由此能求出结果.对于A ,设正方形边长为a ,当E 为CD 中点时,AE =BE =√a 2+a 24=√52a ,当翻折到AD =BS =α时,SB ⊥SE ,故A 正确;对于B ,∵CE ∥AB ,且CE <BC ,∴AE 与BC 相交,∴AE 与平面SBC 相交,故B 错误; 对于C ,如图所示,DF ⊥AE ,交AE 于G ,S 在平面ABCD 的投影O 在FG 上,连结BO ,则∠SBO 为直线SB 于平面ABC 所成角,取二面角D ﹣AE ﹣B 的平面角为α,取AD =4,DE =3,则AE =DF =5,CE =BF =1,DG =125,OG =125cosα,∴只需满足SO =OB =125sinα,在△OFB 中,根据余弦定理得:(125sinα)2=12+(135−125cosα)2−2(135−125cosα)cos∠OFB ,解得cosα=23,故C 正确;对于D ,过点O 作OM ⊥AB ,交AB 于点M ,则∠SMO 为二面角S ﹣AB ﹣C 的平面角,取二面角D ﹣AE ﹣B 的平面角为60°,故只需满足DG =2GO =2OM ,设∠OAG =∠OAM =θ,π8<θ<π4,则∠DAG =π2−2θ,AG =DG tan(π2−2θ)=OGtanθ,化简,得2tanθtan2θ=1,解得tanθ=√55,验证满足,故D 正确.故选:ACD .11、如图,在棱长均相等的正四棱锥P −ABCD 中,O 为底面正方形的中心,M,N 分别为侧棱PA,PB 的中点,下列结论正确的是( )A .平面OMNB .平面PCD//平面OMNC .OM ⊥PAD .直线PD 与直线MN 所成角的大小为90° 答案:ABC分析:A 选项:连接AC ,O 为AC 中点,M 为PA 中点,可证OM ∥根据线面平行的判定可以证明∥平面OMN ;B 选项:;连接BD ,同理证明PD ∥平面OMN ,结合A 选项可证明平面PCD//平面OMN ;C 选项:由于正四棱锥P −ABCD 的棱长均相等,且四边形ABCD 为正方形,根据勾股定理可证PA ⊥PC ,结合OM ∥可证OM ⊥PA ;D 选项:先利用平移思想,根据平行关系找到异面直线PD 与直线MN 所成角的平面角,结合△PDC 为正三角形,即可求出直线PD 与直线MN 所成角. 连接AC 如图示://PC PC PC PC∵O 为底面正方形的中心, ∴O 为AC 中点,又∵M 为PA 中点,∴OM ∥又∵OM ⊂平面OMN ,PC ⊄平面OMN ,∴PC ∥平面OMN ,故A 选项正确;连接BD ,同理可证ON ∥PD ,又∵ON ⊂平面OMN ,PD ⊄平面OMN ,∴PD ∥平面OMN ,又∵PD ∩PC =P ,∥平面OMN 平面PCD ,PD ⊂平面PCD , ∴平面PCD//平面OMN ,故B 选项正确;由于正四棱锥P −ABCD 的棱长均相等,且四边形ABCD 为正方形,∴AB 2+BC 2=PA 2+PC 2=AC 2∴PA ⊥PC ,又∵OM ∥, ∴OM ⊥PA ,故C 选项正确;∵M,N 分别为侧棱PA,PB 的中点,∴MN ∥AB ∵四边形ABCD 为正方形, ∴CD ∥AB ,∴直线PD 与直线CD 所成的角即为直线PD 与直线MN 所成角∴∠PDC 即为直线PD 与直线MN 所成角,又∵△PDC 为正三角形,∴∠PDC =600, ∴直线PD 与直线MN 所成角为600.故D 选项不正确. 故选:ABC12、如图所示,P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,下列结论正确的是( )A .OM ∥PDB .OM ∥平面PCDC .OM ∥平面PDAD .OM ∥平面PBA 答案:ABCPC PC PCPC分析:通过直线与平面平行的判定定理,即可判断ABC 正确;由线面的位置关系,即可得到直线在平面内,故D 错误;解:对于A ,由于O 为BD 的中点,M 为PB 的中点,则OM ∥PD ,故正确; 对于B ,由于OM ∥PD ,OM ⊄平面PCD ,PD ⊂平面PCD ,则OM ∥平面PCD ,故正确; 对于C ,由于OM ∥PD ,OM ⊄平面PAD ,PD ⊂平面PAD ,则OM ∥平面PAD ,故正确; 对于D ,由于M ∈平面PAB ,故错误. 故选:ABC .小提示:本题考查线面平行的判定定理及应用,考查直线与平面的位置关系,考查空间想象能力.13、如图,已知四棱锥P −ABCD 中,PD ⊥平ABCD ,∠DAB =∠CBD =90°,∠ADB =∠BDC =60°,E 为中点,F 在CD 上,∠FBC =30°,PD =2AD =2,则下列结论正确的是( )A .BE//面PADB .PB 与平面ABCD 所成角为30°C .四面体D −BEF 的体积为√33 D .平面PAB ⊥平面PAD 答案:ACD分析:对A ,连结EF ,DE ,通过证明EF//平面PAD 和BF//平面PAD 得出平面BEF//平面PAD 可证;对B ,易得∠PBD 即为PB 与平面ABCD 所成角,求出即可;对C ,利用V D−BEF =V E−BDF 可求;对D ,由PD ⊥AB 和AB ⊥AD 证明AB ⊥平面PAD 即可.对于A ,连结EF ,DE ,因为∠DAB =∠CBD =90°,∠ADB =2∠BDC =60°,PC所以∠DCB =30°,∠FBC =30°,故BF =CF , 同理可得DF =BF ,故DF =CF ,所以F 为CD 的中点,又E 为的中点,故EF//PD , 又平面PAD ,PD ⊂平面PAD ,故EF//平面PAD ,又因为∠ADC =60°+60°=120°,∠BFC =180°−∠FBC −∠BCF =120°, 所以∠ADC =∠BFC ,故AD//BF ,又BF ⊄平面PAD ,AD ⊂平面PAD ,故BF//平面PAD , 又EF ∩BF =F ,EF ,BF ⊂平面BEF ,所以平面BEF//平面PAD ,又BE ⊂平面BEF ,所以BE//平面PAD ,故A 正确; 对于B ,因为PD ⊥平面ABCD ,所以PB 与平面ABCD 所成的角即为∠PBD , 因为AD =1,所以BD =2,则tan∠PBD =PD BD=1,又∠PBD ∈(0,π2],故∠PBD =45°,故选项B 错误; 对于C ,S △BDF =12⋅BD ⋅DF ⋅sin60°=√3,因为PD ⊥平面ABCD ,EF//CD ,所以EF ⊥平面ABCD , 又EF =12PD ,所以ℎ=EF =1,故V D−BEF =V E−BDF =13S △BDF ⋅ℎ=13×√3×1=√33,故选项C 正确;对于D ,因为PD ⊥平面ABCD ,AB ⊂平面ABCD ,所以PD ⊥AB , 又因为AB ⊥AD ,AD ∩PD =D ,AD ,PD ⊂平面PAD , 所以AB ⊥平面PAD ,又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD ,故选项D 正确. 故选:ACD .PC EF小提示:关键点睛:解决本题的关键是正确利用线面平行、面面垂直的判断定理,正确寻找图中位置关系. 填空题14、在正三棱锥S −ABC 中,AB =BC =CA =6,点D 是SA 的中点,若SB ⊥CD ,则该三棱锥外接球的表面积为___________. 答案:54π分析:通过线面垂直的判定定理和性质可得出SA ,SB ,SC 两两垂直,则可求出外接球的半径,进而求出球的表面积.设△ABC 的中心为G ,连接SG ,BG ,∴SG ⊥平面ABC , ∵AC ⊂面ABC ,∴SG ⊥AC ,又AC ⊥BG ,BG ∩SG =G ,∴AC ⊥平面SBG , ∵SB ⊂平面SBG ,∴AC ⊥SB ,又SB ⊥CD ,AC ∩CD =C ,∴SB ⊥平面ACS . ∵SA,SC ⊂平面ACS ,∴SB ⊥SA,SB ⊥SC , ∵S −ABC 为正三棱锥,∴SA ,SB ,SC 两两垂直, ∴SA =SB =SC =3√2,故外接球直径为√(3√2)2+(3√2)2+(3√2)2=3√6, 故三棱锥S −ABC 外接球的表面积为4π×(3√62)2=54π.所以答案是:54π.小提示:本题考查三棱锥的外接球问题,解题的关键是通过线面垂直的判定定理和性质可得出SA,SB,SC两两垂直,即可求出半径.15、圆锥的底面半径为√3,母线与底面成45°角,过圆锥顶点S作截面SAB,且与圆锥的高SO成30°角,则底面圆心O到截面SAB的距离是______.答案:√32分析:确定高SO与截面SAB所成的角,如图作出点O到SE的垂线OP,并说明OP的长是点O到平面SAB的距离,然后在直角三角形中求得点面距.如图,底面直径CD⊥AB,SO⊥平面OAB,AB⊂平面OAB,则SO⊥AB,又SO∩CD=O,SO,CD⊂平面SOE,则AB⊥平面SOE,AB⊂平面SAB,所以平面SAB⊥平面SOE,所以SO在平面SAB的射影是SE,所以∠OSE是SO与平面SAB所成的角,即∠OSE=30°,又∠SCO是母线SC与底面所成的角,即∠SCO=45°,所以在直角△SOC中,SO=OC=√3,作OP⊥SE,垂足为P,则OP⊥平面SAB,且OP=12SO=√32.所以答案是:√32.16、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行解答题17、如图,四边形BCC1B1是圆柱的轴截面,AA1是圆柱的一条母线,已知AB=4,AC=2√2,AA1=3,求该圆柱的侧面积与表面积.答案:侧面积为6√6π,表面积为6√6π+12π分析:圆柱的侧面积S =2πrl ,圆柱的表面积S =2πrl +2πr 2. 易知:AB ⊥AC ,因为AB =4,AC =2√2,所以BC =√AB 2+AC 2=2√6,即r =√6,因为AA 1=3, 所以圆柱的侧面积S =2πrl =2π×√6×3=6√6π, 圆柱的表面积S 表=2πrl +2πr 2=6√6π+12π. 18、已知正方体ABCD −AʹBʹCʹDʹ.(1)G 是△BAʹCʹ的重心,求证:直线DG ⊥平面BAʹCʹ;(2)若AB =1,动点E 、F 在线段AD 、D ′C ′上,且DE =DʹF =a ,M 为AB 的中点,异面直线EF 与DM 所成的角为arccos√210,求a 的值.答案:(1)证明见解析 (2)√24分析:(1)根据空间向量,以BʹAʹ⃗⃗⃗⃗⃗⃗⃗⃗ =i →,BʹB ⃗⃗⃗⃗⃗⃗⃗ =j →,BʹCʹ⃗⃗⃗⃗⃗⃗⃗ =k →为基底,用基底向量表示其他向量,根据向量的数量积为0判断线线垂直,进而证明线面垂直.(2)以空间直角坐标系,写成点的坐标,根据向量的夹角与异面直线夹角间的关系,列出方程即可求解. (1)证明:设BʹAʹ⃗⃗⃗⃗⃗⃗⃗⃗ =i →,BʹB ⃗⃗⃗⃗⃗⃗⃗ =j →,BʹCʹ⃗⃗⃗⃗⃗⃗⃗ =k →, 显然i →⋅j →=0,j →⋅k →=0,k →⋅i →=0,因为G 是△BAʹCʹ的重心,所以BʹG ⃗⃗⃗⃗⃗⃗ =13(i →+j →+k →),故DG ⃗⃗⃗⃗⃗ =BʹG ⃗⃗⃗⃗⃗⃗ −BʹD ⃗⃗⃗⃗⃗⃗⃗ =BʹG ⃗⃗⃗⃗⃗⃗ −(BʹB ⃗⃗⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=13(i +j +k ⃗ )−(j +i +k )=−23(i +j +k ⃗ ) AʹCʹ⃗⃗⃗⃗⃗⃗⃗ =k →−i →;DG ⃗⃗⃗⃗⃗ ⋅AʹCʹ⃗⃗⃗⃗⃗⃗⃗ =−23(k →2−i →2)=0,得DG ⃗⃗⃗⃗⃗ ⊥AʹCʹ⃗⃗⃗⃗⃗⃗⃗ , 同理DG⃗⃗⃗⃗⃗ ⋅AʹB ⃗⃗⃗⃗⃗⃗ =0,得DG ⃗⃗⃗⃗⃗ ⊥AʹB ⃗⃗⃗⃗⃗⃗ . 因为AʹCʹ⃗⃗⃗⃗⃗⃗⃗ 不平行于AʹB ⃗⃗⃗⃗⃗⃗ ,所以直线DG ⊥平面BAʹCʹ. (2)以D 为坐标原点,射线DA 、DC 、DDʹ分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,于是E(a,0,0),F(0,a,1),M (1,12,0),则EF ⃗⃗⃗⃗⃗ =(−a,a,1),DM ⃗⃗⃗⃗⃗⃗ =(1,12,0). 于是cos 〈EF⃗⃗⃗⃗⃗ ,DM ⃗⃗⃗⃗⃗⃗ 〉=|EF⃗⃗⃗⃗⃗ ⋅DM ⃗⃗⃗⃗⃗⃗⃗ ||EF⃗⃗⃗⃗⃗ |⋅|DM ⃗⃗⃗⃗⃗⃗⃗ |=12a √52⋅√2a 2+1=√210,解得a =√24,所以a 的值为√24.。
高中数学易错知识点梳理
