六年级长方体和正方体复习题

合集下载

六年级上长方体和正方体单元综合测试卷

六年级上长方体和正方体单元综合测试卷

六年级上长方体和正方体单元综合测试卷长方体和正方体单元综合测试卷(时间:90分钟总分:100分)一、填空题。

(30分)1.长方体和正方体都有()个面,()条棱,()个顶点。

2.物体所占()的大小叫做物体的体积。

3.在()里里填上合适的单位名称一个药水瓶的容积是200()。

一个仓库的占地面积是30()。

一只热水瓶的容积是2()。

一个集装箱的体积约是40()。

4.4平方米=()平方分米2.5立方米=()立方分米=()升6.7升=()升()毫升8500立方厘米=()毫升=()升5.一个长方体,长5分米,宽4分米,高3分米。

它的表面积是(),体积是(),棱长总和是()。

6.一个正方体的棱长是5厘米,它的表面积是(),体积是()。

7.一个长方体,长6厘米,宽3厘米,高3厘米。

这个长方体有()个面是是完全相同的长方形,长方体的表面积是(),体积是()。

8.一个长方体的体积是96立方分米,高是8分米,它的底面积是()。

9.把30升盐水装入容积是250毫升的盐水瓶里,能装()瓶。

10.把一个长15分米、宽12分米、高10分米的长方体截成一个最大的正方体,这个正方体的体积是()立方分米。

11.体积是1立方米的正方体,可以截成()个棱长是1分米的正方体。

若这些正方体排成一行,成为一个长方体,则这个长方体长()米。

12.把两个棱长为2分米的正方体黏合成一个长方体,黏合成的长方体的表面积比原来两个正方体的表面积的和少(),黏合成的长方体的体积是()。

二、判断题。

(5分)1.容积和体积的计算方法相同,所以物体的体积一定等于容积。

( )2.长方体是特殊的正方体。

()3.表面积相等的两个正方体,体积也相等。

()4.棱长是6米的正方体,体积和表面积相等。

()5.棱长是1米的正方体,体积是1立方米。

()三、选择题。

(8分)1.一个正方体的棱长扩大3倍,表面积扩大(),体积扩大()。

A.3倍B.6倍C.9倍D.27倍2.至少()完全相同的小正方体,才可以拼成一个大正方体。

六年级长方体和正方体练习题

六年级长方体和正方体练习题

六年级长方体和正方体练习题一.填空题。

1、表面积是54平方分米的正方体,它的体积是立方分米。

2、把一个长、宽、高分别是2分米、12厘米、10厘米的长方体铁块熔铸成一个正方体铁块。

这个正方体铁块的体积是立方厘米。

3.一个正方体的棱长总和是72厘米,它的一个面是边长厘米的正方形,它的体积是。

4.至少要个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是平方厘米。

5、一根96厘米的铁丝正好做成了一个长8厘米,宽6厘米的长方体,它的高是厘米。

6、把一根长6米的长方体,切成3段一样的小长方体,表面积增加了3.6平方米。

这个长方体的体积是。

7.把三个棱长都是4厘米的正方体拼成一个长方体,表面积减少了平方厘米,它的体积是立方厘米。

8、做一个长方体的烟囱需要多少平方米铁皮,是求长方体的9、正方体的棱长扩大3倍,体积扩大倍。

10、把一个长8厘米、宽6厘米、高4厘米的的木块锯一个最大的正方体,剩下部分的体积是立方厘米。

二.看图求它们的表面积与体积。

三.实践与应用。

1、正方体的棱长总和是120厘米,它的表面积是多少平方厘米?2、一个底面是正方形的长方体,所在棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?3、一个长方体水箱,底面是一个边长2分米的正方形,高是30厘米,水面高度是15厘米,放入一个石头后,水面的高度是18厘米,石头的体积是多少?4、一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米?5、一块长方形的铁皮,长40厘米,宽30厘米。

从四个角都剪掉边长为5厘米的小正方形后,焊成一个无盖的长方体盒子,这个盒子最多能容纳多少毫升的液体?小学六年级总复习长方体和正方体练习题一、填空题。

1.一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是厘米,宽是厘米,一个这样的面的面积是平方厘米;最小的面长是厘米,宽是厘米,一个这样的面的面积是平方厘米。

【数学试题】六年级数学上册第二单元长方体和正方体总复习试题2

【数学试题】六年级数学上册第二单元长方体和正方体总复习试题2

【数学试题】六年级数学上册第二单元长方体和正方体总复习试题2复习长方体和正方体(二)姓名一、梳理知识1.什么是体积?什么是容积?常用的体积(容积)单位和有哪些?相邻体积单位之间的进率是多少?2.1立方厘米、1立方分米和1立方米?联系生活,试着举个例子。

3.怎样计算长方体的体积?你是怎样发现长方体体积公式的?正方体的体积公式与它有什么联系?4.如何测量不规则物体的体积?(例如,测量土豆的体积)二、基础练习1.同一盒饼干在店里分三堆摆放(如下所示)。

这三堆饼干的体积相等吗?为什么?2.在括号里填上合适的单位名称。

(1)橡皮擦的体积约为6()。

(2)容器的体积约为40()。

(3)水桶的容积大约是12()。

(4)一个西瓜的体积大约是4()。

(5)教室的面积约为56()。

(6)一本数学书的体积约为320()。

3.单位换算3.05立方米=()立方米/分米60毫升=()升450立方厘米=()升()立方分米=800毫升710毫升=()升=()DM34.7升=()立方分米()立方厘米4.冷藏车的车厢是长方体,从内部测量,长4米,宽1.7米,高1.8米。

它的体积是多少立方米?5.一块正方体石料,棱长8分米。

这块石料的体积是多少立方分米?如果1立方分米的石料重2.7千克,这块石料重多少千克?6.长方体木材长3米,横截面为边长为3分米的正方形。

这种木材的体积是多少立方米?7.学校把10.53黄沙铺在一个长6、宽3.5的长方体沙坑里,可以铺多厚?(用方程)三、综合实践1.长度/cwide/Cbase area/c2height/csurface area/c2volume/C3长方体10752.44.819.2正方体6花坛的底部有1.2米高,如图所示。

(1)这个花坛的占地面积是多少平方米?(2)花坛需要多少立方米的土壤?(不包括木条的厚度)(3)做这样一个花坛,四周约需要多少平方米的木条?3.公园入口处有12根长方体圆柱。

六年级数学长方体 正方体试题

六年级数学长方体 正方体试题

六年级数学长方体正方体试题1.相同加数可以写成乘法,如:5+5+5+5=5×4,这样就可以给我们解决问题带来简便.其实相同因数的乘法也可以写成下面的简便形式:9×9=92,2×2×2=23,5×5×5×5=54.那么35=()A.35B.15C.8D.243【答案】D【解析】根据题意,a n表示n个a相乘,所以35=3×3×3×3×3=243,由此做出选择.解:因为35=3×3×3×3×3=243.故选:D.【点评】本题主要考查了有理数的乘方的意义,即a n表示n个a相乘.2.一个铁桶可装水100升,这个桶的体积可能是()A.100立方分米 B.98立方分米 C.105立方分米【答案】C【解析】一个铁桶可装水100升,指的是铁桶的容积,计算容积,要从容器的里面量需要的数据;而物体的体积是指物体所占空间的大小,计算体积,要从容器的外面量需要的数据,故体积大于容积.解:计算容积,要从容器的里面量需要的数据,计算体积,要从容器的外面量需要的数据,故体积大于容积.故选:C.【点评】此题考查容积与体积的区别,计算体积,要从容器的外面量需要的数据,计算容积,要从容器的里面量需要的数据.3.一个长方体的棱长之和是80厘米,长、宽、高的比是5:3:2,这个长方体的体积是立方厘米.【答案】240【解析】根据长方体的棱长总和公式:长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4求出长、宽、高的和,再利用按比例分配的方法,分别求出长、宽、高;再利用长方体的体积公式计算即可.解:长、宽、高的和:80÷4=20(厘米),5+3+2=10,长:20÷10×5=10(厘米),宽:20÷10×3=6(厘米),高:20÷10×2=4(厘米),体积:10×6×4=240(立方厘米);答:这个长方体的体积是240立方厘米.故答案为:240.【点评】此题考查了长方体的棱长总和与长方体的体积公式的综合应用.4.一个长为8分米,宽为5分米,高为6分米的玻璃缸(无盖),缸内装有一些水.放入一个底面半径2分米,高3分米的铁块后,完全淹没且水没有溢出.(1)做这个玻璃缸至少用了多少玻璃?(2)放入铁块后,水面上升了多少厘米?(结果保留整数)【答案】(1)196平方分米(2)196平方分米【解析】(1)已知玻璃缸无盖,所以求需要玻璃的面积也就是这个长方体的5个面的总面积,根据长方体的表面积公式解答即可.(2)首先根据圆锥的体积公式:v=sh,把数据代入公式求出这个圆锥的体积,然后用圆锥的体积除以长方体玻璃缸的底面积即可.解:(1)8×5+5×6×2+8×6×2=40+60+96=196(平方分米);答:作这个玻璃缸至少需要用了196平方分米玻璃.(2)(×3.14×22×3)÷(8×5)==12.56÷40=0.314(分米)≈3(厘米),答:水面上升了约3厘米.【点评】此题主要考查长方体的表面积公式、圆锥的体积公式在实际生活中的应用,关键是熟记公式.5.一个长方体正好能截成三个棱长是2cm的正方体,原来这个长方体的表面积是平方厘米,体积是立方厘米.【答案】56、24.【解析】根据题意可知:长方体的长为2×3=6厘米、宽为2厘米、高为2厘米,根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式:V=abh,代入数据解答即可.解:长:2×3=6(厘米)宽和高为:2厘米,表面积:(6×2+6×2+2×2)×2=(12+12+4)×2=28×2=56(平方厘米)体积:6×2×2=12×2=24(立方厘米)答:原来这个长方体的表面积是56平方厘米,体积是24立方厘米.故答案为:56、24.【点评】此题考查了长方体表面积和体积公式的灵活运用,解题的关键是求出长方体的长宽高各是多少厘米.6.一个正方体的棱长是6分米,则这个正方体的表面积和体积相等.(判断对错)【答案】×【解析】立体图形的表面积是指组成它的所有面的面积和,而其体积是指它所占空间的大小,所以二者意义不一样,不能比较大小.解:尽管棱长是6分米的正方体的体积和表面积在数值上相等,但是因为正方体的表面积是指组成它的所有面的面积和,而其体积是指它所占空间的大小,二者意义不一样,所以不能比较大小.故答案为:×.【点评】此题主要考查正方体表面积和体积的意义.7.从正面观察所看到的图形是()A. B. C.【答案】A【解析】观察图形可知,从正面看到的图形是2层:下层2个正方形,上层1个正方形靠右边,据此即可判断.解:根据题干分析可得,从正面看到的图形是2层:下层2个正方形,上层1个正方形靠右边.故选:A.【点评】此题考查了从不同方向观察问题和几何体,锻炼了学生的空间想象力和抽象思维能力.8.有几个小正方体组成了一个立体图形,下面是从不同方向观察这个立体图形所看到的平面图形。

