2020年考研数学大纲主要内容

合集下载

2020考研管理类联考综合数学基础大纲原文

2020考研管理类联考综合数学基础大纲原文

2020考研管理类联考综合数学基础大纲原文数学基础综合能力考试中的数学基础部分主要考查考生的运算能力、逻辑推理能力、空间想象能力和数据处理能力,通过问题求解和条件充分性判断两种形式来测试。

试题涉及的数学知识范围有:(一)算术1.整数(1)整数及其运算(2)整除、公倍数、公约数(3)奇数、偶数(4)质数、合数2.分数、小数、百分数3.比与比例4.数轴与绝对值(二)代数1.整式(1)整式及其运算(2)整式的因式与因式分解2.分式及其运算3.函数(1)集合(2)一元二次函数及其图像(3)指数函数、对数函数4.代数方程(1)一元一次方程(2)一元二次方程(3)二元一次方程组5.不等式(1)不等式的性质(2)均值不等式(3)不等式求解一元一次不等式(组),一元二次不等式,简单绝对值不等式,简单分式不等式。

6.数列、等差数列、等比数列(三)几何1.平面图形(1)三角形(2)四边形矩形、平行四边形、梯形(3)圆与扇形2.空间几何体(1)长方形(2)柱体(3)球体3.平面解析几何(1)平面直角坐标系(2)直线方程与圆的方程(3)两点间距离公式与点到直线的距离公式(四)数据分析1.计数原理(1)加法原理、乘法原理(2)排列与排列数(3)组合与组合数2.数据描述(1)平均值(2)方差与标准差(3)数据的图表表示直方图,饼图,数表。

3.概率(1)事件及其简单运算(2)加法公式(3)乘法公式(4)古典概型(5)伯努利概型。

西南财经大学629数学分析2020年考研专业课初试大纲

西南财经大学629数学分析2020年考研专业课初试大纲

2020年全国硕士研究生入学统一考试
数学专业《数学分析》考试大纲
一、考核目标
《数学分析》考试考察考生是否具备攻读数学专业的硕士研究生所必须的分析基础和基本素养,数学分析是数学专业的一门重要的基础课程,主要包括实数理论、一元微积分、多元微积分、无穷级数等。

要求考生能准确理解数学分析中的基本思想、基本概念,熟练掌握数学分析中的各种基本计算和论证技巧,具备综合运用分析理论解决具体问题的能力。

二、考试主要范围
1.极限与连续、无穷小量和无穷大量的阶;
2.实数的基本定理及闭区间上连续函数性质;
3.一元函数导数与微分;
4.一元函数微分中值定理及其应用;
5.一元函数不定积分与定积分及其应用;
6.数项级数与函数项级数;
7.幂级数及其收敛区间;
8.泰勒公式与泰勒级数;
9.傅里叶级数与傅里叶变换;
10.反常积分;
11.多元函数极限和连续;
12.多元函数偏导数和全微分;
13.多元函数极值和条件极值;
14.隐函数存在定理;
15.含参变量的积分和含参变量的反常积分;
16.二重积分与三重积分;
17.曲线积分与曲面积分。

2020考研数一考纲(可编辑修改word版)

2020考研数一考纲(可编辑修改word版)

2020 年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150 分,考试时间为180 分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8 小题,每小题4 分,共32 分填空题 6 小题,每小题4 分,共24 分解答题(包括证明题)9 小题,共94 分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:1x→∞lim x→0sin x= 1xlim⎛1+⎝1 ⎫x⎪=e⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径x2考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a, b) 内,设函数f (x) 具有二阶导数.当f'(x)>0时,f(x)的图形是凹的;当f'(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.32.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握4换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.59.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算6两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[ l, l] 上的傅里叶级数函数在[0, l] 上的正弦级数和余弦级数考试要求71.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sin x ,cos x ,ln(1+x) 及(1+x )的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-l, l] 上的函数展开为傅里叶级数,会将定义在[0, l] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求81.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:y(n) = f (x), y '= f (x, y') 和y '= f ( y, y') .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数9一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空10间及其相关概念n 维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.114.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.12概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数F (x) =P{X ≤x}(-∞<x <+∞) 的概念及性质,13141 2 1 2 会计算与随机变量相联系的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布 B (n , p ) 、几何分布、超几何分布、泊松(Poisson )分布 P () 及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布U (a , b ) 、正态分布 N (, 2 ) 、指数分布及其应用,其中参数为(> 0) 的指数分布 E () 的概率密度为⎧⎪e -x , f (x ) = ⎨若x > 0, ⎩⎪ 0, 若x ≤ 0.5. 会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布 N (,; 2 ,2; ) 的概率密度,理解其中参数的概率意义.4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容2分布t 分总体个体简单随机样本统计量样本均值样本方差和样本矩布 F 分布分位数正态总体的常用抽样分布考试要求1516 ∑ 1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为S 2 = 1 n n -1 i =1 ( X i - X )22. 了解2 分布、t 分布和 F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1. 理解参数的点估计、估计量与估计值的概念.2. 掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.17。