高中数学易错知识点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先必须弄清代表元素,才能理解集合的意义.(1)已知“集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N”;与“集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x ∈R}求M ∩N ”的区别.(2)已知集合{}{}A B ==圆,直线,则A B 中的元素个数是____个.你注意空集了吗?(3)设()f x 的定义域A 是无限集,则下列集合中必为无限集的有①{|(),}y y f x x A =∈ ②{(,)|(),}x y y f x x A =∈③{|()0,}x f x x A ≥∈ ④{|()2,}x f x x A =∈ ⑤{|()}x y f x =3. 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集B A ⊆时是否忘记A =∅.例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了2a =的情况了吗?4. (C U A)∩( C U B) = C U (A ∪B) , (C U A)∪( C U B) = C U (A ∩B); ,A B B B A A B B A B =⇔⊆=⇔⊆ ,对于含有n 个元素的有限集合M , 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个?(特别注意∅)5. 解集合问题的基本工具是韦恩图.某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6. 两集合之间的关系.},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. 命题的四种形式及其相互关系;全称命题和存在命题. (1)原命题与逆否命题同真同假;逆命题与否命题同真同假. (2)“命题的否定”与“否命题”的区别:____________________ 练习:(1)命题“异面直线,a b 不垂直,则过a 的任一平面与b 都不垂直”,求出该命题的否命题. (2)命题“2,3x Q x ∃∈=使成立”,求该命题的否定.(3)若存在..[13]a ∈,,使不等式2(2)20ax a x +-->,求x 的取值范围.8、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,映射与函数的关系如何?例如:函数()x f y =与直线a x =的交点的个数有 个 9、函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称.③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.⑥函数()y f x a =-+与函数()y f x b =+的图象关于直线2a bx -=对称 例如:(1)函数()x f y =满足()()11f x f x +=-+则关于直线 对称(2)函数()1y f x =+与()1y f x =-+关于直线 对称 (3)函数2log 1y ax =-(0a ≠)的图象关于直线2x =对称,则a=(4)函数sin 3y x =的图象可由1cos3y x =-的图象按向量a = (a最小)平移得到.10、求一个函数的解析式,你标注了该函数的定义域了吗? 例如:(1)若(sin )cos2f x x =,则()f x = (2)若3311()f x x x x+=+,则()f x = 11、求函数的定义域的常见类型记住了吗?复合函数的定义域弄清了吗? 例如:(1)函数y=)3lg()4(--x x x 的定义域是 ;(2)函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域.(3)函数(2)x f 的定义域是(0,1],求2(log )f x 的定义域.函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域12、你知道求函数值域的常用方法有哪些吗,含参的二次函数的值域、最值要记得讨论. 例如(1)已知函数()x f y =的值域是[b a ,],则函数()1y f x =-的值域是(2)函数y x =的值域是(3)函数y x =+的值域是(4)函数2121x x y -=+的值域是13、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称...........这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;例如:(1)函数()2(0)f x x x =≥的奇偶性是(2)函数()x f y =是R 上的奇函数,且0x >时,()12xf x =+,则()f x 的表达式为14、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法.在求函数的单调区间或求解不等式时,你知道函数的定义域要优先考虑吗?例如:(1)函数212log (23)y x x =--的单调减区间为(2)若函数212log (3)y x ax a =-+在区间[)2,+∞上是减函数,则实数a 的取值范围是(3)若定义在R 上的偶函数()f x 在区间[)0,+∞上是单调增函数,则不等式()1f ()lg f x <的解集为15、你知道钩型函数()0>+=a xax y 的单调区间吗?(该函数在(]a -∞-,和[)+∞,a 上单调递增;在[)0,a -和(]a ,0上单调递减)这可是一个应用广泛的函数!例如:函数2y =的值域为 2y =的值域为16、幂函数与指数函数有何区别? 例如:(1)若幂函数()()()223233f x xαααα--=-+是()0,+∞上的单调减函数,则α=(2)若关于x 的方程4210x xa a +++=有解,则实数a 的取值范围是17、对数的换底公式及它的变形,你掌握了吗?(b b abb a n ac c a n log log ,log log log ==)你还记得对数恒等式吗?(b aba =log )例如:(1)x 、y 、z ()0,∈+∞且346x y z ==,则3x 、4y 、6z 的大小关系可按从小到大的顺序排列为(2)若集合111log 2,23n A n n N ⎧⎫⎪⎪=-≤≤-∈⎨⎬⎪⎪⎩⎭,则A 的子集有 个 18、求解对数函数问题时,注意真数与底数的限制条件! 例如:(1)方程122log (2)x x -=+的解的个数是(2)不等式(1)(1)log (21)log (1)a a x x --->-成立的充要条件是19、“实系数一元二次方程02=++c bx ax 有实数解”转化为“042≥-=∆ac b ”,你是否注意到必须0≠a ;当a=0时,“方程有解”不能转化为042≥-=∆ac b .若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?已知函数()()22lg 111y a x a x ⎡⎤=-+++⎣⎦(1)若函数的定义域为R ,求a 的取值范围是(2)若函数的值域为R ,求a 的取值范围是二.三角1. 三角公式记住了吗?两角和与差的公式________________; 二倍角公式:_________________解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 2. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是 否为单调函数?你注意到正弦函数、余弦函数的有界性了吗? 3. 在三角中,你知道1等于什么吗?(221sin cos x x =+tan cot tansincos 0142x x ππ=⋅====这些统称为1的代换)常数 “1”的种种代换有着广泛的应用.诱导公试:奇变偶不变,符号看象限 4. 在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等)5. 你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来) 6. 你还记得三角化简的通性通法吗?(切化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2x=(1-cos2x)/27. 你还记得某些特殊角的三角函数值吗?会求吗?41518sin ,42615cos 75sin ,42675cos 15sin -=︒+=︒=︒-=︒=︒ 练习: (1)tan (0)ba aθ=≠是cos 2sin 2a b a θθ+=的 条件.解析:sin tan sin cos sin sin cos sin cos 1cos 2sin 2cos 2sin 222b b a b a b a aa b a b aθθθθθθθθθθθθθ=⇔=⇔=⇔=-⇔=⇔+=反之,若cos 2sin 2a b a θθ+=成立,则未必有tan ,b a θ=取0,2a πθ==-即可,故为充分不必要条件易错原因:未考虑tan θ不存在的情况(2)已知34sin,cos ,2525θθ==-则θ角的终边在 解析:因为34sin ,cos ,2525θθ==-故2θ是第二象限角,即22()22k k k Z πθπππ+<<+∈,故424()k k k Z ππθππ+<<+∈,在第三或第四象限以上的结果是错误的,正确的如下: 由34sin ,cos ,2525θθ==-知322()42k k k Z πθπππ+<<+∈ 所以3424()2k k k Z ππθππ+<<+∈,故在第四象限 易错原因:角度的存在区间范围过大8. 你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 21,==扇形α) 9. 辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a,b 的符号确定,θ角的值由ab=θtan 确定)在求最值、化简时起着重要作用. 10. 三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x 值的集合吗?(别忘了k ∈Z )三角函数性质要记牢.函数y=++⋅)sin(ϕωx A k 的图象及性质:振幅|A|,周期T=ωπ2, 若x=x 0为此函数的对称轴,则x 0是使y 取到最值的点,反之亦然,使y 取到最值的x 的集合为 , 当0,0>>A ω时函数的增区间为 ,减区间为 ;当0<ω时要利用诱导公式将ω变为大于零后再用上面的结论.五点作图法:令ϕω+x 依次为ππππ2,23,,2求出x 与y ,依点()y x ,作图 练习:如图,摩天轮的半径为40m ,点O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处,(1)试确定在时刻min t 时点P 距地面的高度;(2)摩天轮转动的一圈内,有多长时间点P 距地面超过70m ?11.三角函数图像变换:(1)将函数为()y f x = 的图像向右平移4π个单位后,再作关于x 轴的对称变换,得到函数cos 2y x =的图像,则()f x =(2)()2sin()2cos 6f x x x π=+-的图像按向量m平移得到()g x 的图像,若()g x 是偶函数,求||m最小的向量m12.有关斜三角形的几个结论:在Rt ABC ∆中,222,,AC AD AB BC BD BA CD AD BD ===内切圆半径2a b cr +-=(S 为ABC ∆的面积)在ABC ∆中,①sin()sin ,cos()cos ,A B C A B C +=+=-tan tan tan tan an tan A B C A t B C ++=sin cos ,cos sin 2222A B C A B C++== ②正弦定理③余弦定理④面积公式111sin sin sin 222S ab C bc A ac B === ⑤内切圆半径2sr a b c=++13.在ABC ∆中,判断下列命题的正误(1)A B >的充要条件是cos 2cos 2A B <(2) tan tan tan 0A B C ++>,则ABC ∆是锐角三角形(3)若ABC ∆是锐角三角形,则cos sin A B <三、数列1.等差数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a +=+;(2)仍成等差数列数列}{ka },{a },{n 2n 12b a n +-;仍成等差数列n 23n n 2n n S S , S S , S --数列;(3)若{n a },{n b }是等差数列,,n n S T 分别为它们的前n 项和,则2121m m m m a S b T --=; (4)在等差数列中,求S n 的最大(小)值,其中一个思路是找出最后一正项(负项)k a ,那么max(min)()n k S S =B练习:①在等差数列{n a }中,若9418,240,30n n S S a -===,则n =②{n a },{n b }都是等差数列,前n 项和分别为,n n S T ,且2132n n S n T n -=+,则99ab = ③若{n a }的首项为14,前n 和为n S ,点1(,)n n a a +在直线20x y --=上,那n S 最大时,n =2.等比数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a ⋅=⋅; (2)k S ,k k S S -2,k k S S 23-成等比数列;(3)若{n a }是等差数列,则{n ab }是等比数列,若{n a }是等比数列且0n a >,则{log n a b }是等差数列;(4)类比等差数列而得的有关结论练习:①若{n a }是等比数列,4738512,124a a a a =-+= ,公比q 为整数,则10a =②已知数列{n x }满足31212313521n n x x x x x x x x n ====++++- ,并且128n x x x +++= ,那么1x =③等差数列{n a }满足12212nn a a na b n+++=+++ ,则{n b }也是等差数列,类比等比数列{n A }满足 3.等差数列的通项,前n 项和公式的再认识:①1(1)n a a n d An B =+-=+是关于n 的一次函数, ②1()2n n n a a S n a +== 中, ③2n S An Bn =+ 等比数列呢? 