六年级数学长方体 正方体试题

六年级数学长方体 正方体试题

六年级数学长方体正方体试题1.一颗草莓的体积大约是15 ;一个仓库的占地面积是30 ;一只热水瓶容积是2 ;运货集装箱的体积约是40 .【答案】立方厘米;平方米;升;立方米.【解析】①一颗草莓很小,它的体积用立方厘米作单位.②一个仓库的占地面积用平方米作单位.③一只热水瓶容积用升作单位.④运货集装箱的体积用立方米作单位.解:①一颗草莓的体积大约是15立方厘米,②一个仓库的占地面积是30平方米,③一只热水瓶容积是2升,④运货集装箱的体积约是40立方米.运货集装箱的体积约是40故答案为:立方厘米;平方米;升;立方米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.2.一个长50米、宽40米、深3米的蓄水池占地平方米,这个蓄水池的容积为立方米.【答案】2000、6000.【解析】求蓄水池的占地面积,实际上是求长方体底面的面积,蓄水池的长和宽已知,利用长方形的面积公式:S=ab,解答即可;求这个蓄水池的容积为多少立方米,根据长方体的体积公式:V=abh,代入解答即可.解:50×40=2000(平方米)50×40×3=2000×3=6000(立方米)答:蓄水池占地2000平方米,这个蓄水池的容积为6000立方米.故答案为:2000、6000.【点评】此题考查了长方形的面积公式和长方体的体积公式的灵活运用.3.长方体的6个面中不可能有正方形.(判断对错)【答案】×【解析】解:一般情况长方体的6个都是长方形,特殊情况有两个相对的面是正方形.因此,长方体的6个面中不可能有正方形.此说法错误.故答案为:×.4.正方体的棱长由2厘米变成4厘米后,体积就是原来的8倍.【答案】√【解析】根据正方体的体积公式:v=a3,再根据积的变化规律:积扩大的倍数等于因数扩大倍数的乘积.正方体的棱长由2厘米变成4厘米后,也就是棱长扩大了2倍,那么它的体积就扩大到原来的8倍.据此解答.解:根据分析知:正方体的棱长由2厘米变成4厘米后,体积就是原来的8倍.此说法是正确的.故答案为:√.【点评】此题主要根据正方体的体积公式、积的变化规律进行判断.5.3.02立方米= 立方分米;时= 分.【答案】3020,45.【解析】3.02立方米换算成立方分米数,用3.02乘进率1000;时换算成分数,用乘进率60.解:3.02×1000=3020(立方分米);×60=45(分).故答案为:3020,45.【点评】解决本题关键是要熟记单位间的进率,知道如果是高级单位的名数转化成低级单位的名数,就乘单位间的进率;反之,就除以进率来解决.6.想象一下,连一连.【答案】【解析】根据生活经验、对面积单位、质量单位、长度单位、容积单位和数据大小的认识,可知计量硬币的面积用“平方厘米”做单位;计量一个小鸟的质量用“克”作单位;计量大树的高度用“米”作单位,计量冰箱的体积用“立方米”作单位.解:【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.7.0.75立方米= 立方分米 1500毫升= 升.【答案】750,1.5.【解析】把0.75立方米换算成立方分米数,用0.75乘进率1000;把1500毫升换算成升数,用1500除以进率1000.解:0.75立方米=750立方分米;1500毫升=1.5升.故答案为:750,1.5.【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,反之,则除以单位间的进率.8.一个长方体形状的铁皮烟囱,烟囱高6米,底部是一个边长8分米的正方形.制作3个这样的烟囱至少需要铁皮多少平方米?【答案】76.8平方米.【解析】烟囱是没有上、下底的,所以一节烟囱需要铁皮的面积,就是烟囱4个面的面积,求出一个需要铁皮的面积,再乘4就是制作4个这样的烟囱需要铁皮的数量.据此解答.解:8分米=0.8米,6×0.8×4×4=4.8×4×4=19.2×4=76.8(平方米)答:制作4个这样的烟囱至少需要铁皮76.8平方米.【点评】本题主要考查了学生对长方体特征和表面积计算方法的掌握,本题的重点是让学生知道:烟囱没有上、下底.9.下面的图形中,()是正方体的表面展开图.A.B.C.D.【答案】B【解析】根据正方体展开图的11种特征,选项B属于正方体展开图的“1﹣4﹣1”型,是正方体展开图;选项A、选项C和选项D不属于正方体展开图.解:根据正方体展开图的特征,选项B是正方体展开图;选项A、选项C和选项D不是于正方体展开图.故选:B.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.10.下面三个图形中(每格是正方形),不是正方体表面积展开图是()A. B. C.【答案】A【解析】根据正方体展开图的11种特征,图B和图C是“1 4 1”结构,是正方体的展开图;图A不符合正方体展开图的11种特征,不是正方体的展开图.解:图B和图C是“1 4 1”结构,是正方体的展开图,图A不是正方体的展开图;故选:A.【点评】本题是考查正方体的展开图,培养学生的观察和空间想象能力.。

六年级上册《长方体与正方体》专项练习试题(10套)

六年级上册《长方体与正方体》专项练习试题(10套)

苏教版小学数学六年级上册《长方体与正方体》专项练习试题(10套)(1)(长方体和正方体的认识)一、填空:(38%)1、长方体和正方体都有( ) 个面,( ) 条棱,( ) 个顶点。

2、长方体的每个面都是( )形或有一组对面是( )。

它有( )条棱,平行的( )条棱都相等。

3、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。

4、长方体有()个面,从不同的角度观察一个长方体,最多能看到()个面。

5、一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是(),最大的一个面的面积是()。

6、一个长方体,长4米,宽3米,高2米,它的占地面积最大是()平方米。

7、一个长方体模型,从前面看是从上面看是长方体右面的面积是()平方厘米。

8、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是()、()、()。

二、选择(8%):1、一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。

A、200B、400C、5202、下面的图形中,能按虚线折成正方体的是()。

3、从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如下图) ,它的表面积( ) 。

A.和原来同样大 B.比原来小 C.比原来大 D.无法判断4、用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A、2B、3C、4D、5三、计算下面每个形体的棱长和(6%)。

四、下面各题,列式计算,不写答。

(40%)1、一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和。

2、用钢筋做一个长和宽都是3.5分米,高是10厘米的长方体,需多少分米的钢筋?3、棱长是4分米的正方体,棱长总和是多少分米?4、一个长方体的棱长和是36厘米,从一个顶点出发的三条棱的长度总和是多少厘米?5、同一根长96厘米的铁丝折成一个最大的正方体框架,求正方体框架的棱长。