2020考研数学三考研大纲

2020考研数学三考研大纲

2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表.
3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布.
4.了解经验分布函数的概念和性质.
七、参数估计
考试内容
点估计的概念估计量和估计值矩估计法最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
有疑问或者交流复习资料请联系题主:mingxiaoxing101,最后3个月建议自己在宿舍或者图书馆跟着视频学习+做真题,比较高效,冲刺阶段适合自学,以下课程仅个人复习推荐,需要的自取即可。

考研数学大纲(数二)--2020版

考研数学大纲(数二)--2020版
形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
三、一元函数积分学
考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和 基本性质 定积分中值定理 积分上限函数及其导数 牛顿—莱布尼兹公式 不定积 分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的 积分 反常(广义)积分 定积分的应用
考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.理解不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换 元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿—莱布尼兹公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、 旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等) 及函数的平均值.
一、函数、极限、连续
数学(二)
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、
分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大
量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的
六、二次型
考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的 标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念, 了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

2020考研数学二大纲

2020考研数学二大纲

2020考研数学二大纲一、函数、极限、连续考试内容函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.了解函数的有界性、单调性、周期性和奇偶性.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理洛必达(L'Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念、不定积分的基本性质、基本积分公式、定积分的概念和基本性质、定积分中值定理、积分上限的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分、定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念、有界闭区域上二元连续函数的性质、多元函数的偏导数和全微分、多元复合函数、隐函数的求导法、二阶偏导数、多元函数的极值和条件极值、最大值和最小值、二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念、变量可分离的微分、齐次微分方程、一阶线性微分方程、可降阶的高阶微分方程、线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程、微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质、行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵、矩阵的秩、矩阵的等价、分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念、向量的线性组合和线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量的内积、线性无关向量组的的正交规范化方法考试要求理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解系和通解、非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念,性质、相似矩阵的概念及性质、矩阵可相似对角化的充分必要条件、相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示、合同变换与合同矩阵、二次型的秩、惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性考试要求了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

2020考研大纲-数一

2020考研大纲-数一

3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法. 5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函 数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方 法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.了解散度与旋度的概念,并会计算. 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、 曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等). 七、无穷级数
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲 线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可 导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了 解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
考试内容 二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两 类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分 的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯 托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用. 考试要求 1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面 坐标、球面坐标).
二、一元函数微分学
考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函 数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微 分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹 凸性、拐点及渐近线ห้องสมุดไป่ตู้函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径. 考试要求

2020年考研数学二大纲原文

2020年考研数学二大纲原文

2020年考研数学二大纲原文一、函数、极限、连续考试内容函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限。

函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.了解函数的有界性、单调性、周期性和奇偶性.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理洛必达(L'Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念、不定积分的基本性质、基本积分公式、定积分的概念和基本性质、定积分中值定理、积分上限的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分、定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念、有界闭区域上二元连续函数的性质、多元函数的偏导数和全微分、多元复合函数、隐函数的求导法、二阶偏导数、多元函数的极值和条件极值、最大值和最小值、二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念、变量可分离的微分、齐次微分方程、一阶线性微分方程、可降阶的高阶微分方程、线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程、微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数行列式考试内容行列式的概念和基本性质、行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵、矩阵的秩、矩阵的等价、分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念、向量的线性组合和线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量的内积、线性无关向量组的的正交规范化方法考试要求理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解系和通解、非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念,性质、相似矩阵的概念及性质、矩阵可相似对角化的充分必要条件、相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示、合同变换与合同矩阵、二次型的秩、惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性考试要求了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