练习:等比数列{n a }中,前n 项和123n n S r -=⨯+,则r = 4.你知道 “错位相减” 求和吗?(如:求1{(21)33}n n --⋅-的前n 项和)你知道 “裂项相消” 求和吗?(如:求1{}(2)n n +的前n 项和)5.由递推关系求通项的常见方法: 练习:①{n a }中,112,21n n a a a +==-,则n a =②{n a }中,1112,22n n n a a a ++==+,则n a = (注:关系式中的2换成3呢)③{n a }满足123,2a a ==且21212n n n a a a n n++=-+-,则n a =④{n a }满足11a =且212n n n a a a +=+,则n a = ⑤{n a }满足12a =且1121()2n n a a a a +=+++ ,则n a = ,n s = 6.善于捕捉利用分项求和与放缩法使所得数列为等差等比数列再求和的机会 练习:①正项数列{n a }中,111,21n n a a a +=<+,求证:12111111112n n a a a +++>-+++ 分析:1111112112(1)121n n n n n n a a a a a a +++<+⇒+<+⇒>++ 231211111111()()()111122222n n n a a a +++>++++=-+++ ②已知{n a }中111,(2,)(1)!n a a n n N n +==≥∈-,求证:1233n a a a a ++++< 分析:11111(3)(1)!123(2)(1)(2)(1)21n a n n n n n n n n ==<=-≥------- 12311111111133223211n a a a a n n n ++++≤++-+-++-=-<---四、不等式1、同向不等式能相减,相除吗?2、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)3、分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,奇穿偶回) 4、解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.) 5、含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)6、利用重要不等式ab b a 2≥+ 以及变式22⎪⎭⎫⎝⎛+≤b a ab 等求函数的最值时,你是否注意到a ,b +∈R (或a ,b 非负),且“等号成立”时的条件,积ab 或和a +b 其中之一应是定值?(一正二定三相等)7、) R b , (a , ba 2ab 2222+∈+≥≥+≥+ab b a b a (当且仅当c b a ==时,取等号); a 、b 、c ∈R ,ca bc ab c b a ++≥++222(当且仅当c b a ==时,取等号);8、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底10<<a 或1>a )讨论完之后,要写出:综上所述,原不等式的解集是…….9、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.” 10、对于不等式恒成立问题,常用的处理方式?(转化为最值问题)五、向量1.两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意λ=是向量平行的充分不必要条件.(定义及坐标表示)2.向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:||2=·,cos ||||a ba b θ∙==3.利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意:(1)0,(,],0,,022a b a b a b a b a b πππ∙<⇔<>∈∙=⇔<>=∙> ,[0,)2a b π⇔<>∈(2)0<∙是向量和向量夹角为钝角的必要而非充分条件.4.向量的运算要和实数运算有区别:(1)如两边不能约去一个向量,即a b a c ∙=∙推不出b c = ,(2)向量的乘法不满足结合律,即c b a c b a )()(∙≠∙,(3)两向量不能相除.5.你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线的两个向量线性表示,它的系数的含义与求法你清楚吗?6.几个重要结论:(1)已知,OA OB 不共线,OP OA OB λμ=+,则A ,P ,B 三点共线的充要条件是1λμ+=;(2)向量中点公式:若C 是AB 的中点,则1()2OC OA OB =+;(3)向量重心公式:在ABC 中,0OA OB OC ++=⇔O 是ABC 的重心.例:设F 为抛物线24y x =的焦点,A ,B ,C 为该抛物线上三点,若0FA FB FC ++= ,则||||||FA FB FC ++=__________.7.向量等式OC OA OB λμ=+的常见变形方法:(1)两边同时平方;(2)两边同时乘以一个向量;(3)合并成两个新向量间的线性关系.8.一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量.例1.ABC 内接于以O 为圆心,1为半径的圆,且3450OA OB OC ++=,求数量积,,OA OB OB OC OC OA .例2.平面四边形ABCD 中,313,5,5,cos ,5AB AD AC DAC ===∠=12cos 13BAC ∠=,设AC xAB yAD =+ ,求,x y 的值.例3.如图,设点O 在ABC 内部,且有230OA OB OC ++=,则:A O C A B C S S =____.六、导数1.导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形. 2.几个重要函数的导数:①0'=C ,(C 为常数) ②()'1(xx αααα-=为常数)③'()ln (0x x a a a a =>且1)a ≠ ④'1(log )(0ln a x a x a=>且1)a ≠ ⑤'()x x e e = ⑥'1(ln )x x=⑦'(sin )cos x x = ⑧'(cos )sin x x =-导数的四运算法则 ①()()()()()'''f x g x f x g x ±=±②()()''Cf x Cf x =⎡⎤⎣⎦(C 为常数)③()()()()()()()'''f x g x f x g x f x g x ⋅=⋅+⋅④()()()()()()()()'''2(0)f x f x g x f x g x g x g x g x ⎡⎤⋅-⋅=≠⎢⎥⎣⎦3. 利用导数可以证明或判断函数的单调性,注意当'()0f x ≥或'()0f x ≤,带上等号.例.已知20,a b =≠ 且关于x 的函数3211()32f x x a x a bx =+⋅+⋅在R 上有极值,则a 与b的夹角的范围为4.0()0f x '=是函数f(x)在x 0处取得极值的必要非充分条件,f(x)在x 0处取得极值的充分必要条件是什么? 5.求函数极值的方法: (1)先找定义域,求导数()x f ';(2)求方程()x f'=0的根n x x x ,,,21 找出定义域的分界点;(3)列表,根据单调性求出极值.已知()f x 在0x 处的极值为A ,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值.6. 利用导数求最值的步骤:(1)求函数在给定区间上的极值;(2)比较区间端点所对的函数值与极值的大小,确定最大值与最小值. 7.含有参数的函数求最值的方法:看导数为0的点与定义域之间的关系. 8.利用导数证明不等式()()f x g x >的步骤:(1)作差()()()F x f x g x =-;(2)判断函数()F x 在定义域上的单调性并求它的最小值; (3)判断最小值0A ≥;(4)结论:()0F x A >≥,则()()f x g x >. 9.利用导数判断方程的解的情况..已知函数()f x 在1x =处的导数为1,则当0x →时(1)(1)2f x f x+-趋近于解析:由定义得当0x →时,'(1)(1)1(1)(1)11(1)2222f x f f x f f x x +-+∆-=⋅=⋅=∆易错原因:不会利用导数的定义来解题.例2.函数32()f x x ax bx c =+++,其中,,a b c R ∈,当230a b -<时,()f x 在R 上的增减性是解析:'2()32f x x ax b =++,则24(3)0a b ∆=-<在R 上'()0f x >,故是增函数. 易错原因:不善于利用导函数的""∆来判别单调性.例3.若函数3'21()(1)53f x x f x x =--⋅++,则'(1)f -= 解析:设321()53f x x ax x =-++,则'2()21f x x ax =-+.故'(1)22f a -=+.由22a a =+知2a =-.有'(1)f -=-2.易错原因:不会运用待定系数法解题.例4.3()f x x x =-,则当(0,2)x ∈时,()f x 的值域为解析:'2()31f x x =-,令'()0f x x >⇒>,()f x ∴在区间2⎤⎥⎣⎦上单调增,在区间⎡⎢⎣⎦上单调减,()f x ∴的值域为⎡⎤⎢⎥⎣⎦. 易错原因:求导之后判别单调区间时概念模糊.七.概率:1.古典概型和几何概型的区别.例如:(1)任意取实数x ∈[1,100],恰好落在[50,100] (2)任意取整数x ∈[1,100],恰好落在[50,100]2事件中有一个发生的概率,利用对立事件的概率. (1)若A 、B 互斥,则P (A+B )=P (A )+P (B ); (2)若A 、B 对立,则()1()P A P A =-.3.概率题的解题步骤: (1)记事件(2)交代总共结果数与A 事件中结果数(几何概率即D,d ) (3)计算 (4)作答例如.1、在等腰直角三角形ABC 中,(1)在斜边AB 上任取一点M ,求AM 小于AC 的概率;(2)过顶点C 在ACB ∠内任作一条射线CM ,与线段AB 交于点M ,求AM AC <的概率.2.已知在矩形ABCD 中,AB=5,AC=7,在矩形内任取一点P ,求090APB ∠>的概率.八、统计:1.抽样方法主要有简单随机抽样(抽签法、随机数表法)常常用于总体数目较少时,主要特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,主要特征是均衡分成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要使用于总体中有明显差异。
高中数学易错点(附配套例题与答案)
高中数学各章节关注点1.4 否定形式命题可考虑用逆否命题来研究.例1.4 已知R b a ∈,,则条件"21≠≠b a 或"是"2≠ab "的 条件.1.5 “且”与“或”的区分.例1.5.1 判断真假:(1) 10232≠⇔≠+-x x x 或2≠x ;(2)33≥.例1.5.2 已知 013:1=+-y ax l ,01)21(:2=---ay x a l ,根据下列条件分别求a 的取值范围.(1) 21l l 与相交;(2) 21l l ⊥.2、函数2.1求函数关系式时必须包含定义域;对数问题也应注意定义域.例2.1 (1)在ABC ∆中,BC AC BC x AB ,3,4,===边上的中线长y AM =,求y 关于x 的函数关系式;(2)函数x x y ln 22-=的单调递增区间是 .2.2 函数的零点问题通常利用函数图像.例2.2 (1)若函数m x x x y -+-=4423在区间),(251-有且只有一个零点,则实数m 的取值范围是 ;(2) 若函数m x x x y -+-=4423在区间),(251-至少有一个零点,则实数m 的取值范围是 .例2.5.2 已知函数)(x f 是周期为2的周期函数,当20≤<x 时,13)(2+-=x x x f ,求当75<<x 时,函数)(x f 的表达式.2.6 关注二次函数二次项系数是否为零,注意∆、开口、对称轴与特殊值四要素.例2.6 (1)已知方程0)3(42=++-a x ax 有两个大于1的不等实根,求实数a 的取值范围; (2) 已知方程0)3(42=++-a x ax 至少有一个大于1的实根,求实数a 的取值范围.2.7 指对数的运算法则.例2.7 (1)已知02ln =+x ,求x ;(2)已知)00(02≠>=-a a a x且,求x ; (3)解不等式)10(2log <<->a x a ;(4)已知()1,12log 2log >>>b a b a ,求b a , 的大小关系.3、数列3.1 注意题中n 取值,如:⎩⎨⎧≥-==-2n ,S S 1,n ,S a 1n n1n 的公式应用.例3.1 (1)已知数列{}n a 的前n 项的和为)(+∈+-=N n n n S n 1322,求数列{}n a 的通项公式;(2) 已知数列{}n a 的前n 项的和为n S ,若),2(0321+-∈≥=+N n n a S S n n n ,又31=a ,求n a ;(3) 已知数列{}n a 的前n 项的和为n S ,若,)(31++∈=N n a S n n 又31=a ,求n a .3.2 等比数列求和注意对q=1与q ≠1的分类;等比数列证明注意首项0a 1≠的说明.