六年级上册长方体立方体提高卷

六年级上册长方体立方体提高卷

第一单元长方体立方体复习卷一.选择题(共11小题)1.甲,乙两人从相距20千米的两地出发相向而行,一只小狗与甲同时出发向乙奔去,遇到乙后立即掉头向甲跑去,遇到甲后又立即掉头向乙跑去…直到甲乙两人相遇为止.已知甲的速度是6千米/小时,乙的速度是4千米/小时,小狗的速度是13千米/小时,在这一过程中,小狗共跑了()千米.A.18 B.20 C.24 D.262.如图长方形ABCD中,AB:BC=5:4,位于A点的第一只蚂蚁按A→B→C→D→A方向爬行,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿长方形的边爬行,如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.DA B.BC C.CD D.AB3.如图,有一段山路,从A到B是2千米的上坡路,从B到C是4千米的平路,从C到D是2.4千米的上坡路.欢欢和笑笑分别从A、D同时出发,相向而行,他们下坡的速度都是每小时6千米,平路的速度都是每小时4千米,上坡的速度都是每小时2千米,他们经过_______小时相遇.()A.0.2 B.0.3 C.1.2 D.1.34.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙相会需要()A.A B.B C.C D.D5.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.6.一个长方体的底是面积为3平方米的正方形,它的侧面展开图正好是一个正方形,这个长方体的侧面积是()平方米.A.18 B.48 C.547.如图是一个物体长、宽、高的数据,这个物体可能是()A.新华字典 B.数学书C.一A4纸8.把一个长方体截成两个小长方体,棱的条数比原来增加了()条.A.4 B.8 C.129.一个大正方体如果拿出一个小方块后,它的表面积与原来的表面积比较()A.一样大B.减少了C.增大了D.无法比较10.一个长方体底面是正方形,侧面展开也是正方形,那么高是底面边长的()A.4倍B.四分之一 C.2倍D.无法比较11.一个立体图形中,一面画有圈,一面是阴影,第()幅图可能是下面这个立体图形的展开图.A.B.C.D.二.选择题(共6小题)12.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为.13.一个长方体的棱长和为48厘米,长、宽、高的比为3:2:1,这个长方体的表面积是,体积是.14.图A挖去一个角得到图B,若图A的表面积是86平方分米,则图B的表面积是平方分米.15.一个长方体的长、宽、高分别是7厘米、6厘米和5厘米,它的棱长总和是厘米.做这样一个无盖的长方体盒子,需要平方厘米材料.16.一块长25厘米,宽12厘米的,厚8厘米的砖,所占的空间是立方厘米,占地面积最大是平方厘米.17.一个长方体的长、宽、高的比是3:2:1,已知长方体的棱长总和是144厘米,它的体积是立方厘米.三.解答题(共11小题)18.一个长方体,高减少2cm正好成为一个正方体,表面积减少32cm2,求原长方体的体积.19.(2015•)如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?20.(2015春•萧山区期末)把一根1.5米长的长方体木料横截成三段,表面积增加了96平方厘米.这根木料的体积是多少立方厘米?21.(2014春•黄冈期末)小卖部要做一个长280厘米,宽50厘米,高80厘米的玻璃柜台各边都安上角铁,这个柜台需要多少米角铁?22.(2013•宝山区自主招生)一个棱长为5分米的正方体,沿着上下方向切一刀;沿着左右切两刀;沿着前后切3刀.把这个正方体切成了24个大小不一的小长方体.求这些小长方体的表面积之和.23.相邻两个面是正方形的长方体一定是正方体..(判断对错)24.某工厂要建一个长方体污水处理池,长30米,宽10米,深5米,如果每天挖土50立方米,多少天可以完成挖土任务?25.右面是一个长方体的展开图,请同学们看图列式计算它的体积和表面积.(单位:厘米)26.一个长方体的长和宽都是分米,高是宽的.这个长方体中最小的那一个面的面积是多少?27.图中是一个正方体纸盒,在其中的三个面上各画出一条线段构成△ABC,且A、B、C 分别是各棱上的中点,现在将纸盒剪开展成平面,则不可能的展开图是.28.(2016春•房县月考)一个长方体,如果高增加3厘米,就成为一个正方体.这时表面积比原来增加了96平方厘米.原来的长方体的体积是多少立方厘米?29.(2015春•州期中)一块长25厘米,宽12厘米的,厚8厘米的砖,所占的空间是立方厘米,占地面积最大是平方厘米.30.(2012•自主招生)四个完全一样的骰子的六个面上分别写着1、2、3、4、5、6.它们叠放在一起(如图)排成一个长方体.1的对面是,3的对面是,5的对面是.2016参考答案与试题解析一.选择题(共11小题)1.甲,乙两人从相距20千米的两地出发相向而行,一只小狗与甲同时出发向乙奔去,遇到乙后立即掉头向甲跑去,遇到甲后又立即掉头向乙跑去…直到甲乙两人相遇为止.已知甲的速度是6千米/小时,乙的速度是4千米/小时,小狗的速度是13千米/小时,在这一过程中,小狗共跑了()千米.A.18 B.20 C.24 D.26【解答】解:20÷(6+4)×13=2×13=26(千米)答:在这一过程中,小狗共跑了26千米.故选:D.2.如图长方形ABCD中,AB:BC=5:4,位于A点的第一只蚂蚁按A→B→C→D→A方向爬行,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿长方形的边爬行,如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.DA B.BC C.CD D.AB【解答】解:设AB=5份,BC=4份,长方形的周长是:(5+4)×2=18份;18×,=18×,=8份,8﹣5=3份;所以两只蚂蚁第二次相遇在DA边上.故选:A.3.如图,有一段山路,从A到B是2千米的上坡路,从B到C是4千米的平路,从C到D是2.4千米的上坡路.欢欢和笑笑分别从A、D同时出发,相向而行,他们下坡的速度都是每小时6千米,平路的速度都是每小时4千米,上坡的速度都是每小时2千米,他们经过_______小时相遇.()A.0.2 B.0.3 C.1.2 D.1.3【解答】解:①欢欢上坡用的时间是:2÷2=1(小时),②笑笑下坡用的时间是:2.4÷6=0.4(小时);③笑笑先走了平路的路程:(1﹣0.4)×4=2.4(千米);④还剩下的路程(最后欢欢和笑笑共同走的平路):4﹣2.4=1.6(千米);⑤剩下路程需要的时间:1.6÷(4×2)=0.2(小时);⑥相遇共用时间:1+0.2=1.2(小时);答:两人1.2小时后相遇.故选:C.4.正方形ABCD(如图),边长80米,甲从A点,乙从B点,同时沿同方向运动,每分钟的速度甲为135米,乙为120米,每过一个顶点时要多用5秒,出发后,甲与乙相会需要()A.A B.B C.C D.D【解答】解:80÷(135﹣120)=80÷15,=(分钟);÷(80÷135)=÷,=9.×60+(9﹣1)×5=360秒=6分钟,9÷4=2…1,即在B处相会.即甲与乙相会需要6分钟,在B处相会.故选:B.5.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.6.一个长方体的底是面积为3平方米的正方形,它的侧面展开图正好是一个正方形,这个长方体的侧面积是()平方米.A.18 B.48 C.54【解答】解:由分析知:侧面正方形的面积就是底面正方形面积的16倍,即:3×16=48(平方米)答:这个长方形的侧面积是48平方米.7.如图是一个物体长、宽、高的数据,这个物体可能是()A.新华字典 B.数学书C.一A4纸【解答】解:由图可知,这个物体可能是数学书.故选:B.8.把一个长方体截成两个小长方体,棱的条数比原来增加了()条.A.4 B.8 C.12【解答】解:把一个长方体截成两个小长方体,棱的条数比原来增加了12条;故选:C.9.一个大正方体如果拿出一个小方块后,它的表面积与原来的表面积比较()A.一样大B.减少了C.增大了D.无法比较【解答】解:因为拿走在顶点的一个小方块,减少了三个面的同时又增加了三个面,所以大正方体的表面积不变.故选:A.10.一个长方体底面是正方形,侧面展开也是正方形,那么高是底面边长的()A.4倍B.四分之一 C.2倍D.无法比较【解答】解:一个长方体的侧面展开得到一个正方形,说明这个长方体的底面周长和高相等,如果底面也是正方形,根据正方形的周长公式:c=4a,也就是正方形的周长是边长的4倍,由于这个长方体的底面周长和高相等,所以它的高是底面边长的4倍.故选:A.11.一个立体图形中,一面画有圈,一面是阴影,第()幅图可能是下面这个立体图形的展开图.A.B.C.D.【解答】解:圆圈的面与阴影的面是相连的只有C是正确的.故答案选:C.二.选择题(共6小题)12.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为60千米/小时.【解答】解:两船的速度和是:210÷2=105(千米/小时),两船的速度差是:210÷14=15(千米/小时);由和差公式可得:甲船速度是:(105+15)÷2=60(千米/小时).答:甲船的速度为60千米/时.故答案为:60千米/时.13.一个长方体的棱长和为48厘米,长、宽、高的比为3:2:1,这个长方体的表面积是88平方厘米,体积是48立方厘米.【解答】解;一个长、宽、高的长度和:48÷4=12(厘米),长方体的长:12×=12×=6(厘米),长方体的宽:12×=12×=4(厘米),长方体的高:12×=12×=2(厘米),长方体的表面积:(6×4+6×2+4×2)×2=44×2=88(平方厘米);体积:6×4×2=24×2=48(立方厘米).答:长方体的表面积是88平方厘米,体积是48立方厘米.故答案为:88平方厘米,48立方厘米.14.图A挖去一个角得到图B,若图A的表面积是86平方分米,则图B的表面积是86平方分米.【解答】解:图A挖去一个角得到图B,在这一过程中减少了3个小正方形的面,又增加了3个小正方形的面,所以其表面积与原正方体的表面积相等,还是86平方分米,答:图B的表面积是86平方分米.故答案为:86.15.一个长方体的长、宽、高分别是7厘米、6厘米和5厘米,它的棱长总和是72厘米.做这样一个无盖的长方体盒子,需要172平方厘米材料.【解答】解:(7+6+5)×4,=18×4,=72(厘米);7×6+(7×5+6×5)×2,=42+(35+30)×2,=42+65×2,=42+130,=172(平方厘米);答:它的棱长总和是72厘米,需要172平方厘米的材料.故答案为:72,172.16.一块长25厘米,宽12厘米的,厚8厘米的砖,所占的空间是2400立方厘米,占地面积最大是300平方厘米.【解答】解:25×12×8=2400(立方厘米);25×12=300(平方厘米);答:这个砖所占的空间是2400立方厘米,占地面最大是300平方厘米.故答案为:2400、300.17.一个长方体的长、宽、高的比是3:2:1,已知长方体的棱长总和是144厘米,它的体积是1296立方厘米.【解答】解:3+2+1=6(份),144÷4×=36×=18(厘米),144÷4×=36×=12(厘米),144÷4×=36×=6(厘米),18×12×6=1296(立方厘米),答:它的体积是1296立方厘米.故答案为:1296.三.选择题(共11小题)18.一个长方体,高减少2cm正好成为一个正方体,表面积减少32cm2,求原长方体的体积.【解答】解:原来长方体的底面边长是:32÷4÷2=8÷2=4(厘米),原来长方体的高是:4+6=6(厘米),原来的体积是:4×4×6=16×6=96(立方厘米);答:原来长方体的体积是96立方厘米.19.如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?【解答】解:42×6+22×4+12×4,=96+16+4,=116(平方厘米);答:最后得到的立方体图形的表面积是116平方厘米.20.把一根1.5米长的长方体木料横截成三段,表面积增加了96平方厘米.这根木料的体积是多少立方厘米?【解答】解:1.5米=150厘米96÷4×150=24×150=3600(立方厘米)答:这根木料原来的体积是3600立方厘米.21.小卖部要做一个长280厘米,宽50厘米,高80厘米的玻璃柜台各边都安上角铁,这个柜台需要多少米角铁?【解答】解:(280+50+80)×4=410×4=1640(厘米)1640厘米=16.4米答:这个柜台需要16.4米角铁.22.一个棱长为5分米的正方体,沿着上下方向切一刀;沿着左右切两刀;沿着前后切3刀.把这个正方体切成了24个大小不一的小长方体.求这些小长方体的表面积之和.【解答】解:5×5×(12+6),=25×18,=450(平方分米);答:这些小长方体的表面积之和是450平方分米.23.相邻两个面是正方形的长方体一定是正方体.√.(判断对错)【解答】解:由分析知:相邻两个面是正方形的长方体一定是正方体;故答案为:√.24.某工厂要建一个长方体污水处理池,长30米,宽10米,深5米,如果每天挖土50立方米,多少天可以完成挖土任务?【解答】解:30×10×5÷50=1500÷50=30(天)答:30天可以完成挖土任务.25.右面是一个长方体的展开图,请同学们看图列式计算它的体积和表面积.(单位:厘米)【解答】解:长方体的宽是:11﹣3×2=5(厘米),长方体的体积:7×5×3,=35×3,=105(立方厘米);长方体的表面积:(7×5+7×3+3×5)×2,=(35+21+15)×2,=71×2,=142(平方厘米);答:长方体的体积是105立方厘米;表面积是142平方厘米.26.一个长方体的长和宽都是分米,高是宽的.这个长方体中最小的那一个面的面积是多少?【解答】解:由题意知:高为:×=(分米),最小的面为长方体的侧面:×=(平方分米),答:这个长方体中最小的那一个面的面积是平方分米.27.图中是一个正方体纸盒,在其中的三个面上各画出一条线段构成△ABC,且A、B、C 分别是各棱上的中点,现在将纸盒剪开展成平面,则不可能的展开图是B.【解答】解:如图,选项A、C、D折叠后画斜线的三个面都会相交于一点,都符合题意,只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点;故选:B.28.一个长方体,如果高增加3厘米,就成为一个正方体.这时表面积比原来增加了96平方厘米.原来的长方体的体积是多少立方厘米?【解答】解:底面周长:96÷3=32(厘米);长方体的底面边长:32÷4=8(厘米);长方体的高:8﹣3=5(厘米);体积:8×8×5=320(立方厘米);答:原来这个长方体的体积是320立方厘米.四.选择题(共1小题)29.一块长25厘米,宽12厘米的,厚8厘米的砖,所占的空间是2400立方厘米,占地面积最大是300平方厘米.【解答】解:25×12×8=2400(立方厘米);25×12=300(平方厘米);答:这个砖所占的空间是2400立方厘米,占地面最大是300平方厘米.故答案为:2400、300.五.填空题(共1小题)30.四个完全一样的骰子的六个面上分别写着1、2、3、4、5、6.它们叠放在一起(如图)排成一个长方体.1的对面是6,3的对面是2,5的对面是4.【解答】解:由图形可知,看到的数字1出现的次数最多,首先排除与1相邻的数字,1的对面不可能是2,3,4,5;所以1的对面是6;2的对面不可能是1,6,4,5;所以2的对面是3;剩下的5的对面就是4.答:1的对面是6,3的对面是2,5的对面是4.故答案为:6,2,4.。

六年级下册数学总复习试题-长方体和正方体的体积专项练 全国版(含答案)

六年级下册数学总复习试题-长方体和正方体的体积专项练 全国版(含答案)

长方体和正方体的体积一、单选题1.长方体的6个面()。

A. 一定都是长方形B. 一定都是正方形C. 可能有长方形也可能有正方形2.一个长方体水箱占地15平方米,箱深1.6米,5个这样的水箱可装水( )。

A. 24立方米B. 96立方米C. 120立方米D. 80立方米3.一个长方体的长、宽、高分别为a米、b米、h米,如果高增加3米,新的长方体的体积比原来增加()A. abhB. abh+3C. 3abD. 3h4.正方体棱长扩大2倍,体积扩大()倍。

A. 2倍B. 4倍C. 6倍D. 8倍5.将一根底面是正方形,长为2米的长方体木料削成一根圆柱形木料,削掉部分的木料占长方体木料的()A. B. C. D. 1﹣6.“长方体的体积越大,它的底面积就越大”这一说法是( )A. 正确B. 错误7.一块长方体橡皮泥捏成正方体后,体积()了.A. 大B. 小C. 不变8.一个长方体游泳池长25米,宽14米,高2米,它的占地面积是()。

A. 350平方米B. 50平方米C. 28平方米9.运动员领奖台所占空间的大小,就是这个领奖台的()A. 体积B. 容积C. 表面积10.甲正方体的表面积是乙正方体表面积的4倍,甲正方体的体积是乙正方体体积的( )。

A. 2倍B. 4倍C. 8倍D. 16倍二、判断题11.长方体中,底面积越大,体积也越大。

12.一块铁,第一次把它做成长方体,第二次熔化后把它做成正方体,它们的体积相等13.两个同样大的正方体拼成一个长方体后,体积、表面积都不变。

14.圆柱体、长方体、正方体的体积都可以用“底面积×高”来计算。

15.棱长是6厘米的正方体的表面积和体积相等.(判断对错)16.冰箱的体积就是冰箱的容积。

17.长方体中,底面积越大,体积也越大.18.当正方体的棱长是6厘米时,它的表面积和体积就相同。

19.一个正方体的棱长是3厘米,它的体积是18立方厘米20.如果一个圆柱体与一个长方体的底面积和高都相等,那么它们的体积也一定相等.________.(判断对错)三、填空题21.用2个棱长3厘米的小正方体粘合成一个长方体,这个长方体的长是________厘米,宽是________厘米,高是________厘米.它的表面积是________平方厘米,体积是________立方厘米.22.一个长方体铁皮油箱的容积是112升,底面是边长4分米的正方形,如果不计铁皮的厚度,这个油箱至少用了________平方分米的铁皮做成.23.一个长方体的长16厘米,宽5厘米,高是7厘米,它的表面积是________平方厘米,体积是________立方厘米。

江苏名校六年级上册数学第一单元《长方体和正方体》常考题分类(上)

江苏名校六年级上册数学第一单元《长方体和正方体》常考题分类(上)

江苏名校六上第一单元常考题分类(上)《长方体和正方体》一、包装带长度问题1. 用一根彩带按如图所示的那样包装一个礼品盒. 已知礼品盒的长、宽、高分别为50厘米、40厘米、15厘米,打结处用了20厘米,那么包装这个礼品盒至少需要彩带多少厘米?2. 如图捆扎两个食品盒,每个食品盒的长、宽、高分别是18厘米、12厘米、6厘米,如图那样捆扎并留下18厘米长为手提环,这样一共需要厘米长的塑料带.3. 蛋糕店用一根彩带为顾客捆扎糕点,每个糕点盒的长、宽、高分别是15厘米、12厘米和4厘米。

将两个糕点盒像如图那样捆扎(打结处长25厘米),至少需要彩带多少厘米?4. 如图,一个长方体纸箱长6dm,宽和高都是3dm. 如果用绳子将纸箱按如图所示方式包扎,打结处共用绳子3dm. 一共要用多长的绳子?5. 父亲节,小芳送给爸爸一份生日礼物,如图:(1)礼品盒的体积是多少立方厘米?(2)如果用彩纸包装,至少要用多少平方厘米的彩纸?(3)用彩带捆扎,至少需要多少厘米的彩带?(打结处用16厘米)二、侧面展开图问题6. 如图,一个长方体的底面是正方形,侧面展开也是正方形。