考研数学二科目大纲

考研数学二科目大纲
考研数学二大纲解析

CONTENCT

• 高等数学 • 线性代数 • 概率论与数理统计 • 历年真题解析与模拟题练习
01
高等数学
函数、极限、连续
02
01
03
理解函数的概念,掌握函数的表示法,会建立应用问 题的函数关系。
了解函数的有界性、单调性、周期性和奇偶性。
理解复合函数及分段函数的概念,了解反函数及隐函 数的概念。
02
线性代数
行列式
定义与性质
行列式是线性代数中的基本概念,具有一系列重要 的性质,如交换律、结合律、分配律等。
计算方法
行列式的计算是线性代数的基本技能之一,包括展 开法、递推法、化简法等。
应用
行列式在解决线性方程组、求向量范数、判断矩阵 可逆性等方面有广泛应用。
矩阵
80%
定义与性质
矩阵是线性代数中的基本概念, 具有一系列重要的性质,如可逆 性、转置性、乘法结合律等。
掌握定积分的基本性质和定积分的计算方法,掌握定 积分的应用。
了解微积分基本定理,会利用定积分计算面积、体积等。
理解变上限积分和变下限积分的概念,会求函数的定 积分。
了解反常积分(包括无穷区间上的反常积分)的概念 ,会计算反常积分。
多元函数微分学
01
02
03
04
理解多元函数的概念,了解二 元函数的几何意义。
会求函数的微分,利用 微分对误差进行近似计 算。
了解高阶导数的概念, 会求简单函数的n阶导 数。
会求分段函数的一阶、 二阶导数以及闭区间上 的一阶、二阶导数。
会用导数判断函数的单 调性、凹凸性和求极值 、拐点等。
一元函数积分学
95% 85% 75% 50% 45%

2020考研数学二考研大纲原文

2020考研数学二考研大纲原文

2020考研数学二考研大纲原文摘要:2020考研大纲于7月8日发布,关注大纲解析,获取大纲变化,考研帮为你持续关注。

以下为2020考研数学二考研大纲原文。

2020考研数学二大纲原文►高等数学一、函数、极限、连续考试内容函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.了解函数的有界性、单调性、周期性和奇偶性.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理洛必达(L'Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(T aylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念、不定积分的基本性质、基本积分公式、定积分的概念和基本性质、定积分中值定理、积分上限的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分、定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念、有界闭区域上二元连续函数的性质、多元函数的偏导数和全微分、多元复合函数、隐函数的求导法、二阶偏导数、多元函数的极值和条件极值、最大值和最小值、二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念、变量可分离的微分、齐次微分方程、一阶线性微分方程、可降阶的高阶微分方程、线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程、微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质、行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵、矩阵的秩、矩阵的等价、分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念、向量的线性组合和线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量的内积、线性无关向量组的的正交规范化方法考试要求理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解系和通解、非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念,性质、相似矩阵的概念及性质、矩阵可相似对角化的充分必要条件、相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示、合同变换与合同矩阵、二次型的秩、惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性考试要求了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学
2020年硕士研究生入学考试大纲
考试科目名称:数学分析考试科目代码:610
一、考试要求
1)要求考生熟练掌握数学分析的基本概念、基本理论和基本方法。