例3.2 (1) 若等比数列{}n a 的前n 项和为n S ,公比1-≠q .求证:n n n n n S S S S S 232,,--也成等比;(2) 若数列{}n a 中,)(23,411++∈-==N n a a a n n .求证数列{}1-n a 是等比数列.3.3 求和:观察通项、 注意首项、 点清项数,并注意结果的验证.例3.3 求和nn S )2(8421-++-+-= .3.4 应用性问题:逐步列式,保留原始数据,便于观察规律.例3.4 小王2012年5月向银行借款100万元用于购房,年利率7.8%,2013年5月开始偿还,每年还a 万元,2032年5月全部还清,求每年还款额a (其中2078.110≈).3.5 等差数列、等比数列常用定义、公式或性质解决.例3.5.1 已知数列{}n a 的前n 项的和为n S ,42,293==S S .(1)若数列{}n a 成等差,求12S ; (2) 若数列{}n a 成等比,求12S .例3.5.2 已知等差数列{}n a 与{}n b 的前n 项的和分别为n n T S , , 若1423--=n n T S n n , 求2020b a .3.6 数列与函数的单调性、最值研究的方法“区别”.例3.6 (1) 已知数列{}n a 的通项公式是nnn C a )31(2012⋅=,求数列{}n a 的最大项;(2)已知函数xex x f 2012)(-=,求函数)(x f 在区间),0(∞+上的最大值.3.7 熟练掌握利用错位相减法或裂项法进行数列求和. 例3.7 (1) 求和:n n n S )21)(12()21(7)21(5)21(321432--++-+-+-+-= ;(2) 求和:)12(753197531753153131++++++++++++++++=n S n .(3) 求数列⎭⎬⎫⎩⎨⎧+++)23(3522n n n n 的前n 项的和n T .3.8 通常递推关系转化为“新数列”的思想运用. 例3.8 已知数列{}n a 中,311=a ,根据下列各递推公式,求数列的通项公式: (1) 131-=+n n a a ;(2)131+=+n nn a a a ;(3)()112++-=n n n n a a a a ;(4)nn n a a 331=+-.5.4 三角形问题应注意内角的判断一个或两个解.例5.4 (1) 在ABC ∆中,若32cos ,36sin ==B A , 求C sin ;(2) 在ABC ∆中,若3,31cos ,33sin ===a B A , 求边c 的长.5.5 熟练掌握正弦、余弦定理,面积公式.例5.5.1 在ABC ∆中, 面积32=S ,,6,600=+=c b A (1)求边a 的长; (2)求)(sin C B -.例5.5.2 在ABC ∆中, 三内角C B A ,,成等差数列 , 角C B A ,,所对应的边分别为c b a ,,, 外接圆半径为2 , 求22c a +的取值范围.6.5 熟练掌握不等式应用的两种题型.例6.5 (1) 已知+∈R y x ,,212=+yx ,求y x +的最小值;(2)已知c ax x f +=2)(,1)1(2≤≤-f ,4)2(0≤≤f ,求)3(f 的取值范围.7、直线和圆7.1 求直线问题注意斜率存在与不存在,掌握斜率变化与倾斜角变化的规律.例7.1 (1) 已知过点(0,1)的直线l 与圆)0()1(222>=++R R y x 交于B A ,两点,O 为坐标原点,若52<⋅<-OB OA ,求半径R 的取值范围;(2) 已知过点(-2,0)的直线l 与圆16)1(22=++y x 交于B A ,两点,O 为坐标原点,若1213-<⋅<-OB OA ,求直线l 的倾斜角取值范围.高中数学各章节关注点答案3.1解:(1) ⎩⎨⎧≥== 2.n ,5-4n ,1n ,0a n (2) ,0)(3211=-+--n n n n S S S S 32111=--n n S S , 数列⎭⎬⎫⎩⎨⎧n S 1是首项为31,公差为32的等差数列,所以3121-=n S n ,即123-=n S n ,从而得⎪⎩⎪⎨⎧≥---==.2,)32)(12(61,3n n n n a n , (3) ,43111n n n n n n S S S S a S =⇒-==+++数列{}n S 是公比为4 , 首相为3的等比数列 ,所以143-⋅=n n S , 从而⎩⎨⎧≥⋅==-.2,49,1,32n n a n n 3.2解:(1)当公比1=q 时,,,,0123121na S S na S S na S n n n n n =-=-≠=结论成立;当公比1≠q 时,222212131123)1()1()1)1(1)1((1)1()(q q q a q q a q q a q q a S S S nn n n n n n n --=-----⋅--=-, 22221212122)1()1(1)1(1)1()(q q q a q q a q q a S S n n n n n n--=⎥⎦⎤⎢⎣⎡-----=-, 1,0,01±≠≠≠q q a ,0)()(2322≠-=-∴n n n n n S S S S S ,结论成立.(2),)1(311-=-+n n a a 又0311≠=-a ,所以数列{}1-n a 是以3为首项,以3为公比的等比数列.3.3解: []11)2(131)2(1)2(1++--=----=n n n S . 3.4解:201819%)8.71(100%)8.71(%)8.71(%)8.71(+=+++++++a a a a ,2020%)8.71(100%)8.71(1%)8.71(1+=+-+-⋅a , 4.103078.0400=⨯≈a (万元).3.5.1解:(1)由91269363,,,S S S S S S S ---成等差,得,)42(2)2(266S S -+=-166=S ,所以38912=-S S ,8012=∴S .(2) 由91269363,,,S S S S S S S ---成等比,得,)42(2)2(626S S -=-86-=S 或106=S ,从而128912=-S S 或250912-=-S S ,所以17012=S 或20812-=S .3.5.2解:利用等差数列求和公式n n a n S )12(12-=-得312315511539392020===T S b a . 3.6解:(1)1)1(3201231!)2011(!)1(!2012!)2012(!!2012312012120121≥+-=⋅-+-=⋅=++n nn n n n C C a a n n n n ,得25.502≤n ,即12502503a a a a >>>> , >>>505504503a a a ,所以数列{}n a 的最大项为5035032012503)31(C a =.(2)2013,02013)('==-=x exx f x得,函数↑∞+↑),(,),)在((201320130x f . 所以函数)(x f 在区间),0(∞+上的最大值是2013)2013-=ef (.3.7解:(1) 运用错位相减法,15432)21)(12()21)(32()21(7)21(5)21(3)21(21+--+--++-+-+-+-=-n n n n n S15432)21)(12(])21()21()21()21()21[(22123+----++-+-+-+-+-=n n n n S 1111)(12()21(13121)21)(12()21(1)21(141221+-+---⎥⎦⎤⎢⎣⎡--+-=---⎥⎦⎤⎢⎣⎡----⋅+-=n n n n n n n n )21(61661-++-=, nn n S )21(91691-++-=∴.(2) )211(21)2(1)12(7531+-=+=+++++n n n n n,⎥⎦⎤⎢⎣⎡+-++--++-+-+-+-=∴)211()1111()6141()5131()4121()311(21n n n n S n )2)(1(23243211121121+++-=⎥⎦⎤⎢⎣⎡+-+-+=n n n n n . (3) )2(31)1(31)23(35212+-+=+++-n n n n n n n n,))2(31)1(31()531431()431331()33121(1322+-+++⨯-⨯+⨯-⨯+⨯-=∴-n n T n n n)2(3121+-=n n .4.9解:y x y x 32cos 2sin -=+,22)32()2(1y y -≥+,031252≤+-y y ,52165216+≤≤-y , ∴值域为⎥⎦⎤⎢⎣⎡+-5216,5216. 4.10解:321sin 121,21sin 23,1sin 21,326<+≤≤+<≤<∴≤<x x x x ππ, 所以1sin 43+-=x y 的值域为⎥⎦⎤ ⎝⎛1,31.4.11解: 2tan 11tan )4tan(=-+=+x x x π, 得31tan =x . (1)原式671tan 32tan =++=x x .(2)原式7201tan tan )1(tan 2)cos (sin cos sin )cos (sin 2222222-=--+=+-+=x x x x x x x x x . 5.1 (1)51- 解析:CB AB AC AB CB BC AB CB AM ⋅-+=⋅+=⋅)](32[)32( 51)2716236(31231)()2(3122-=--=⎥⎦⎤⎢⎣⎡⋅+-=-⋅+=AC AB AC AB AC AB AC AB .(2)42- 解析:以A 为原点,分别以AB ,AC 所在直线为x ,y 轴,建立直角坐标系,A (0,0),B (6,0),C (0,9),M (2,6),425412),9,6(,)6,2(-=-=⋅-==CB AM CB AM .5.2解:(1)213,0372)2(1)1)(23(2-=-==++⇒-⋅=++x x x x x x x 或得. (2) 26,03201)23()1)(2(2±==-⇒=⋅+++-x x x x x 得. 5.3解:(1)错 解析:0应该为0.(2)错 解析:c b a )(⋅与向量c 共线 , )(c b a ⋅与向量a 共线. (3)错 解析:正确形式为AC BC AB =+;(4) 错 解析:正确形式为CB AC AB =-.5.4解:(1),,sin 35sin A B A B <∴<=33cos ±=∴A , B A B A B A C sin cos cos sin )(sin sin +=+= 9156235)33(3236±=±+⋅=. (2) 36cos ,,sin 322sin =∴>∴>=A A AB A B ,必为锐角角 ,935322363133sin cos cos sin )(sin sin =+⋅=+=+=B A B A B A C ; 由正弦定理得539353sin sin =⋅⋅==A C a c .5.5.1解:(1) 83260sin 210=⇒==bc bc S , 又,或22,4,6===∴=+b c b c b 4=c ,32,12cos 2222==-+=a A bc c b a . (2) 当4,2==c b 时,由正弦定理,C B sin 4sin 260sin 320==,得1sin ,21sin ==C B ,23)sin(,90,3000-=-==C B C B ,同理当2,4==c b 时,23)sin(=-C B . 5.5.2解:三角C B A ,,成等差060=⇔B , 由正弦定理42sin sin ===R CcA a , 所以[][])2240cos(2cos 28)120(sin sin 1602222A A A A c a ---=-+=+)602cos(8160+-=A , 由于001200<<A , 00030060260<+<A ,所以21)602cos(10<+≤-A , 从而241222≤+<c a . 5.6.1 解: (1)真. (2)假.(3)假. 解析:正确的应是等腰三角形或直角三角形. 例5.6.2 (1) 若角A 为锐角, 则A A cos sin +的取值范围是 ; (2)若角A 为钝角, 则A A cos sin +的取值范围是 .5.6.2 (1)(]2,1 解析:)45sin(2cos sin +=+A A A ,A 为锐角,900<<∴A , 1354545<+<∴A ,1)45sin(22≤+<∴A ,即有2cos sin 1≤+<A A .. (2)()1,1- 解析: A 为钝角,即18090<<A ,22545135<+<∴A ,22)45sin(22<+<-∴ A ,即有1cos sin 1<+<-A A . 6.1解:(1)027322132≥--=---x x x x x , 由此得解集[)⎪⎭⎫⎢⎣⎡∞+,372,0 .6.4 1024或 解析:)52()(1+=-⋅x x x ,得0=x 或3-=x ,44224)42(222++=++=-x x x x ,40=-=x ;1023=--=x .6.5 解:(1))223(21)2(321)12)((21+≥⎥⎦⎤⎢⎣⎡++=++=+y x x y y x y x y x , 即y x +的最小值为)223(21+. (2))1(35)2(389)3(,4)2(,)1(f f c a f c a f c a f -=+=+=+=;332)2(380≤≤f ,310)1(3535≤-≤-f ,14)3(35≤≤-∴f .则当1=t 时,1=k ,当1≠t 时,0)3)(1(44,0)3(2)1(2≥---=∆=-+--t t t k k t ,得;2222+≤≤-t ,所以24322-<<-R .