这个长方体的表面积是2cm,体积是3cm。

7. 一个长方体,高8分米,底面长3分米,侧面展开正好是一个正方形。

这个长方体的表面积是多少?8. 一个长方体,底面是一个边长为8厘米的正方形,侧面展开后也是一个正方形,这个长方体的表面积是平方厘米,体积是立方厘米。

9. 把一张正方形铁皮沿虚线折(如图),围成一个长方体水箱的侧面。

给水箱配的下底面积有多少平方分米?做成的水箱能存多少升水?10. 用一张长6厘米,宽4厘米的长方形纸片折成一个长方体的侧面,围成长方体空间的体积最大是多少立方厘米?。

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)

六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮?它的容积有多少立方厘米?(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.1【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.40【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;33 :假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.24【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5【考点】8G:长方体的特征.【专题】12 :应用题;3B :代数方法;462:立体图形的认识与计算.【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是52平方厘米.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据长方体的特征.相对面的面积相等,已知长方体相邻三个面的面积,求这个长方体的表面积,也就是用相邻三个面的面积和乘2即可,据此解答.【解答】解:(6+8+12)×2=26×2=52(平方厘米)答:这个长方体的表面积是52平方厘米.故答案为:52.【点评】此题考查的目的是理解掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2016秋•无锡期末)一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是64平方厘米,体积是32立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】12 :应用题;17 :综合填空题;462:立体图形的认识与计算.【分析】根据题意可知,一个长方体如果宽增加2厘米,就变成了一个正方体;说明长和高相等且比宽大2厘米,因此增加的32平方厘米是4个同样的长方形的面积和;由此可以求长方体的长=(32÷4)÷2=4厘米,由于长比宽多2厘米,那么宽=4﹣2=2厘米,由此再利用长方体的体积公式和表面积计算公式计算即可解答.【解答】解:32÷4÷2=4(厘米)4﹣2=2(厘米)(1)4×4×2+4×2×4=32+32=64(平方厘米)答:原来长方体的表面积是64平方厘米.(2)4×4×2=16×2=32(立方厘米)答:原来长方体的体积是32立方厘米.故答案为:64,32.【点评】本题主要考查长方体正方体表面积的实际应用,解答本题的关键是根据宽增加2cm,就变成一个正方体,可知增加的部分是长为2厘米的4个面,从而可以分别求出长方体的长、宽、高,进而利用长方体的表面积和体积的计算方法即可求解.13.(2016春•未央区期末)一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是54平方米,体积是27立方米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】把一个正方体切成两个完全相同的长方体后,则表面积增加了两个边长和原来正方体棱长相同的两个横截面的面积,表面积增加了18平方米,则每个横截面的面积为18÷2=9平方米,即可求出正方体的边长为3米,再利用正方体的表面积公式S=6a2,体积公式V=a3,即可解答.【解答】解:18÷2=9(平方米)因为3×3=9,所以原来正方体的棱长是3米,表面积:3×3×6=9×6=54(平方米)体积:3×3×3=9×3=27(立方米)答:这个木块原来的表面积是54平方米,体积是27立方米.故答案为:54平方米、27立方米.【点评】此题主要考查正方体表面积公式和体积的计算,关键是求出正方体的棱长,再把数据代入表面积和体积公式解答即可.14.(2016春•仁怀市校级期末)一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是 3.2dm.【考点】AC:长方体和正方体的体积.【分析】(1)根据正方体的体积=棱长×棱长×棱长即可解答;(2)锻造前后的体积不变,根据长方体的体积公式,用上面求出的正方体的体积,除以这个长方体的底面积,即可得出长方体的高.【解答】解:(1)正方体钢坯的体积是:4×4×4=64(立方分米);(2)64÷20=3.2(分米),答:一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是3.2分米.故答案为:64;3.2.【点评】此题考查了正方体和长方体的体积公式的灵活应用,抓住锻造前后的体积不变,是解决此类问题的关键.15.(2016春•日照期末)一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是800立方分米.【考点】AC:长方体和正方体的体积.【分析】根据长方体的面的特征,它的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;由题意可知,一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,增加了两个截面的面积,0.8÷2=0.4平方米,长方体的体积=底面积×高;由此解答.【解答】解:1立方米=1000立方分米;0.8÷2×2=0.4×2=0.8(立方米);0.8立方米=800立方分米;答:这段长方体钢材的体积是800立方分米.故答案为:800.【点评】此题主要考查长方体的体积计算,关键是理解沿横截面截成两段后,表面积增加了0.8平方米,增加的是两个截面的面积即底面积,然后根据体积公式解答.16.(2016春•抚州校级期末)用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是8立方米.【考点】AC:长方体和正方体的体积;8G:长方体的特征.【专题】462:立体图形的认识与计算.【分析】用一根24分米长的铁丝围成一个最大的正方体形状的框架,也就是这个正方体的棱长总和是24分米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:24÷12=2(分米),2×2×2=8(立方分米),答:这个正方体的体积是8立方分米.故答案为:8.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用,关键是熟记公式.17.(2016秋•泰兴市校级期中)一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.【考点】8G:长方体的特征;AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】用长60厘米的铁丝围一个长方体框架,也就是这个长方体的棱长总和是60厘米,用棱长总和除以4求出长、宽、高的和,已知长方体的长是8厘米,宽是5厘米,用长、宽、高的和减去长、宽,即可求出高,再根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,把数据分别代入公式解答.【解答】解:60÷4﹣8﹣5=15﹣8﹣5=2(厘米)表面积:(8×5+5×2+8×2)×2=(40+10+16)×2=62×2=124(平方厘米)体积:8×5×2=40×2=80(立方厘米)答:这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.故答案为:2、124、80.【点评】此题主要考查长方体的棱长占公式、表面积公式、体积公式的灵活运用,关键是求出长方体的高.三.判断题(共5小题)18.(2017春•渭源县校级期末)正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍.×.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】18 :综合判断题;39 :找“定”法;462:立体图形的认识与计算.【分析】依据正方体的表面积公式S=a×a×6进行解答即可.【解答】解:原来的表面积:S=a×a×6=6a2,现在的表面积:S=2a×2a×6=24a2,表面积扩大:24a2÷6a2=4倍.所以题干的说法是错误的.故答案为:×.【点评】此题主要考查正方体的表面积公式的灵活应用.19.(2016•玉溪模拟)棱长为6cm的正方体的体积与表面积相等.×.(判断对错)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.【解答】解:表面积:6×6×6=216(平方厘米)体积:6×6×6=216(立方厘米)因为表面积和体积不是同类量,无法进行比较.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.20.(2016春•正定县校级期末)底面周长是8分米的正方体,它的表面积是24平方分米.√.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的特征,正方体的6个面是完全相同的正方形,已知它的底面周长是8分米,首先用底面周长除以4求出底面边长,再根据正方体的表面积公式:s=6a2,把数据代入公式求出它的表面积,然后与24平方分米进行比较即可.【解答】解:8÷4=2(分米),2×2×6=4×6=24(平方分米),答:它的表面积是24平方分米.故答案为:√.【点评】此题主要考查正方形的周长公式、正方体的表面积公式的灵活运用,关键是熟记公式.21.(2016春•仁怀市校级期末)如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.×(判断对错)【考点】AC:长方体和正方体的体积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据长方体的体积计算方法和积的变化规律,长方体的体积=长×宽×高,积扩大的倍数等于因数扩大倍数的乘积.由此解答.【解答】解:长方体的体积=长×宽×高,长、宽、高都扩大3倍,它的体积就扩大:3×3×3=27倍;所以“如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍”的说法是错误的.故答案为:×.【点评】此题主要根据长方体的体积计算方法和积的变化规律解决问题.22.(2016春•黎平县校级期末)把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.√(判断对错)【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.将一个长方体铁块锻造成正方体,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体的铁块锻造成正方体的铁块,形状改变了,但体积不变,所以本题说法正确;故答案为:√.【点评】此题主要考查了学生对正方体表面积及体积公式的掌握应用情况.四.解答题(共10小题)23.(2017春•渭源县校级期末)如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】(1)溢出的水的体积就等于长方体的体积,利用长方体的体积公式即可得解;(2)求包装纸的面积实际上是求长方体的面积,利用长方体的表面积公式即可求解.【解答】解:(1)13×2×8=208(立方厘米);答:会有208立方厘米水溢出来.(2)(13×2+13×8+2×8)×2,=(26+104+16)×2,=146×2,=292(平方厘米);答:至少需要292平方厘米的包装纸.【点评】此题主要考查长方体的表面积和体积的计算方法的灵活应用.24.(2016•安溪县模拟)求出如图中长方体的体积和表面积.(单位:米)【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,已知长是5厘米,宽是3厘米,高是4厘米.把数据分别代入公式解答.【解答】解:(3×4+3×5+4×5)×2=(12+15+20)×2=47×2=94(平方米)3×4×5=60(立方米)答:这个长方体的表面积是94平方米,体积是60立方米.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.25.(2016秋•玄武区期末)看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)【考点】8L:长方体的展开图;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】我们通过观察得到这个长方体的长是6分米,宽是9﹣6=3分米,高是11﹣3=8厘米,由此运用长方体的体积公式进行解答即可.【解答】解:长方体的体积:6×(9﹣6)×(11﹣3),=6×3×8,=144(立方厘米);答;这个纸盒的表面积是136平方厘米,体积是80立方厘米.【点评】本题考查了学生对长方体的体积公式的运用掌握情况.重点考查了空间想象能力.26.(2016秋•毕节市期中)一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?【考点】AB:长方体和正方体的表面积.【分析】由题意知,粉刷的面积=教室的顶面面积+四面墙壁的面积﹣门窗和黑板的面积,据此列式解答即可.【解答】解:2×(8.5×4.2+6×4.2)+8.5×6﹣35.8=2×60.9+51﹣35.8=121.8+51﹣35.8=137(平方米).答:粉刷的面积有137平方米.【点评】本题主要考查长方体的表面积的知识点,长方体的表面积=2(长×宽+长×高+宽×高).本题需要注意减去地面的面积和教室的门窗和黑板的面积.27.(2016春•扬州校级期末)一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;462:立体图形的认识与计算.【分析】要在四壁和池底粉刷,只求它的5个面的总面积,根据长方体的表面积公式:S=2ab+2ah+2bh进行解答.【解答】解:(50×20+50×2+20×2)×2﹣50×20=(1000+100+40)×2﹣1000=1140×2﹣1000=2280﹣1000=1280(平方米)答:粉刷面积是1280平方米.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行解答问题.。

六年级上册《长方体与正方体》专项练习试题(10套)

六年级上册《长方体与正方体》专项练习试题(10套)

(1)(长方体和正方体的认识)一、填空:(38%)1、长方体和正方体都有( ) 个面,( ) 条棱,( ) 个顶点。

2、长方体的每个面都是()形或有一组对面是()。

它有()条棱,平行的()条棱都相等。

3、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。

4、长方体有()个面,从不同的角度观察一个长方体,最多能看到()个面。

5、一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是(),最大的一个面的面积是()。

6、一个长方体,长4米,宽3米,高2米,它的占地面积最大是()平方米。

7、一个长方体模型,从前面看是从上面看是长方体右面的面积是()平方厘米。

8、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是()、()、()。

二、选择(8%):1、一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。

A、200B、400C、5202、下面的图形中,能按虚线折成正方体的是()。

3、从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如下图) ,它的表面积( ) 。

A.和原来同样大B.比原来小C.比原来大D.无法判断4、用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A、2B、3C、4D、5三、计算下面每个形体的棱长和(6%)。

四、下面各题,列式计算,不写答。

(40%)1、一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和。

2、用钢筋做一个长和宽都是分米,高是10厘米的长方体,需多少分米的钢筋3、棱长是4分米的正方体,棱长总和是多少分米4、一个长方体的棱长和是36厘米,从一个顶点出发的三条棱的长度总和是多少厘米5、同一根长96厘米的铁丝折成一个最大的正方体框架,求正方体框架的棱长。

6、一个长方体的长是15厘米,宽是12厘米,棱长总和是148厘米,求它的高。

7、两根同样长的铁丝焊一个长方体和正方体,长方体长7厘米,宽5厘米,高3厘米,求正方体的棱长。

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析1.右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.2.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.3.(2012•桐庐县)如图的立体图形是用边长为1厘米的小正方体积木叠成的.这个立体图形的表面积是平方厘米,体积是立方厘米.【答案】72,30【解析】(1)这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题;(2)根据题干,这个几何体的体积就是这些小正方体的体积之和,棱长1厘米的正方体的体积是1立方厘米,由此只要数出有几个小正方体就能求得这个几何体的体积.解答:解:(1)图中几何体露出的面有:10×4+16×2=72(个),所以这个几何体的表面积是:1×1×72=72(平方厘米);(2)这个几何体共有4层组成,所以共有小正方体的个数为:1+4+9+16=30(个),所以这个几何体的体积为:1×1×1×30=30(立方厘米);答:这个图形的表面积是72平方厘米,体积是30立方厘米.故答案为:72,30.点评:此题考查了观察几何体的方法的灵活应用;抓住这个几何体的体积等于这些小正方体的体积之和;几何体的表面积是露出的小正方体的面的面积之和是解决此类问题的关键.4.一块长方形铁皮,长20厘米,宽16厘米,在它的四个角分别减去边长4厘米的正方形,然后焊成一个无盖的铁盒子,它的容积是多少?焊这个盒子至少用多少铁皮?【答案】铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.【解析】计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个4厘米即是盒子的长、宽,高是4厘米.根据长方体的容积公式解答即可;求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长4厘米的正方形的面积.解答:解;(20﹣4﹣4)×(16﹣4﹣4)×4=12×8×4=384(立方厘米);20×16﹣4×4×4=320﹣64=256(平方厘米);答:铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.5.用铁丝做棱长8厘米的正方体模型一个,至少用铁丝厘米.【答案】96【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12.把数据代入棱长总和公式解答即可.解答:解:8×12=96(厘米)答:至少需要铁丝96厘米.故答案为:96.点评:此题主要考查正方体的特征及棱长总和的计算方法.6.一个长方体铁皮桶,底面是一个周长为1209厘米的正方形,高30厘米,这个桶最多可装水多少升?(保留整升数)【答案】这个桶最多可装水2741升【解析】先计算出油桶的底面积,再依据长方体的体积公式即可求出油的体积即可.解答:解:(1)1209÷4=302.25(厘米)302.25×302.25×30=2740651.875(立方厘米)≈2741(升)答:这个桶最多可装水2741升.点评:此题主要考查的是长方体表面积和长方体体积公式的灵活应用.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A.36平方厘米B.72平方厘米C.108平方厘米D.216平方厘米【答案】D【解析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.解答:解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D9.两个棱长5厘米的正方体拼成一个长方体,这个长方体的棱长总和是120厘米..(判断对错)【答案】错误.【解析】根据题意,这个长方体的长变为10厘米,但是宽和高没变还是5厘米,由此即可判断.解:(10+5+5)×4=80厘米,所以原题说法错误.10.把你的拳头伸进装满水的容器中,溢出来的水约()A.1.3立方米B.13立方分米C.130立方厘米D.1300毫升【答案】C【解析】一只拳头伸进装满水的脸盆中,溢出来的水的体积就是拳头的体积,根据生活经验可以知道,人的拳头的体积可能是130立方厘米;由此解答即可.解答:解:把你的拳头伸进装满水的容器中,溢出来的水约130立方厘米;故选:C.点评:此题考查数的估算,根据生活经验和所学知识求解.11.把32厘米的钢筋折成一个最大的正方形,它的面积是平方厘米,如果折成一个最大正方体,它的体积是立方厘米.【答案】64,.【解析】把32厘米的钢筋折成一个最大的正方形,它的边长是32÷4=8厘米,根据正方形的面积=边长×边长可求出它的面积,如果折成一个最大的正方体,它的棱长是32÷12=厘米,根据正方体的体积=棱长×棱长×棱长可求出它的体积,据此解答.解答:解:32÷4=8(厘米)8×8=64(平方厘米)32÷12=(厘米)××=(立方厘米)答:它的面积是64平方厘米,如果折成一个最大正方体,它的体积是立方厘米.故答案为:64,.点评:本题的重点是求出围成的正方形的边长和正方体的棱长,再根据正方形的面积公式和正方体的体积公式进行解答.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.一个长方体正好可以切成3个一样的正方体,切开后每个正方体的表面积是12平方厘米,那么原来这个长方体的表面积是()平方厘米.A.36B.30C.28D.24【答案】C【解析】解:12×3﹣(12÷6)×4,=36﹣8,=28(平方厘米);答:原来这个长方体的表面积是28平方厘米;故选:C.14.一个棱长是4分米的正方体,棱长总和是()分米.A.16B.24C.32D.48【答案】D【解析】一个正方体有12条棱,棱长总和为12条棱的长度和.解:4×12=48(分米).故选:D.【点评】此题考查计算正方体的棱长总和的方法,即用棱长乘12即可.15.一块正方体的石头,棱长是5分米,每立方分米的石头大约重2.7千克,这块石头重有多少千克?【答案】337.5千克【解析】根据正方体的体积计算公式求出它的体积,再求它的质量即可.解:5×5×5=125(立方分米);2.7×125=337.5(千克);答:这块石头重有337.5千克.【点评】此题主要考查正方体的体积计算方法,能够利用正方体的体积计算方法解决有关的实际问题.16.有一块棱长是8厘米的正方体的铁皮,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?【答案】25.6厘米【解析】先利用正方体的体积V=a3,求出这块铁块的体积,因为这块铁块的体积是不变的,于是可以利用长方体的体积V=Sh求出溶铸成的长方体的长.解:8×8×8÷20=512÷20=25.6(厘米)答:这个长方体的长是25.6厘米.【点评】此题主要考查正方体和长方体的体积的计算方法在实际中的应用,关键是明白:这块铁块的体积是不变的.17.从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如图),它的表面积()A.和原来同样大B.比原来小C.比原来大D.无法判断【答案】A【解析】从这一个体积是30立方厘米的长方体木块中,挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个面.所以长方体的表面积没发生变化.解:因为挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个,所以长方体的表面积没发生变化.故选:A.【点评】本题考查了关于长方体的表面积的问题,考查了学生观察,分析,解决问题的能力.18.如图是长方体展开图,测量需要的数据,并计算出长方体体积.长方体的长是厘米,宽是厘米,高是厘米.【答案】2.5、1.8、0.9.【解析】首先测量出这个长方体的长、宽、高,再根据长方体的体积公式:v=abh,把数据代入公式解答.解:如图:2.5×1.8×0.9=4.05(立方厘米),答:这个长方体的体积是4.05立方厘米.故答案为:2.5、1.8、0.9.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的体积公式的灵活运用.19.把一个大正方体切割成27个同样大小的小正方体后,3面涂色的有个.1面涂色的有________ 个.【答案】8,6.【解析】根据只有一面涂色的小正方体在每个正方体的面上,只有2面涂色的小正方体在长方体的棱长上(不包括8个顶点处的小正方体)3面三面涂色的小正方体都在顶点处,即可解答问题.解:3×3×3=27,一个大正方体切割成27个同样大小的小正方体,则每条棱上有3个小正方体,大正方体8个顶点上各有1个3面涂色的小正方体,因此三面涂色的小正方体一共有8个;每个面的正中间的一个只有一面涂色,故只有一面涂色的正方体有6个;故答案为:8,6.【点评】抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.至少8个小正方体才能拼成一个大一些的正方体..【答案】√【解析】要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,由此即可求得小正方体的个数.解:要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,所以使用的小正方体个数最少是:2×2×2=8(个).故答案为:√.【点评】此题考查了小正方体拼组大正方体的特点的灵活应用.21.有一个长方体,长是a米,宽是b米,高是h米,若把它的高增加5米,则这个长方体的体积增加()A.abh+5B.ab(h+5)C.5ab D.以上都不是【答案】C【解析】此题可直接考虑,长方体的高增加5米,而长和宽不变增加的部分仍是一个长方体,由长方体的体积计算公式直接得到结果.解:高增加5米,而长和宽不变,增加的部分是一个长是a米,宽是b米,高是5米的长方体,所以它的体积V=5ab;故选C.【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高.22. 85000毫升= 升= 立方米.【答案】85,0.085.【解析】低级单位毫升化高级单位升除以进率1000;化高级单位立方米除以进率1000000.解:85000毫升=85升=0.085立方米.故答案为:85,0.085.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.23.一个油桶可装200L汽油,它的()是200L.A.体积B.容积C.表面积D.重量【答案】B【解析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答.解:一个油桶可装200L汽油,它的容积是200L.故选:B.【点评】此题考查的目的是理解掌握容积的意义及应用.24.用一根铁丝焊接成一个长6厘米,宽5厘米,高4厘米的长方体框架,至少需要铁丝厘米,如果将这根铁丝改围成一个正方体框架,这个正方体的体积是立方厘米.【答案】60,125.【解析】根据长方体的棱长总和=(长+宽+高)×4,把数据代入公式即可求出这根铁丝的长度,再根据正方体的特征,正方体的12条棱的长度都相等,因此,用这根铁丝的长度除以12求出正方体的棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答.解:(6+5+4)×4=15×4=60(厘米),60÷12=5(厘米),5×5×5=125(立方厘米),答:至少需要铁丝60厘米,这根正方体的体积是125立方厘米.故答案为:60,125.【点评】此题主要考查长方体、正方体的棱长总和公式、以及正方体的体积公式的灵活运用,关键是熟记公式.25.如图,正方体木块的表面积是96平方厘米。

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析

六年级数学长方体和正方体试题答案及解析1.从由8个棱长是1厘米的小正方体拼成的大正方体中,拿走一个小正方体,如图,这时它的表面积是()平方厘米。

A.18 B.21 C.24【答案】C【解析】由题意可知,拿走一个小正方体减少了3个面,又增加了3个面,现在图形的表面积就等于原来大正方体的表面积,大正方体的棱长可求,从而可以求出其表面积。