综上所述,半径R 的取值范围是⎪⎭⎫ ⎝⎛-24,0.(2) 当x l ⊥轴时,)15,2(-A ,)15,2(--B ,11-=⋅OB OA ,不合, 当l 与x 轴不垂直时,设直线)2(:+=x k y l 代入圆方程,得0154)12(2)1(2222=-++++k x k x k ,由韦达定理,222122211154,1)12(2kk x x k k x x +-=++-=+, 2212212212214)(2)1()2)(2(k x x k x x k x x k x x OB OA ++++=+++=⋅)12,13(1151141)12(41542222222--∈++-=+++--=kk k k k k k ,得312<<k , 13-<<-k 或31<<k ,所以直线l 倾斜角的范围是⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛43,323,4ππππ .7.2解:圆心(-1,0)到直线的距离53=d ,所以5109235322=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=R . 8.1.1解:(1)513解析:因为02=+FQ PF ,所以点Q 为线段PF 的中点, O 为原点,椭圆另一焦点为'F ,则OQ PF //', 4'=PF , 由椭圆定义:42-=a PF ,'PF PF PF OQ ⊥⇒⊥,由勾股定理;52)42(162=-+a , 得5=a , 所以椭圆的离心率513=e . (2) 228- 解析:如图,椭圆左焦点)0,2(-F , 右焦点即为B ,如图,由椭圆的定义得2288)(8-=-≥--=+AF PA PF PB PA .8.1.2解: (1) 1622=+y x 解析:不妨设点P 在双曲线的右支上,设直线1与2PF 交于点Q ,O 为坐标原点,4221)(21)(21212122==⋅=-=-==a a PF PF PF PQ Q F OM , 所以点M 的轨迹方程是1622=+y x .(2) 2 解析:抛物线的焦点()1,0F ,准线1:-=y l ,连AF 、BF ,设A 、B 、M 到准线l 的距离分别为1d 、2d 、d 则322221=≥+=+=AB BF AF d d d , ∴点M 到x 轴的最近距离为2.8.2解:(1)9或964解析:当焦点在x轴上时,3181=-m ,得9=m ;当焦点在y轴上时,3181=-m ,得964=m . (2) 3171--或 解析:当焦点在x 轴上时,7)28(2=+++n n ,得1-=n ;当焦点在y 轴上时,7)2()82(=--+--n n ,得317-=n .(3) )161,0(a 解析:抛物线方程的标准式为y ax 412=.8.3解:(1)(基本轨迹法) 设)0,5(,)0,5(21F F -,动圆半径为R ,则31+=R PF ,12+=R PF ,221=-PF PF ,由双曲线定义,点P 的轨迹是以1F 、2F 为焦点的双曲线的一支,1=a ,24,52==b c ,它的轨迹方程是)1(12422≥=-y x y . (2) (转移法) 设),(),,(00y x C y x G ,则3,300yy x x ==,即y y x x 3,300==,代入椭圆得1144)3(324)3(22=+y x ,又三角形中三点不共线,0≠∴x , 所以重心G 的轨迹方程是)0(1163622≠=+x y x .8.4 解: )0,2()0,2(21F F -,当x PQ ⊥轴时, )3,2(,)3,2(-Q P ,12=S ; 当AB 与x 轴不垂直时, 设直线)0)(2(:≠-=k x k y PQ ,代入椭圆方程得0481616)43(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则22212221434816,4316kk x x k k x x +-=+=+, 2222243)1(24431241k k k k k PQ ++=+++= , 点1F 到直线PQ 的距离 214kk d +=,由此得222222)43()1(484314821k k k k k k d PQ S ++=++== , 设t k =+243,其中3>t ,则232112t t S --=随t 的增大而增大,120<<S , 所以PQ F 1∆面积S 的取值范围是(]12,0.(2)设直线2)1(:+-=x k y l , 代入双曲线方程4422=-y x 得[]01)2(4)2(8)41(222=+-----k x k k x k ,[]0)543(161)2()41(16)2(6422222=+--=+--+-=∆k k k k k k ,得3192±-=k , 双曲线的渐近线斜率为21±,如图,可知直线l 的斜率范围是)21,3192(---. 8.6解:)0,2(-F ,当x l ⊥轴时,)214,1(P ,)214,1(-Q ,不合. 设直线)1(:-=x k y l ,代入椭圆得0824)21(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则 ,2142221kk x x +=+22212182k k x x +-=, 2212212212214))(1()1()1)(2()2)(2(k x x k x x k x x k x x FQ FP +++-++=--+++=⋅=2222222421)2(421)82)(1(k k k k k k k +++-++-+=02141122=+-k k ,得112±=k , 所以直线的方程为)1(112-±=x y .9.1解:(1) 373)4242(433122=⋅⨯++=V . (2)表面积ππππ425)41(4122=⋅++⋅+⋅=S ,体积ππ284)4161(31=⋅++=V . 9.2解:(1)取AB 中点O ,连OC ,则AB PO ⊥,ABC PAB 面面⊥ ,ABC PO 面⊥∴, ABC PC PCO 与面就是∠∴所成的角,103010232tan 10232==∠==PCO OC PO ,,, 所以所求角的正切值为1030.。
高中数学必修一第四章指数函数与对数函数易错知识点总结(带答案)
高中数学必修一第四章指数函数与对数函数易错知识点总结单选题1、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90<a <100B .90<a <110C .100<a <110D .80<a <100答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100.故选:A2、满足函数f (x )=ln (mx +3)在(−∞,1]上单调递减的一个充分不必要条件是( )A .−4<m <−2B .−3<m <0C .−4<m <0D .−3<m <−1答案:D分析:根据复合函数的单调性,求出m 的取值范围,结合充分不必要条件的定义进行求解即可. 解:若f(x)=ln(mx +3)在(−∞,1]上单调递减,则满足m <0且m +3>0,即m <0且m >−3,则−3<m <0,即f(x)在(−∞,1]上单调递减的一个充分不必要条件是−3<m <−1,故选:D .3、已知函数f(x)={log 12x,x >0,a ⋅(13)x ,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞)答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围.令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x =0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1, 则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件;当a >0时,要使直线y =1与y =f(x)的图象只有一个交点,则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x ∈[a,+∞),此时f (x ) 最小值为a ,所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞),故选:B.4、指数函数y =a x 的图象经过点(3,18),则a 的值是( )A .14B .12C .2D .4答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值.因为y =a x 的图象经过点(3,18), 所以a 3=18,解得a =12, 故选:B.5、已知f (x )=a −x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是( )A .a >0B .a >1C .a <1D .0<a <1答案:D分析:把f (-2),f (-3)代入解不等式,即可求得.因为f (-2)=a 2, f (-3)=a 3,f (-2)>f (-3),即a 2>a 3,解得:0<a <1.故选:D6、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4) 答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A7、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.8、函数f (x )={|2x −1|,x ≤2−x +5,x >2,若函数g (x )=f (x )−t (t ∈R )有3个不同的零点a ,b ,c ,则2a +2b +2c 的取值范围是( )A .[16,32)B .[16,34)C .(18,32]D .(18,34)答案:D分析:作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,利用图象得出a,b,c 的性质、范围,从而可求得结论.作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,如图,则1−2a =2b −1,4<c <5,2a +2b =2,2c ∈(16,32),所以18<2a +2b +2c <34.故选:D .小提示:关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.多选题9、已知函数f(x)={|lnx|,x>0−x2+1,x≤0,若存在a<b<c,使得f(a)=f(b)=f(c)成立,则()A.bc=1B.b+c=1C.a+b+c>1D.abc<−1答案:AC分析:采用数形结合可知−1<a≤0,1e≤b<1,1<c≤e,然后简单计算可知b+c>1,bc=1,a+b+ c>1,故可知结果.如图:可知−1<a≤0,1e≤b<1,1<c≤e,则b+c>c>1,且−lnb=lnc,所以lnb+lnc=lnbc=0,即bc=1.因为bc=1,所以abc=a∈(−1,0],a+b+c=a+1c+c>a+2>1.故选:AC.10、(多选)某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t ={64,x ≤0,2kx+6,x >0,且该食品在4 ℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时刻的变化如图所示,则下列结论中正确的是( )A .该食品在6 ℃的保鲜时间是8小时B .当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少C .到了此日13时,甲所购买的食品还在保鲜时间内D .到了此日14时,甲所购买的食品已然过了保鲜时间答案:AD分析:由题设可得k =−12即可写出解析式,再结合各选项的描述及函数图象判断正误即可. 由题设,可得24k+6=16,解得k =−12, ∴t ={64,x ≤026−x 2,x >0, ∴x =6,则t =23=8,A 正确;x ∈[−6,0]时,保鲜时间恒为64小时,x ∈(0,6]时,保鲜时间t 随x 增大而减小,B 错误;此日11时,温度超过11度,其保鲜时间不超过2小时,故到13时甲所购食品不在保鲜时间内,C 错误; 由上分析知:此日14时,甲所购食品已过保鲜时间,D 正确.故选:AD.11、已知函数f (x )={−2−x +a,x <0,2x −a,x >0.(a ∈R ),下列结论正确的是( ) A .f (x )是奇函数B .若f (x )在定义域上是增函数,则a ≤1C .若f (x )的值域为R ,则a ≥1D.