解:(1+1)×(1+1)×6=24(平方厘米)答:图形的表面积是24平方厘米。

故选:C【考点】简单的立方体切拼问题;长方体和正方体的表面积。

2.(2009•武昌区)有两盒长方形的糖果,长、宽、高分别是15cm、10cm、3cm,用包装纸将它们全封闭包装在一起,怎样包装最节约包装纸?请计算出包装纸的面积(接缝处忽略不计).【答案】将糖果盒的最大面相粘合最节省包装纸,包装纸的面积是600平方厘米【解析】把这两个长方体糖果盒的15×10面相粘合,得到的大长方体的表面积最小,比原来两个糖果盒的表面积减少了2个最大的面,最节约包装纸,由此即可解答.解答:解:(15×10+15×3+10×3)×2×2﹣15×10×2,=(150+45+30)×4﹣300,=225×4﹣300,=900﹣300,=600(平方厘米);答:将糖果盒的最大面相粘合最节省包装纸,包装纸的面积是600平方厘米.点评:抓住两个长方体拼组一个大长方体的方法:最大面相粘合,得到的大长方体的表面积最小;最小面相粘合,得到的大长方体的表面积最大.3.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.4.(2012•慈溪市)一个底面长25厘米,宽20厘米的长方体容器,里面盛有一些水,当把一个正方体木块放入水中时,木块的二分之一没入水中,此时水面升高了1厘米,问正方体木块的棱长是多少?【答案】正方体木块的棱长是10厘米【解析】升高了1厘米部分水的体积就是木块体积的二分之一,这部分水的体积就等于长25厘米,宽20厘米,高1厘米的长方体的体积,根据长方体的体积=长×宽×高,求出这个体积,然后再乘2,就是正方体木块的体积,再分解因数,即可得出答案.解答:解:25×20×1×2,=500×2,=1000(立方厘米),1000=10×10×10,所以,正方体木块的棱长是10厘米;答:正方体木块的棱长是10厘米.点评:本题关键是根据等积变形,明确升高了1厘米部分水的体积就是木块体积的二分之一.5.右图是一个棱长为2厘米的正方体,将它挖掉一个棱长为1厘米的小正方体后,它的表面积()A.比原来大B.比原来小C.不变【答案】C【解析】根据正方体的特征和表面积的计算方法,在顶点处挖掉一个棱长为1厘米的小正方体,又露出了和原来一样的三个正方形的面,因此它的表面积不变,据此解答.解:一个棱长为2厘米的正方体,将它挖掉一个棱长为1厘米的小正方体后,它的表面积不变.故选:C.点评:解答此题要明确减少了哪几个面,又增加了哪几个面.6.正方体的棱长扩大2倍,体积扩大4倍..(判断对错)【答案】×【解析】根据正方体体积=棱长3,可得正方体体积扩大的倍数是棱长扩大倍数的立方求解即可.解答:解:正方体的棱长扩大2倍,则体积扩大23=8倍,所以原题说法错误.故答案为:×.点评:考查了正方体的体积与正方体棱长的关系,是基础题型,比较简单.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.下面各图是由棱长为1厘米的正方体拼成的,根据前三个图形表面积的排列规律,第五个图形的表面积是平方厘米.【答案】22.【解析】棱长为1厘米的小正方体,1个面的面积是1平方厘米,观察图形可得:每增加1个正方体,表面积就增加4个面;由此即可推理出一般规律.解答:解:1个小正方体,表面积是:6平方厘米可以写成2+1×4;2个小正方体,表面积是10平方厘米,可以写成2+2×4;3个小正方体,表面积是14平方厘米,可以写成2+3×4;…;所以n个小正方体,表面积就是2+4n平方厘米;当n=5时,表面积是:2+4×5=22(平方厘米),答:第五个图形的表面积是22平方厘米.故答案为:22.点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.9.如图,是用积木摆放的一组图案,观察图案并探索:第五个图案中共有()块积木.A.25 B.16 C.36【答案】A.【解析】观察积木摆放的一组图案特征,可知第一个图案有12=1块积木,第二个图案有22=4块积木,第三个图案有32=9块积木,依此类推,第五个图案有52=25块积木,第n个图案有n2块积木.解答:解:根据以上分析第五个图案中共有52=25块积木.故选:A.点评:此题是根据图形摆放的特点寻找规律的题目,注意多观察,从多角度考虑问题.10.正方体的棱长扩大2倍,体积扩大了()倍.A.2 B.4 C.8【答案】C【解析】根据正方体的体积=棱长×棱长×棱长,所以棱长扩大2倍,体积就会扩大2×2×2=8倍.解答:解:2×2×2=8;故选:C.点评:此题主要考查正方体的体积随着棱长扩大或缩小的规律.11. 2立方米=立方厘米.【答案】2000000.【解析】把2立方米换算为立方厘米数,用2乘进率1000000.解答:解:2立方米=2000000立方厘米;故答案为:2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.用3个棱长4分米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少平方分米.【答案】64.【解析】用3个棱长4分米的正方体粘合成一个长方体,有4个正方形的面粘合在一起,即表面积少了4个正方形面的面积.由此解答.解:4×4×4=64(平方分米);故答案为:64.【点评】此题左右考查长方体和正方体的表面积计算方法,解答这类题首先要弄清有几个面粘合在一起.14.把30L水装入容积是250ml的水瓶里,能装瓶.【答案】120.【解析】先把30L换算成30000ml,进而求30000ml里面有几个250ml,用除法计算.解:30L=30000ml30000÷250=120(瓶)答:能装120瓶.故答案为:120.【点评】关键是把单位化统一,进而根据求一个数里面有几个另一个数,用除法计算得解.15.加工一个长方体油箱要用多少铁皮,是求这个油箱的()A.表面积 B.体积 C.容积【答案】A【解析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积.解:根据题干可得,要求油箱要用多少铁皮,是求这个长方体的表面积.故选:A.【点评】此题考查了长方体表面积的实际应用.16.把正方体的棱长扩大3倍,它的表面积扩大()A.3倍B.6倍C.9倍D.27倍【答案】C【解析】因为正方体的表面积=棱长×棱长×6,棱长扩大3倍,根据积的变换规律可以得知,表面积扩大了3×3=9倍,由此可以解决问题.解:正方体的表面积=棱长×棱长×6,棱长扩大3倍,表面积扩大了3×3=9倍,故选:C.【点评】此题考查了正方体的表面积公式以及积的变化规律的应用.17.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?【答案】2100平方厘米【解析】这张商标纸的面积是指长方体的侧面积,根据长方形的面积公式:s=ab,把数据代入公式解答即可.解:(20×30+15×30)×2=(600+450)×2=1050×2=2100(平方厘米),答:这张商标纸的面积是2100平方厘米.【点评】此题主要考查长方体的表面积公式的灵活运用.18.填上合适的单位名称.①橡皮的体积大约是6②集装箱的体积大约是40③一个墨水瓶的容积是60④一本数学书的体积大约是320⑤一个正方体,棱长1分米,表面积是600 ,体积是1 .【答案】立方厘米,立方米,毫升,立方厘米,平方厘米,立方分米.【解析】根据情景根据生活经验,对面积单位、容积单位、体积单位和数据大小的认识,可知计量橡皮的体积用“立方厘米”做单位;可知计量集装箱的体积用“立方米”做单位;计量一个墨水瓶的容积用“毫升”做单位,计量一本数学书的体积用“立方厘米”做单位;1分米=10厘米,根据正方体表面积公式10×10×6=600平方厘米,根据条件公式1分米×1分米×1分米=1立方分米,所以计量一个正方体,棱长1分米,表面积用“平方厘米”作单位,计量体积用“立方分米”做单位;据此得解.解:①橡皮的体积大约是6 立方厘米②集装箱的体积大约是40 立方米③一个墨水瓶的容积是60 毫升④一本数学书的体积大约是320 立方厘米⑤一个正方体,棱长1分米,表面积是600 平方厘米,体积是1 立方分米;故答案为:立方厘米,立方米,毫升,立方厘米,平方厘米,立方分米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.19.一个正方体石块占地20平方分米,这个石块的表面积是平方分米.【答案】120.【解析】首先根据正方体石块占地20平方分米,可得正方体的每个面的面积都是20平方分米;然后根据正方体的表面积=每个面的面积×6,求出这个石块的表面积是多少平方分米即可.解:20×6=120(平方分米)答:这个石块的表面积是120平方分米.故答案为:120.【点评】此题主要考查了正方体的表面积的求法,要熟练掌握,解答此题的判断出正方体的每个面的面积都是20平方分米.20.下面5个长方形中,哪3个是同一个长方体中相邻的3个面?请你在括号里打“√”【答案】见解析【解析】根据长方体的特征,长方体对面是相同的长方形,长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱,长方体有8个顶点.每个顶点连接三条棱,三条棱分别叫做长方体的长,宽,高,再结合长方体的长、宽、高,组成的长方体长为5,宽为3,高为2,即③(长5、宽3)可作底面,②(长3,宽2)可作左面,①(长5、宽2)可作上面;同理可推:组成的长方体的长为5、宽为4、高为2,所以①④⑤是同一个长方体中相邻的3个面,解答即可.解:由分析可知:组成的长方体的长为5、宽为3、高为2,所以①②③是同一个长方体中相邻的3个面;组成的长方体的长为5、宽为4、高为2,所以①④⑤是同一个长方体中相邻的3个面.故答案为:或:【点评】本题主要是考查长方体的特征,根据长方体的长、宽、高,结合长方体的特征,即可确定长方体的上、下底,左、右面,前、后面的长和宽.21.体积是1立方分米的正方体,可截成个棱长是1厘米小正方体,将这些小正方体排成一排成为长方体,这个长方体长是米.【答案】1000;10.【解析】棱长是1厘米的小正方体体积是1立方厘米,再把1立方分米化成1000立方厘米,所以1立方分米的正方体木块里面有1000个1立方厘米的小正方体,所以将这些小正方体排成一排成为长方体,这个长方体宽是1厘米,高是1厘米的长方体,这个长方体长是:1000÷1÷1=1000厘米.解:1立方分米=1000立方厘米,1000÷(1×1×1)=1000(个),1000÷1÷1=1000(厘米)=10(米),答:体积是1立方分米的正方体,可截成1000个棱长是1厘米小正方体,将这些小正方体排成一排成为长方体,这个长方体长是10米.故答案为:1000;10.【点评】解答此题应根据体积单位间的进率进行分析,或先把棱长为1分米的正方体化为棱长为10厘米的正方体,进而根据正方体的体积计算公式进行解答.22.把两个完全相同的正方体拼成一个长方体,拼成的长方体的表面积是120平方厘米,原来每个正方体的表面积是平方厘米.【答案】72.【解析】两个正方体拼成一个长方体后,相当于减少了两个正方体的面,即10个正方体的面的面积是120平方厘米,由此求出正方体一个面的面积,进而求出每个正方体的表面积.解:120÷10=12(平方厘米)12×6=72(平方厘米)答:原来每个正方体的表面积72平方厘米.故答案为:72.【点评】关键是根据题意得出两个正方体拼成一个长方体后,相当于减少了两个正方体的面,即10个正方体的面的面积是120平方厘米,进而求出正方体一个面的面积.23.在横线里填上合适的单位.星期天,小玲到离家1.2 的超市购物,他买了800 的猪肉,买了1.5 的苹果,又买了一瓶1.25 的可口可乐,一共花了32.5 钱.【答案】千米,克,千克,升,元.【解析】根据情景根据生活经验,对质量单位、长度单位、货币单位、体积单位和数据大小的认识,可知计量小玲家离超市的距离用“千米”做单位;可知计量猪肉的质量用“克”做单位;计量苹果的质量用“千克”做单位,计量可口可乐用“升”做单位,计量一共花钱数用“元”作单位.解:星期天,小玲到离家1.2 千米的超市购物,他买了800 克的猪肉,买了1.5 千克的苹果,又买了一瓶1.25 升的可口可乐,一共花了32.5 元钱;故答案为:千米,克,千克,升,元.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.24.集装箱的体积大约是40()A.立方米B.立方分米C.升D.毫升【答案】A【解析】根据生活经验以及对体积单位和数据大小的认识,可知计量集装箱的体积,应用体积单位,结合数据可知:应用“立方米”做单位;据此解答.解:集装箱的体积大约是40立方米;故选:A.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.25.如图,长方体礼盒的长、宽、高分别是20厘米、18厘米、6厘米.如果用彩带把这个礼盒捆扎起来(打结处的彩带长12厘米),一共需要彩带多少厘米?【答案】112厘米.【解析】根据长方体的特征:12条棱分为互相平行的3组,每组4条棱的长度相等,由图形可知:所需彩带的长度等于4条高、2条长、2条宽棱的长度和再加上接头处用的12厘米即可.解:(20+18)×2+6×4+12=38×2+24+12=76+24+12=112(厘米);答:一共需要彩带112厘米.【点评】此题考查的目的是掌握长方体的棱的特征,根据棱长总和的计算方法解答.26.把一个棱长是6分米的正方体截成两个同样的长方体,每个长方体的表面积是( )平方分米,体积是()立方分米。

六年级上册数学试题长方体和正方体的表面积和体积专项练习

六年级上册数学试题长方体和正方体的表面积和体积专项练习

长方体和正方体的表面积和体积专项练习一、高减少或增加引起表面积的变化:例题:一个长方体高减少3厘米后,表面积减少了72平方厘米,剩下的刚好是一个正方体,原来长方体的表面积是多少平方厘米?试一试:一个长方体,如果高增加2厘米,就成为一个正方体,这时表面积比原来增加了64平方厘米,原来的长方体的表面积是多少平方厘米?二、拼接引起表面积的变化:例题:1.用两个长、宽、高分别是6分米、4分米、2分米的长方体拼成一个较大的长方体,这个长方体怎样拼表面积最大?怎样拼表面积最小?2.用6个棱长是1厘米的小正方体拼成一个较大的长方体,拼成的长方体的表面积比原来减少了多少平方厘米?试一试:10包长、宽、高分别为8厘米、5厘米、2厘米的中华牌香烟,若用包装纸将他们打包成一个长方体,不计接头处,至少需要多少平方厘米的包装纸?三、切割引起表面积的变化:例题:将一个长10厘米、宽6厘米、高5厘米的长方体切成两个完全相同的小长方体,这两个小长方体的表面积总和比原来增加了多少平方厘米?试一试:(1)有一个长方体,若用三种不同的方法切成两个完全一样的长方体,它们的表面积分别增加30平方厘米、20平方厘米、12平方厘米。

这个长方体的表面积是多少平方厘米?(2)如右图,一个正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个小正方体木块,这时,表面积增加了多少平方厘米?四、挖去部分引起表面积的变化:例题:在一个长6厘米、宽4厘米、高3厘米的长方体上挖去一个棱长1厘米的小正方体,剩余部分的表面积可能是多少平方厘米?试一试:用橡皮泥做一个棱长为4厘米的正方体。

(1)如右图,在顶面中心位置从上到下打一个边长为1厘米的正方形通孔,打孔后的橡皮泥块的表面积为多少平方厘米?(2)在第(1)题打孔后,再在正面中心位置处,从前到后打一个边长1厘米的正方形通孔(如右图所示),那么打孔后的橡皮泥内外的表面积总和是多少平方厘米?(3)在棱长为3厘米的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1厘米的正方形(如图)。

六年级数学上学期知识点整理与复习

六年级数学上学期知识点整理与复习

整理与复习第一单元:长方体和正方体一、长方体和正方体的特征:形体面顶点棱关系长方体6个至少4个面是长方形相对面完全相同8个12条相对的棱长度相等正方体是特殊的长方体正方体6个正方形6个面完全相同8个12条12条棱长度都相等考点1:1.正方体是特殊的长方体。

2.长方体相交于同一个顶点的三条棱的长度,分别叫作它的()、()、(),一共分成()组。

3.长方体最多有()个面是正方形的面,其余()个面是完全一样的长方形。

【练】1.至少需要()个完全一样的小正方体可以组成一个大正方体。

2.两个完全相同的正方体拼成一个长方体,减少了()条棱,()个面。

考点2:正方体的平面展开图:1.相对面形状、大小、面积完全一样。

前→后,左→右,上→下【练】你能在展开图上找出其它的3个面吗?哪些面的面积相等?2.求各个面的面积。

前后面是由()和()组成的;上下面是由()和()组成的;左右面是由()和()组成的。

【练】:(1)上面的面积是________平方厘米。

(2)前面的面积是________平方厘米。

(3)右面的面积是________平方厘米。

3.找相对面的方法:找“Z”和“日”【练】如图是长方体的表面展开图,与⑥相对的面是③。

()如图是一个正方体的展开图,相对两个面上数字之和为0,则a+c=()。

4.判断是否是正方体平面展开图的方法:无凸也无凹,没有大直角,没有田字格。

【练】:如图不是正方体的表面展开图。

()5.哪几个面可以围成一个长方体?二、棱长总和公式:1.长方体棱长总和公式:2.正方体棱长总和公式:【练】1.一个长方体,长、宽、高分别是a、b、c厘米,长、宽、高的和是()厘米,棱长的和是()厘米。

2.一个正方体的棱长是a厘米,棱长的和是()厘米。

如果a=6,那么它的棱长的和是()厘米。

3.一种长方体的广告灯箱,框架由铝合金条制成,长70厘米,宽15厘米,高120厘米,制作一个这样的广告灯箱,至少需要铝合金条多少分米?4.一个长方体纸箱,长和宽都是0.4米,高是1.2米,做这个纸箱至少需要多少平方米的纸板。

六年级下册数学总复习试题-长方体、正方体表面积与体积计算的应用专项练 通用版(含答案)

六年级下册数学总复习试题-长方体、正方体表面积与体积计算的应用专项练  通用版(含答案)

长方体、正方体表面积与体积计算的应用一、单选题1.棱长是1米的正方体,它的底面积是(),A. 1米B. 1平方米C. 1立方米D. 1立方分米2.做一个长方体纸盒,需要多少硬纸板,是求长方体的()。

A. 体积B. 容积C. 表面积3.一张方桌表面的面积大约是144( )A. cmB. m2C. dm2D. cm24.由3个棱长为1分米的正方体拼成一个长方体的表面积是()。

A. 18平方分米B. 16平方分米C. 14平方分米5.要砌一道长40米、宽0.4米、高3.5米的砖墙,每立方米要用砖525块.共要用砖( )。

A. 25200块B. 29400块C. 2940块D. 2840块二、填空题6.棱长8分米的正方体的表面积是________平方分米,体积是________立方分米.7.某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图下所示)在三个方向加固。

所用尼龙编织条分别是365厘米,405厘米,485厘米。

若每个尼龙编织条加固时接头重叠都是5厘米.这个长方体包装箱的体积是________立方米.8.3个形状相同的长方体铅块,长是8cm,宽是6cm,高是5cm.把它们熔铸成一个大的长方体铅块(假设没有损耗),大长方体铅块的长是18cm,高是4cm,它的宽是________厘米。

9.用铁皮做一个长3m、宽0.6m、高0.4m的长方体水槽(无盖).(1)大约要用________平方米的铁皮?(得数保留整平方米.)(2)这个水槽最多能蓄水________立方米?10.把375立方米的煤渣,铺在一条长500米、宽12米的公路上,可以铺________米。

11.一个长方体水槽,槽内长1.2米,宽60厘米,深50厘米.水槽的容积是________毫升。

合________升。

12.一个长5分米、宽4分米、高3分米的长方体,它占地面积最大是________,表面积是________。

13.一个游泳池长50米,宽25米,平均深2.5米。

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)work Information Technology Company.2020YEAR六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是 5 厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来如果要包装这个盒子,至少需要多少平方厘米的包装纸(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮它的容积有多少立方厘米(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.1【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体()A.B.C.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.40【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;33 :假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.24【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5【考点】8G:长方体的特征.【专题】12 :应用题;3B :代数方法;462:立体图形的认识与计算.【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是 5 厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是52平方厘米.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据长方体的特征.相对面的面积相等,已知长方体相邻三个面的面积,求这个长方体的表面积,也就是用相邻三个面的面积和乘2即可,据此解答.【解答】解:(6+8+12)×2=26×2=52(平方厘米)答:这个长方体的表面积是52平方厘米.故答案为:52.【点评】此题考查的目的是理解掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2016秋•无锡期末)一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是64平方厘米,体积是32立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】12 :应用题;17 :综合填空题;462:立体图形的认识与计算.【分析】根据题意可知,一个长方体如果宽增加2厘米,就变成了一个正方体;说明长和高相等且比宽大2厘米,因此增加的32平方厘米是4个同样的长方形的面积和;由此可以求长方体的长=(32÷4)÷2=4厘米,由于长比宽多2厘米,那么宽=4﹣2=2厘米,由此再利用长方体的体积公式和表面积计算公式计算即可解答.【解答】解:32÷4÷2=4(厘米)4﹣2=2(厘米)(1)4×4×2+4×2×4=32+32=64(平方厘米)答:原来长方体的表面积是64平方厘米.(2)4×4×2=16×2=32(立方厘米)答:原来长方体的体积是32立方厘米.故答案为:64,32.【点评】本题主要考查长方体正方体表面积的实际应用,解答本题的关键是根据宽增加2cm,就变成一个正方体,可知增加的部分是长为2厘米的4个面,从而可以分别求出长方体的长、宽、高,进而利用长方体的表面积和体积的计算方法即可求解.13.(2016春•未央区期末)一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是54平方米,体积是27立方米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】把一个正方体切成两个完全相同的长方体后,则表面积增加了两个边长和原来正方体棱长相同的两个横截面的面积,表面积增加了18平方米,则每个横截面的面积为18÷2=9平方米,即可求出正方体的边长为3米,再利用正方体的表面积公式S=6a2,体积公式V=a3,即可解答.【解答】解:18÷2=9(平方米)因为3×3=9,所以原来正方体的棱长是3米,表面积:3×3×6=9×6=54(平方米)体积:3×3×3=9×3=27(立方米)答:这个木块原来的表面积是54平方米,体积是27立方米.故答案为:54平方米、27立方米.【点评】此题主要考查正方体表面积公式和体积的计算,关键是求出正方体的棱长,再把数据代入表面积和体积公式解答即可.14.(2016春•仁怀市校级期末)一个棱长4dm的正方体钢坯的体积是64 dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是 3.2 dm.【考点】AC:长方体和正方体的体积.【分析】(1)根据正方体的体积=棱长×棱长×棱长即可解答;(2)锻造前后的体积不变,根据长方体的体积公式,用上面求出的正方体的体积,除以这个长方体的底面积,即可得出长方体的高.【解答】解:(1)正方体钢坯的体积是:4×4×4=64(立方分米);(2)64÷20=3.2(分米),答:一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是3.2分米.故答案为:64;3.2.【点评】此题考查了正方体和长方体的体积公式的灵活应用,抓住锻造前后的体积不变,是解决此类问题的关键.15.(2016春•日照期末)一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是800立方分米.【考点】AC:长方体和正方体的体积.【分析】根据长方体的面的特征,它的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;由题意可知,一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,增加了两个截面的面积,0.8÷2=0.4平方米,长方体的体积=底面积×高;由此解答.【解答】解:1立方米=1000立方分米;0.8÷2×2=0.4×2=0.8(立方米);0.8立方米=800立方分米;答:这段长方体钢材的体积是800立方分米.故答案为:800.【点评】此题主要考查长方体的体积计算,关键是理解沿横截面截成两段后,表面积增加了0.8平方米,增加的是两个截面的面积即底面积,然后根据体积公式解答.16.(2016春•抚州校级期末)用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是8立方米.【考点】AC:长方体和正方体的体积;8G:长方体的特征.【专题】462:立体图形的认识与计算.【分析】用一根24分米长的铁丝围成一个最大的正方体形状的框架,也就是这个正方体的棱长总和是24分米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:24÷12=2(分米),2×2×2=8(立方分米),答:这个正方体的体积是8立方分米.故答案为:8.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用,关键是熟记公式.17.(2016秋•泰兴市校级期中)一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.【考点】8G:长方体的特征;AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】用长60厘米的铁丝围一个长方体框架,也就是这个长方体的棱长总和是60厘米,用棱长总和除以4求出长、宽、高的和,已知长方体的长是8厘米,宽是5厘米,用长、宽、高的和减去长、宽,即可求出高,再根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,把数据分别代入公式解答.【解答】解:60÷4﹣8﹣5=15﹣8﹣5=2(厘米)表面积:(8×5+5×2+8×2)×2=(40+10+16)×2=62×2=124(平方厘米)体积:8×5×2=40×2=80(立方厘米)答:这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.故答案为:2、124、80.【点评】此题主要考查长方体的棱长占公式、表面积公式、体积公式的灵活运用,关键是求出长方体的高.三.判断题(共5小题)18.(2017春•渭源县校级期末)正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍.×.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】18 :综合判断题;39 :找“定”法;462:立体图形的认识与计算.【分析】依据正方体的表面积公式S=a×a×6进行解答即可.【解答】解:原来的表面积:S=a×a×6=6a2,现在的表面积:S=2a×2a×6=24a2,表面积扩大:24a2÷6a2=4倍.所以题干的说法是错误的.故答案为:×.【点评】此题主要考查正方体的表面积公式的灵活应用.19.(2016•玉溪模拟)棱长为6cm的正方体的体积与表面积相等.×.(判断对错)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.【解答】解:表面积:6×6×6=216(平方厘米)体积:6×6×6=216(立方厘米)因为表面积和体积不是同类量,无法进行比较.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.20.(2016春•正定县校级期末)底面周长是8分米的正方体,它的表面积是24平方分米.√.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的特征,正方体的6个面是完全相同的正方形,已知它的底面周长是8分米,首先用底面周长除以4求出底面边长,再根据正方体的表面积公式:s=6a2,把数据代入公式求出它的表面积,然后与24平方分米进行比较即可.【解答】解:8÷4=2(分米),2×2×6=4×6=24(平方分米),答:它的表面积是24平方分米.故答案为:√.【点评】此题主要考查正方形的周长公式、正方体的表面积公式的灵活运用,关键是熟记公式.21.(2016春•仁怀市校级期末)如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.×(判断对错)【考点】AC:长方体和正方体的体积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据长方体的体积计算方法和积的变化规律,长方体的体积=长×宽×高,积扩大的倍数等于因数扩大倍数的乘积.由此解答.【解答】解:长方体的体积=长×宽×高,长、宽、高都扩大3倍,它的体积就扩大:3×3×3=27倍;所以“如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍”的说法是错误的.故答案为:×.【点评】此题主要根据长方体的体积计算方法和积的变化规律解决问题.22.(2016春•黎平县校级期末)把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.√(判断对错)【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.将一个长方体铁块锻造成正方体,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体的铁块锻造成正方体的铁块,形状改变了,但体积不变,所以本题说法正确;故答案为:√.【点评】此题主要考查了学生对正方体表面积及体积公式的掌握应用情况.四.解答题(共10小题)23.(2017春•渭源县校级期末)如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来如果要包装这个盒子,至少需要多少平方厘米的包装纸(单位:厘米)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】(1)溢出的水的体积就等于长方体的体积,利用长方体的体积公式即可得解;(2)求包装纸的面积实际上是求长方体的面积,利用长方体的表面积公式即可求解.【解答】解:(1)13×2×8=208(立方厘米);答:会有208立方厘米水溢出来.(2)(13×2+13×8+2×8)×2,=(26+104+16)×2,=146×2,=292(平方厘米);答:至少需要292平方厘米的包装纸.【点评】此题主要考查长方体的表面积和体积的计算方法的灵活应用.24.(2016•安溪县模拟)求出如图中长方体的体积和表面积.(单位:米)【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,已知长是5厘米,宽是3厘米,高是4厘米.把数据分别代入公式解答.【解答】解:(3×4+3×5+4×5)×2=(12+15+20)×2=47×2=94(平方米)3×4×5=60(立方米)答:这个长方体的表面积是94平方米,体积是60立方米.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.25.(2016秋•玄武区期末)看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)【考点】8L:长方体的展开图;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】我们通过观察得到这个长方体的长是6分米,宽是9﹣6=3分米,高是11﹣3=8厘米,由此运用长方体的体积公式进行解答即可.【解答】解:长方体的体积:6×(9﹣6)×(11﹣3),=6×3×8,=144(立方厘米);答;这个纸盒的表面积是136平方厘米,体积是80立方厘米.【点评】本题考查了学生对长方体的体积公式的运用掌握情况.重点考查了空间想象能力.26.(2016秋•毕节市期中)一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?【考点】AB:长方体和正方体的表面积.【分析】由题意知,粉刷的面积=教室的顶面面积+四面墙壁的面积﹣门窗和黑板的面积,据此列式解答即可.【解答】解:2×(8.5×4.2+6×4.2)+8.5×6﹣35.8=2×60.9+51﹣35.8=121.8+51﹣35.8=137(平方米).答:粉刷的面积有137平方米.【点评】本题主要考查长方体的表面积的知识点,长方体的表面积=2(长×宽+长×高+宽×高).本题需要注意减去地面的面积和教室的门窗和黑板的面积.27.(2016春•扬州校级期末)一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;462:立体图形的认识与计算.【分析】要在四壁和池底粉刷,只求它的5个面的总面积,根据长方体的表面积公式:S=2ab+2ah+2bh进行解答.【解答】解:(50×20+50×2+20×2)×2﹣50×20=(1000+100+40)×2﹣1000=1140×2﹣1000=2280﹣1000=1280(平方米)。