当a≤1时,若f(x)+f(3x+4)>0,则x∈(−1,+∞)答案:AB分析:对于A利用函数奇偶性定义证明;对于B,由增函数定义知−2−0+a≤20−a即可求解;对于C,利用指数函数的单调性,求出分段函数每段函数上的值域,结合f(x)的值域为R,即可求解;对于D,将f(x)+ f(3x+4)>0等价于f(x)>f(−3x−4),利用函数定义域及单调性即可求解;对于A,当x<0时,−x>0,f(x)=−2−x+a,f(−x)=2−x−a=−(−2−x+a)=−f(x);当x>0时,−x<0,f(x)=2x−a,f(−x)=−2x+a=−(2x−a)=−f(x),所以f(x)是奇函数,故A正确;对于B,由f(x)在定义域上是增函数,知−2−0+a≤20−a,解得a≤1,故B正确;对于C,当x<0时,f(x)=−2−x+a在区间(−∞,0)上单调递增,此时值域为(−∞,a−1),当x>0时,f(x)=2x−a在区间(0,+∞)上单调递增,此时值域为(1−a,+∞),要使f(x)的值域为R,则a−1>1−a,解得a>1,故C错误;对于D,当a≤1时,由于−2−0+a≤20−a,则f(x)在定义域上是增函数,f(x)+f(3x+4)>0等价于f(x)>f(−3x−4),即{x≠0−3x−4≠0x>−3x−4,解得x∈(−1,0)∪(0,+∞),故D错误;故选:AB填空题12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可.由题设,可得:log4x≤log4412,则0<x≤412=2,∴不等式解集为(0,2].所以答案是:(0,2].13、若log2[log3(log4x)]=0,则x=________.答案:64分析:利用对数的运算性质以及指数式与对数式的互化即可求解.log 2[log 3(log 4x )]=0⇒log 3(log 4x )=1⇒log 4x =3⇒x =43=64.所以答案是:64小提示:本题考查了对数的运算性质以及指数式与对数式的互化,考查了基本运算求解能力,属于基础题.14、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.解答题15、已知函数f(x)=(12)x−a −b(a,b ∈R)的图象过点(1,0)与点(0,1).(1)求a ,b 的值;(2)若g(x)=4−x −4,且f(x)=g(x),满足条件的x 的值.答案:(1)a =1,b =1;(2)x =−log 23.分析:(1)由给定条件列出关于a ,b 的方程组,解之即得;(2)由(1)的结论列出指数方程,借助换元法即可作答.(1)由题意可得{(12)1−a −b =0(12)−a −b =1 ⇒{(12)−a −2b =0(12)−a −b =1 ⇒{b =12a =2 ,解得a =1,b =1, (2)由(1)可得f(x)=21−x −1,而g(x)=4−x −4,且f(x)=g(x),于是有21−x −1=4−x −4,设2−x =t ,t >0,从而得t 2−2t −3=0,解得t =3,即2−x =3,解得x =−log 23,所以满足条件的x=−log23.。
高考数学知识点总结大全
高考数学知识点总结大全高考数学知识点总结易错点1 遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2 忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b 不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x 的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
高一数学常见错误总结
高一数学常见错误总结高一是一个学习数学的重要阶段,学生在这个阶段常常会犯一些常见的错误。
本文将总结一些高一学生经常犯的数学错误,并提供正确的解决方案。
一、基础知识错误1. 未掌握基本运算规则:一些学生没有熟练掌握加减乘除等基本运算的规则,导致在计算中出现错误。
解决方案是多进行题目练习,加强对基本运算规则的理解和掌握。
2. 混淆数字的含义:有些学生容易混淆常用数字的表示方式,如小数、分数和百分数等。
解决方案是通过大量的练习和实际应用来加深对这些数字表示方式的理解。
3. 未正确理解数学概念:有些学生对于数学概念的理解不够深入,导致在解决问题时出现错误。
解决方案是通过阅读教材和参考书籍,加深对数学概念的理解,并进行实际应用。
二、解题方法错误1. 盲目套用公式:一些学生在解题时过于依赖公式,盲目套用而不考虑具体问题的条件。
解决方案是仔细分析问题,根据具体条件选择合适的解题方法。
2. 计算错误:部分学生在解题时出现计算错误,如漏算、错算或计算过程不清晰。
解决方案是在计算过程中注重细节,避免粗心错误,并在解答过程中给出清晰的计算步骤。
3. 不善于建立数学模型:有些学生在解决实际问题时没有建立恰当的数学模型,导致解答错误。
解决方案是在解题过程中培养建立数学模型的能力,注重问题的抽象和数学化。
三、思维方法错误1. 机械记忆:一些学生只注重记忆公式和方法,缺乏对数学思想的理解。
解决方案是注重理解数学的本质和思维方法,而不仅仅把数学当成一门死记硬背的学科。
2. 缺乏实际应用:部分学生只将数学作为一门抽象的学科,缺乏与实际应用的联系。
解决方案是鼓励学生运用数学知识解决实际问题,增强数学的实用性和兴趣。
四、注意力不集中和粗心大意1. 粗心大意:有些学生由于粗心或匆忙,经常在计算中出现简单的错误,如搬错数字、写错符号等。
解决方案是在解题过程中保持专注和耐心,仔细检查和审查答案。
2. 解题步骤混乱:部分学生在解题时,步骤不清晰,容易跳过重要的中间过程,影响最终结果的正确性。
(完整版)高中数学易错重点知识点梳理
高中数学知识易错点梳理一、集合、简易逻辑、函数1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x |,y},且A=B,则x+y=2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。
已知集合M={y |y=x 2 ,x ∈R},N={y |y=x 2+1,x ∈R},求M ∩N ;与集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x∈R}求M ∩N 的区别。
3. 集合 A 、B ,∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集B A ⊆时是否忘记∅. 例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了a =2的情况了吗?4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n如满足条件}4,3,2,1{}1{⊂⊆M 的集合M 共有多少个5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。
},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==7. (C U A)∩( C U B) = C U (A ∪B) (C U A)∪( C U B) = C U (A ∩B);B B A = A B ⊆⇒; 8、可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”. p 、q 形式的复合命题的真值表:9、否 原命题与逆否命题同真同假;逆命题与否命题同真同假.10、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,哪几种对应能够成映射? 11、函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数()x f y =的图象关于直线a x =对称.②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称; 函数()x f y =与函数()x f y --=的图象关于坐标原点对称.③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数.④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数.⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把函数()x f y =的图象沿x 轴向右平移a 个单位得到的;函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把函数()x f y =助图象沿y 轴向下平移a 个单位得到的.12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗?函数y=2)3lg()4(--x x x 的定义域是 ;复合函数的定义域弄清了吗?函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域. 函数)(x f 的定义域是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域14、含参的二次函数的值域、最值要记得讨论。
[高一数学易错点]高一数学易错题
[高一数学易错点]高一数学易错题高一数学易错点(一)易错点1 遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.易错点2 忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.易错点3 混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.易错点4 充分条件、必要条件颠倒致误对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A 的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.易错点5 “或”“且”“非”理解不准致误命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解.易错点6 函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.易错点7 判断函数的奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数.易错点8 函数零点定理使用不当致误如果函数y=f(某)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(某)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(某)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.易错点9 导数的几何意义不明致误函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”.易错点10 导数与极值关系不清致误f′(某0)=0只是可导函数f(某)在某0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(某)在某0两侧异号.另外,已知极值点求参数时要进行检验.高一数学易错点(二)易错点1 三角函数的单调性判断致误对于函数y=Ain(ω某+φ)的单调性,当ω>0时,由于内层函数u=ω某+φ是单调递增的,所以该函数的单调性和y=in某的单调性相同,故可完全按照函数y=in某的单调区间解决;但当ω<0时,内层函数u=ω某+φ是单调递减的,此时该函数的单调性和函数y=in某的单调性相反,就不能再按照函数y=in某的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断.易错点2 图像变换方向把握不准致误函数y=Ain(ω某+φ)(其中A>0,ω>0,某∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短(当0易错点3 忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.易错点4 向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况.易错点5 an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.易错点6 对等差、等比数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N某)是等差数列.易错点7 数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题.数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一.在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.易错点8 错位相减求和时项数处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和.基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.易错点9 不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误.易错点10 忽视基本不等式应用条件致误利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件.对形如y=a某+b某(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意a某,b某的符号,必要时要进行分类讨论,另外要注意自变量某的取值范围,在此范围内等号能否取到.高一数学易错点(三)易错点1 解含参数的不等式时分类讨论不当致误解形如a某2+b某+c>0的不等式时,首先要考虑对某2的系数进行分类讨论.当a=0时,这个不等式是一次不等式,解的时候还要对b,c进一步分类讨论;当a≠0且Δ>0时,不等式可化为a(某-某1)(某-某2)>0,其中某1,某2(某10,则不等式的解集是(-∞,某1)∪(某2,+∞),如果a<0,则不等式的解集是(某1,某2).易错点2 不等式恒成立问题处理不当致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意某∈[a,b]都有f(某)≤g(某)成立,即f(某)-g(某)≤0的恒成立问题,但对存在某∈[a,b],使f(某)≤g(某)成立,则为存在性问题,即f(某)min≤g(某)ma某,应特别注意两函数中的最大值与最小值的关系.易错点3 忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽.易错点4 面积、体积的计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法.(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.易错点5 随意推广平面几何中的结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.易错点6 对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.易错点7 空间点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致.易错点8 忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1某+B1y+C1=0与l2:A2某+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1某+B1y+C1=0与l2:A2某+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论.易错点9 忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.易错点10 忽视圆锥曲线定义中的条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支. 看了<高一数学易错点>的人还看了:1.高一数学必修一易错点2.高一数学期末考易错知识点总结3.高一数学知识点总结4.高一数学不等式知识点总结5.高一上数学知识点总结。
高中数学易混易错知识点大全
高中数学易错、易混、易忘备忘录1.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况2.求解与函数有关的问题易忽略定义域优先的原则 3 根据定义证明函数的奇偶性时,易忽略检验函数定义域是否关于原点对称 4 求反函数时,易忽略求反函数的定义域 5 单调区间不能用集合或不等式表示. 6 用基本不等式求最值时,易忽略验证“一正二定三等”这一条件7 你知道函数(0,0)b y ax a b x=+>>的单调区间吗?(该函数在(,)-∞+∞和上单调递增;在[和(0上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数) 是奇函数,图像关于原点对称. 8 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀 9 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0 尤其是直线与圆锥曲线相交时更易忽略 10 等差数列中的重要性质:若m+n=p+q ,则m n p q a a a a +=+;(反之不成立)等比数列中的重要性质:若m+n=p+q,则m n p a a a a = (反之不成立) 11 用等比数列求和公式求和时,易忽略公比q=1的情况12 已知n S 求n a 时, 易忽略n =1的情况13 等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是:2n S an bn =+(a, b 为常数)其公差是2a14 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n 项的和) 15 你还记得裂项求和吗?(如111(1)1n n n n =-++) 16 在解三角问题时,你注意到正切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?17 你还记得三角化简的通性通法吗?( 异角化同角,异名化同名,高次化低次)18 你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 19 在三角中,你知道1等于什么吗?(这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用20 0与实数0有区别,0的模为数0,它不是没有方向,而是方向不定 0可以看成与任意向量平行,但与任意向量都不垂直 21 0a =,则0a b ⋅=,但0a b ⋅=不能得到0a =或b = a b ⊥有0a b ⋅= 22 a b =时,有a c b c ⋅=⋅ 反之a c b c ⋅=⋅不能推出a b = 23一般地()()a b c a b c ⋅⋅≠⋅⋅ 24 使用正弦定理时易忘比值还等于2R ::sin :sin :sin a b c A B C = 25 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b ⇒<,a<b<o1a b ⇒> 26 分式不等式的一般解题思路是什么?(移项通分、零点分段) 27 解指对数不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零 ) 28 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…… 29常用放缩技巧:211111111(1)(1)1n n n n n n n n n-=<<=-++-- k k k k k k k k k +-=+-<<++=-+1112111130用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况31直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,2πππ 32 函数的图象的平移、方程的平移以及点的平移公式易混:33sin sin()3x x x y x y x πππ→-=−−−−−−→=-沿轴向右平移① 22sin 2sin ,sin 2y y y y x y x y x →-=−−−−−→-==+沿轴向上平移②即 212sin sin 2x x x y x y x →=−−−−−−−→=沿轴缩短到原来的③ 1221sin sin 2x x x y x y x →=−−−−−−−→=沿轴伸长到原来的倍④ 2121sin 2sin ,sin 2y y y y x y x y x →=−−−−−−−→==沿轴缩短到原来的⑤即 1221sin sin ,2sin 2y y y y x y x y x →=−−−−−−−→==沿轴伸长到原来的倍⑥即 33 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清) 34 直线在坐标轴上的截距可正,可负,也可为0 35 处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式 一般来说,前者更简捷 36处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系 37 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形 38 还记得圆锥曲线方程中的a,b,c,p ,ca a c 2,的意义吗? 39 离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?40 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制 (求交点,弦长,中点,斜率,对称,存在性问题都在下进行) 41 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形 (a ,b ,c ) 42 通径是抛物线的所有焦点弦中最短的弦 (通径是过焦点,且垂直于x 轴的弦) 43 你知道椭圆、双曲线标准方程中a ,b ,c 之间关系的差异吗?45作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见 46 求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法) 47 求多面体体积的常规方法是什么?(割补法、等积变换法) 48 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o ≤α≤90°二面角的平面角的取值范围:0°≤α≤180° 49 二项式()na b +展开式的通项公式中a与b的顺序不变 50 二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为rn C 51 二项式系数最大项与展开式中系数最大项易混 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r 52 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合 53 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好 54 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项)事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-其中k=0,1,2,3,…,n,且0<p<1,p+q=1 55 常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= x x )'(ln = xx a a log 1)'(log = x x e e =)'( a a a x x ln )'(= 2();u u v uv uv u v uv v v '''-⎛⎫'''=+= ⎪⎝⎭,(())u x f u x f u '''=⋅高中数学重要基础知识记忆检查一、幂函数、指数函数和对数函数1、由n 个元素组成的集合,其非空真子集个数为 。
高中数学常用结论,常见易错点,重要公式(原创)
一、常用结论1. A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U2、含n 个元素的集合的子集个数为2n ,真子集个数为2n-1;3、如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数;若都有()()x b f x a f +=-,那么函数()x f y =的图象关于直线2ba x +=对称 4、f(x)是偶函数⇔f(-x)=f(x)=f(|x|),定义域含零的奇函数过原点(f(0)=0)5、函数()0,0>>+=b a xb ax y 函数在]a ab -∞-,(或),[+∞aab上单调递增;在)0,[aab -或]0a ab,(上单调递减6、二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.7、(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 8、如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.9、若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.10、对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).11、设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.12、若()y f x =图像有两条对称轴,()x a x b a b ==≠,则()y f x =必是周期函数,且一周期为2||T a b =-;若()y f x =图像有两个对称中心(,0),(,0)()A a B b a b ≠,则()y f x =是周期函数,且一周期为2||T a b =-;如果函数()y f x =的图像有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且一周期为 4||T a b =-;13、反比例函数:)0x (xc y ≠=平移⇒b x ca y -+=(中心为(b,a))14、关于对称的结论(1)函数()x f y =关于原点的对称曲线方程()x f y --=;(2)曲线(,)0f x y =关于直线y x a =±+的对称曲线的方程为((),)0f y a x a ±-±+=。