2023-2024年小学数学六年级上册期末复习第一单元《第一单元《长方体和正方体》》(苏教版原卷)

2023-2024年小学数学六年级上册期末复习第一单元《第一单元《长方体和正方体》》(苏教版原卷)

期末知识大串讲苏教版数学六年级上册期末章节考点复习讲义第一单元《长方体和正方体》知识点01:长方体和正方体的认识1.长方体的特征长方体是由(也可能有)围成的立体图形,有个面、条棱和顶点,完全相同、相等。

2. 长方体的长、宽、高的含义长方体的长度,分别叫作它的长、宽、高。

知识点02::长方体和正方体的展开图1.沿着将其剪开,可以把正方体(或长方体)展开成一个,这个平面图形就是正方体(或长方体)的展开图。

2.正方体(或长方体)的展开图的特点:在展开图中,正方体的(长方体相对的面完全相同),完全隔开。

3. 一个表面涂色的正方体,把每条棱,然后切成同样大的。

(1)3面涂色的小正方体有8个。

(2)如果用n表示把正方体的棱平均分成的份数(n为大于或等于2的自然数),用a、b分别表示2面涂色和1面涂色的小正方体的个数,那么a=(n-2)×12,b=(n-2)2×6。

知识点03:长方体、正方体的表面积计算1.意义2.计算方法(1)长方体的表面积= ()×2。

(2)正方体的表面积=知识点04:体积与体积单位1.体积的意义:叫作物体的体积。

2.容积的意义:叫作容器的容积。

常用的体积单位有,可以分别写成。

计量液体的体积,通常用升或毫升作单位。

1立方分米 = 升,1立方厘米 = 毫升知识点05:长方体和正方体的体积1.长方体的体积= ,字母公式为V= 。

2.正方体的体积= ,字母公式为V= 。

3.底面积:,叫作它们的底面积。

4.体积计算公式:长方体(或正方体)的体积= ,如果用字母S表示底面积,h表示高,长方体(或正方体)的体积计算公式可以写成V= 。

5. 体积单位常用到,相邻进率是。

立方分米立方米,它们进率是。

立方分米立方厘米,它们进率是考点01:长方体的展开图1.(2021秋•东平县期末)下面的平面图哪个不能折成长方体()A. B.C.2.(2022春•市中区期末)三种形状硬纸板各有若干张,从中选择()两种纸板,正好围成一个长方体。

【精品】苏教版小学数学六年级上册第一单元《长方体正方体》同步练习试题共3套

【精品】苏教版小学数学六年级上册第一单元《长方体正方体》同步练习试题共3套

长方体正方体同步练习1、一个长方体的底面积是80平方厘米,高是7厘米,体积是()立方厘米。

2、一个长方体有一组相对的面是正方形,那么另外4个面()。

A、一定相等B、不一定相等C、一定不相等3、把棱长1米的正方体截成棱长1分米的小正方体,再把这些小正方体排成一排拼成一个长方体,长方体的长是多少米?4、将一个长方体截下一个体积800立方厘米的长方体后,剩下的正好是一个棱长10厘米的正方体,原长方体的表面积是多少平方厘米?5、一种液体饮料采用长方体塑封纸盒密封包装,从外面量盒子长6厘米、宽4厘米、10厘米,盒子上注明“净含量:240毫升”。

你觉得这个数据真实吗?为什么?6、一个无盖的正方体盒,下底标有字母M,沿其棱将它剪开展成平面图形,这个图形可能是()。

7、大正方体的棱长是小正方体的2倍,而体积比小正方体大420立方厘米,那么小正方体的体积是()立方厘米。

8、一个正方体表面积是96平方厘米,把它分成8个同样的小正方体后,每个小正方体的表面积是多少平方厘米?9、大厅里有8根长方体立柱,其底面是边长2分米的正方形,高6米.现在要油漆这些立柱,那么油漆面积共多少平方米?10、在一个长20厘米、宽15厘米、高10厘米的长方体容器中,装的水深8厘米,在里面放入一个棱长10厘米的铁块,这时水溢出多少立方厘米?附加题:1、一个正方体所有棱长的和是36厘米,它的表面积是()平方厘米,体积()立方厘米.2、把1立方米的木料全部锯成1立方厘米的小方块,再把这些小木块一面挨着一面地向前摆成一长串,那么这一长串小木块总共有多少厘米长?3、把一个长方体的高锯掉4厘米后变成一个正方体,表面积减少80平方厘米。

这个长方体原来的体积是多少立方厘米?4、从一个长方体上截下一个体积是32立方厘米的小长方体后剩下的部分正好是棱长4厘米的正方体,原来这个长方体的表面积是多少平方厘米?5、用一张长50厘米、宽40厘米的长方形铁皮,做一只深10厘米的无盖长方体盒(焊接处铁皮厚度不计)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级长方体和正方体复习题
一、填空题。

1、一个正方体的棱长之和得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。

2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。

体积是()。

4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。

5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。

7、把一个正方体切成两个完全相等的长方体,每个长方体有()顶点。

8、把一个容积是500ml的量杯里先注入200ml的水,然后放入一个土豆,这时测量杯里的容量为350ml,这个土豆的体积是()cm2
9、一个底面周长是1.6分米的正方体鱼缸的容积是()升。

10、一个长方体中,最多有()个面面积相等,最多有()条棱长度相等。

11、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。

12、挖一个容积为48 m3的长方体土坑,占地面积为24 m2,这个土坑深()m。

13、把一根长3米的长方体木料,锯成两个等长的长方体,表面积增加了40平方厘米,这根木料原来的体积是()立方分米。

二、判断题。

1、一个长方体木箱,竖着放和横着放时所占的空间不一样大。

()
2、一个棱长为6分米的铁皮箱,体积和表面积完全相等。

()
3、正方体的棱长扩大2倍,它的体积就扩大8倍。

()
4、一块长20厘米,宽长10厘米,厚5厘米的长方体木板与一块棱长为10厘米的正方体,体积相等。

()
5、物体的体积越大,所占的空间就越大。

()
6、体积相等的长方体和正方体,它们的表面积也相等。

()
7、把体积是1 dm3的纸盒放在桌面上,纸盒所占桌面的面积是1 dm2。

()
8、一个长方体木箱从外面量长5分米,宽为4分米,高为2分米,那么这个木箱的容积应比40升少。

()
9、挖一条水渠大约需挖泥土500立方厘米。

()
三、选择题。

1将一个正方体钢坯锻造成长方体,正方体和长方体()
A体积相等,表面积不相等。

B体积和表面积都不相等。

C表面积相等,体积不相等。

2、棱长1米的正方体可以切成()个棱长1分米的小正方体。

A10 B100 C1000 D10000
3、一个长6dm,宽4dm,高5dm的长方体盒子,最多能放()棱长为2dm的正方体木块。

A12 B13 C14 D15
四、解决问题。

1、用一根56厘米长的铁丝,可以焊成一个长6厘米,宽5厘米的长方体教具,教具的高最多是多少厘米?
3、用一根铁丝刚好可以焊接成一个棱长为6厘米的正方体框架,如果用这根铁丝焊接长为5厘米,宽为3厘米的长方体,它的高应该是多少厘米?
4、一个无盖的长方休鱼缸,长1.2米,宽0.6米,深圳1米,这个鱼缸至少要用玻璃多少平方米?
5、张大爷准备给小猫做一个温暖舒服的新家。

他准备了两根长120厘米的木条,要做成一个尽可能大的正方体框架,然后在其表面包上一层铝塑板。

请你帮张大爷算一算:至少要用多少铝塑板?(含门的面积)
6、学校饭堂使用的理一个长方体形状的铁皮烟囱,烟囱高6米,底部是一个边长80厘米的正方形。

制作3个这样的烟囱至少需要铁皮多少平方米?
7、一个浴室长3米,宽2米,高2。

5米,在浴室的四壁和地面贴上规格是200mmX100mm的瓷砖,至少需要瓷砖多少块?
8、制造一个长5厘米,宽4厘米,高2。

5厘米的火柴盒外盒,至少需要多少平方厘米?
9、右图是一个机器零件。

现在要对这个零件进行表面电镀防锈处理。

需要电镀的面积有多大?
10、用8个棱长是1厘米的小正方体拼成一个长方体,有几种拼法?请画出简图,并分别算出它们的棱长总和、表面积和体积?
11、用36厘米长的铁丝做成一个正方体框架,这个正方体的体积是多少?
12、把两块棱长5厘米的正方体拼成一个长方体,这个长方体的体积是多少立方厘米?
13、一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?
14、一个长方体鱼缸,长是8分米,宽是5分米,高是6分米,不小心左面的玻璃打坏了,修理时配上的玻璃的面积是多少平方米?这个鱼缸的体积是多少立方分米?
15、施工队修筑一条长2600米的路基,它的横截面是梯形,上底14米,下底16米,高0.8米,一共需要挖土石多少立方米?
16、教师节时,王婧想送给老师一件礼物,她测量了一下,礼物长18cm,宽12cm,高10cm,她想把它装在一个长20cm,宽15cm,体积为2.34立方米的包装盒里,能否装得下?
17、把300立方米的土垫在长50米,宽30米的空地上,可垫多厚?
18、有一块棱长是8厘米的正方体的铁皮,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?
19、把一块棱长是2分米的正方体钢坯,锻造成高和宽都是4厘米的长方体钢材。

锻造成的长方体钢材的长是多少?(用方程和算术法两种方法解答)。

相关文档
最新文档