通用版高中数学必修一集合易错知识点总结
(每日一练)通用版高中数学必修一集合易错知识点总结单选题1、已知集合A={x|1<x<2},集合B={x|x>m},若A∩(∁R B)=∅,则m的取值范围为()A.(−∞,1]B.(−∞,2]C.[1,+∞)D.[2,+∞)答案:A解析:由题可得A⊆B,再利用集合的包含关系即求.由题知A∩(∁R B)=∅,得A⊆B,则m≤1,故选:A.2、已知集合A={1,2,3,4},B={x|3﹣x>0},则A∩B=()A.{1,2}B.{1,2,3)C.{1,2,3,4}D.{1}答案:A解析:根据集合交集定义直接求解,即得结果.因为A={1,2,3,4},B={x|x<3},所以A∩B={1,2}故选:A.小提示:本题考查交集定义,考查基本分析求解能力,属基础题.3、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A解析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.解答题4、设n(n⩾2)为正整数,若α=(x1,x2,⋯,x n)满足:①x i∈{0,1,⋯,n−1},i=1,2,⋯,n;②对于1⩽i<j⩽n,均有x i≠x j;则称α具有性质E(n).对于α=(x1,x2,⋯,x n)和β=(y1,y2,⋯,y n),定义集合T(α,β)={t|t=|x i−y i∣,i=1,2,⋯,n}.(1)设α=(0,1,2),若β=(y1,y2,y3)具有性质E(3),写出一个及相应的T(α,β);(2)设α和β具有性质E(6),那么T(α,β)是否可能为{0,1,2,3,4,5},若可能,写出一组α和β,若不可能,说明理由;(3)设α和β具有性质E(n),对于给定的α,求证:满足T(α,β)={0,1,⋯,n−1}的β有偶数个.答案:(1)答案见解析(2)不存在,理由见解析(3)证明见解析解析:(1)根据性质E(3)的定义可得答案;(2)利用反证法以及性质E(6)的定义推出相互矛盾的结论可得解;(3)通过构造γ=(z1,z2,⋯,z n),证明当α=(x1,x2,⋯,x n),β=(y1,y2,⋯,y n)确定时,γ=(z1,z2,⋯,z n)唯一确定,由α,γ也仅能构造出β,即可得证.(1)β=(0,1,2),T(α,β)={0};β=(0,2,1),T(α,β)={0,1};β=(1,0,2),T(α,β)={0,1};β=(1,2,0) T(α,β)={1,2};β=(2,1,0),T(α,β)={0,2}.(2)假设存在α=(x 1,x 2,x 3,x 4,x 5,x 6)和β=(y 1,y 2,y 3,y 4,y 5,y 6)均具有性质E(6),且T(α,β)={0,1,2,3,4,5}, 则0+1+2+3+4+5=∑|x i −y i |=156i=1,因为|x i −y i |与x i −y i 同奇同偶,所以∑|x i −y i |6i=1与∑(x i −y i )6i=1同奇同偶,又因为∑|x i −y i |6i=1 =15为奇数,∑(x i −y i )6i=1 =0为偶数,这与∑|x i −y i |6i=1与∑(x i −y i )6i=1同奇同偶矛盾,所以假设不成立.综上所述:不存在具有性质E(6)的α和β,满足T(α,β)={0,1,2,3,4,5}.(3)不妨设α=(x 1,x 2,⋯,x n )与β=(y 1,y 2,⋯,y n )构成一个数表A ,交换数表中的两行,可得数表B ,调整数表各列的顺序,使第一行y 1,y 2,⋯,y n 变为x 1,x 2,⋯,x n ,设第二行变为z 1,z 2,⋯,z n ,令γ=(z 1,z 2,⋯,z n ),则γ具有性质E(n),且T(α,β)={0,1,2,⋯,n −1},假设β=(y 1,y 2,⋯,y n )与γ=(z 1,z 2,⋯,z n )相同,则y 1=z 1,y 2=z 2,⋯,y n =z n ,不妨设x 1≠y 1,x 1=y k (k ≠1),则有z 1=x k ,故|x 1−z 1|=|y k −x k |,因为T(α,β)={0,1,2,⋯,n −1},所以|x 1−y 1|≠|x i −y i |(i =2,3,⋯,n),因为y 1=z 1=x k ,所以|x 1−y 1|=|x k −y k |(k ≠1),与|x 1−y 1|≠|x i −y i |(i =2,3,⋯,n)矛盾. 故对于具有性质E(n)的α=(x 1,x 2,⋯,x n ),若β=(y 1,y 2,⋯,y n )具有性质E(n),且T(α,β)={0,1,2,⋯,n −1},则存在一个具有性质E(n)的γ=(z 1,z 2,⋯,z n ),使得T(α,β)={0,1,2,⋯,n −1},且β=(y 1,y 2,⋯,y n )与γ=(z 1,z 2,⋯,z n )不同,并且由γ的构造过程可以知道,当α=(x 1,x 2,⋯,x n ),β=(y 1,y 2,⋯,y n )确定时,γ=(z 1,z 2,⋯,z n )唯一确定,由α,γ也仅能构造出β.所以满足T(α,β)={0,1,⋯,n −1}的β有偶数个.小提示:关键点点睛:理解性质E(n)的定义,通过构造法解题是解题关键.5、在①B ⊆(∁R A ),②(∁R A )∪B =R ,③A ∩B =B 这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合A ={x |x 2−5x +4≤0},B ={x |a +1<x <2a −1},是否存在实数a ,使得________? 答案:答案见解析.解析:若选①:求出∁R A ,分B =∅和B ≠∅两种情况,列出不等式组可得答案;若选②:由(∁R A )∪B =R ,得B ≠∅,列出不等式组可得答案;若选③:由A ∩B =B 可知B ⊆A ,分B =∅和B ≠∅列出不等式组可得答案.集合A ={x |x 2−5x +4≤0}={x |1≤x ≤4}.若选①:∁R A ={x |x <1或x >4},由B ⊆(∁R A )得,当B =∅时,a +1≥2a −1,解得a ≤2;当B ≠∅时,{a +1<2a −12a −1≤1 或{a +1<2a −1a +1≥4, 解得a ∈∅或a ≥3,所以实数a 的取值范围是[3,+∞).综上,存在实数a ,使得B ⊆(∁R A ),且a 的取值范围为(−∞,2]∪[3,+∞).若选②:∁R A ={x |x <1或x >4},由(∁R A )∪B =R ,得B ≠∅,所以{2a −1>4a +1<1,解得a ∈∅, 所以不存在实数a ,使得(∁R A )∪B =R . 若选③:由A ∩B =B 可知B ⊆A ,当B =∅时,a +1≥2a −1,解得a ≤2;当B ≠∅时,{a +1<2a −1a +1≥12a −1≤4,解得2<a ≤52. 综上,存在实数a ,使得A ∩B =B ,且a 的取值范围为(−∞,52].小提示:本题考查了集合的运算,解题关键点是对于B ⊆(∁R A )和(∁R A )∪B =R 中含有参数的集合要分情况进行讨论,要熟练掌握集合间的基本运算.。
高中数学易错点总结(3)
高中数学易错点总结(3)23点、线、面的位置关系是空间几何的基础内容,不清楚这些基本概念可能导致解题错误。
关于空间中点、线、面的位置关系的综合判断题,是高考中测试学生对这些基本几何概念及其性质理解和应用程度的优良题目类型。
出题者通常偏好此类题型,因为它们能够全面地检验学生的空间想象能力和逻辑推理能力。
解决这类问题时,有两种主要的方法:一是通过逐一寻找反证来排除不可能的情况,从而得出否定的结论,或者逐一进行正面的逻辑论证来确认结论;二是利用长方体模型或参照现实生活中的空间场景(例如教室里的桌子和黑板)来进行直观的判断,但在此过程中必须确保定理的正确使用并且全面细致地考虑所有相关因素。
24忽视斜率不存在致误在解决两直线平行的相关问题时,若利用11∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在。
如果忽略k1,k2不存在的情况,就会导致错解。
这类问题也可以利用如下的结论求解, 即直线l1:A1x+B1y+C1=0 与l2:A2x+B2y+C2=0 平行的必要条件是 A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案。
对于解决两直线垂直的相关问题时也有类似的情况。
利用|1⊥l2⇔k1-k2=-1时,要注意其前提条件是k1与k2必须同时存在。
利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是 A1A2+B1B2=0, 就可以避免讨论。
25忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式。
因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。
26忽视圆锥曲线定义中条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件。
如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|。
如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。
)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四.三角函数29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次)33. 反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.(3)点的平移公式:点按向量平移到点,则.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R.五.平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。
可以看成与任意向量平行,但与任意向量都不垂直。
41.数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.已知实数,且,则a=c,但在向量的数量积中没有.在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六.解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
45.直线的倾斜角、到的角、与的夹角的取值范围依次是。
46. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?47. 对不重合的两条直线(建议在解题时,讨论后利用斜率和截距)48. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。
)50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?53. 通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)54. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?七.立体几何56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?63. 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°64.你知道异面直线上两点间的距离公式如何运用吗?65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)68.球及其性质;经纬度定义易混. 经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式. 这些知识你掌握了吗?八.排列、组合和概率69. 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.70.二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为。
二项式系数最大项与展开式中系数最大项易混.二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式.)72. 二项式展开式的通项公式、n次独立重复试验中事件A发生k 次的概率易记混。
通项公式:它是第r+1项而不是第r项;事件A发生k次的概率: .其中k=0,1,2,3,…,n,且0<1,P+Q=1.< p>73.求分布列的解答题你能把步骤写全吗?74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)九.导数及其应用76.在点处可导的定义你还记得吗?它的几何意义和物理意义分别是什么?利用导数可解决哪些问题?具体步骤还记得吗?77.你会用“在其定义域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。
”解决有关函数的单调性问题吗?78.你知道“函数在点处可导”是“函数在点处连续”的什么条件吗?内容来源于:要学习网学科资料库(数学专版)更多数学资料请访问/forum-50-1.html 我们期待您能把本资料上传到百度文库、博客、贴吧等平台与大家分享。