2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。

3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。

二、考试内容
1) 极限和连续性
a.数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。

b.极限的性质及四则运算性质,两面夹原理。

c.区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则。

d.函数连续性的概念及相关的不连续点类型。

函数连续的四则运算与复合运算性质,以及无穷小量比较。

e.闭区间上连续函数的性质:有界性定理、最值定理、介值定理和一致连续性定理。

2) 一元函数微分学
a.导数和微分的概念及其相互关系,导数的几何意义和物理意义,函数可导性与连续性之间的关系。

b.函数导数与微分的运算法则,包括高阶导数的运算法则,分段函数的导数。

c.Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor公式。

d.函数的导数与单调性,极值,最值和凸凹性。

e.L’Hopital(洛必达)法则,不定式极限。

3) 一元函数积分学
a.不定积分的概念,不定积分的基本公式,换元积分法和分部积分法,有理函数、三角函数和简单无理函数的积分。

沈阳师范大学823数学分析三2020年考研专业课初试大纲

沈阳师范大学823数学分析三2020年考研专业课初试大纲

2、换元积分与分部积分 3、有理函数的积分 (二)考核要求 1、熟练掌握本章的基本概念与公式和换元积分与分部积分法。 2、能够熟练应用本章的基本概念、基本原理、基本方法进行有关计算。 第八章 定积分 (一) 考核知识点 1、定积分的定义 2、定积分的性质 4、微积分基本定理 5、定积分的计算方法 6、变限积分与原函数的存在性 (二)考核要求 1、识记本章内容,深刻领会定积分的定义,熟练掌握微积分基本定理和定 积分的计算方法,会求非正常积分。 2、能够熟练应用本章的基本概念、基本原理、基本方法进行有关计算。 第九章 定积分应用 (一) 考核知识点 1、求平面图形的面积 2、由截面面积求体积 3、求曲线的弧长 4、求旋转曲面的面积 5、在物理上的应用 (二)考核要求
(一) 考核知识点 1、导数概念 2、求导法则 3、微分 4、高阶导数与高阶微分 5、参量方程确定函数的导数 (二)考核要求 1、识记与领会本章的各项内容,熟练掌握导数与微分的运算法则与公式。 2、能够应用本章的基本概念、基本原理、基本方法解决相关实际问题,如 实际中的速度问题,函数的变化率问题,能够应用微分做近似计算。 第六章 微分中值定理及其应用 (一) 考核知识点 1、中值定理 2、不定式极限 3、泰勒公式:泰勒定理,余项,近似计算 4、函数的极值与最值 (二)考核要求 1、识记本章的各项内容,深刻领会与熟练掌握拉格朗日中值定理和罗比大 法则,深刻领会与熟练掌握单调性,极值,最值,凸性,拐点。 2、能够应用本章的基本概念、基本原理、基本方法解决相关实际问题,如 实际中的速度问题,函数的平均变化率问题,能够应用泰勒公式做近似计算, 会特征作图。 第七章 不定积分 (一) 考核知识点 1、不定积分基本概念与公式
(二)考核要求 1、深刻领会概念与其性质,熟练掌握一致收敛的优级数判别法。 2、能够应用本章的基本概念、基本原理、基本方法级数收敛与进行有关计 算。 第十三章 幂级数 (一) 考核知识点 1、幂级数基本概念 2、函数的幂级数展开式 (二)考核要求 1、深刻领会概念与其性质,牢记重要初等函数展开式,熟练掌握泰勒级数。

2020年数学二考研大纲

2020年数学二考研大纲

2020年数学二考研大纲研究生数学考试科目:高等数学、线性代数考研考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.(考|研教育网整理)8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用。

2020考研数学三考研大纲PDF.pdf

2020考研数学三考研大纲PDF.pdf
2
考试内容
Байду номын сангаас
书山有路
导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间 的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合 函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛 必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点 及渐近线函数图形的描绘函数的最大值与最小值
考试要求
1.了解级数的收敛与发散、收敛级数的和的概念.
2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收 敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系, 了解交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的 性质
考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
1
书山有路 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.了解数列极限和函数极限(包括左极限与右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌 握利用两个重要极限求极限的方法. 7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷 大量的概念及其与无穷小量的关系. 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类 型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性 质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学

2020年湖南师范大学604高等数学考研专业课考试大纲(含参考书目)

2020年湖南师范大学604高等数学考研专业课考试大纲(含参考书目)

a: 简答题,约 30 分
b: 解答题(包括证明题),约 120 分
4)内容结构
微积分 约 70% 线性代数 约 30%
二、考试内容与考试要求
(一) 微积分
1、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、
反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关
2、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性 之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的 导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导 数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单 调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求
系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量
和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则
运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
lim sin x = 1 x→0 x
lim
x→∞
1
+
1 x
x
= e
1/10
2020考研湖南师范大学硕士研究生入学考试大纲(含参考书目清单)
2/10
2020考研湖南师范大学硕士研究生入学考试大纲(含参考书目清单)
(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意 义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述 一些物理量,理解函数的可导性与连续性之间的关系.

2020考研数学三考研大纲

2020考研数学三考研大纲

2020考研数学三考研大纲考研的小伙伴们,一提到数学三,是不是感觉脑瓜子嗡嗡的?别慌,咱们一起来瞅瞅 2020 年考研数学三的大纲,把这头“怪兽”给驯服了!先来说说高等数学部分。

这部分那可是重点中的重点啊!像函数、极限、连续,可别小看这几个概念,它们就像盖房子的基石,不扎实可不行。

我记得之前有个学生,在做函数极限的题目时,总是搞不清楚左右极限的关系,一错再错。

后来我让他把教材上相关的定义和例题反复琢磨,还给他出了好多针对性的练习题,这小子总算是开窍了。

所以啊,大家对于基础概念一定要吃透。

再说说一元函数微分学,导数的计算和应用那是必考的。

有个小细节大家得注意,求导公式可别记错了,什么复合函数求导、隐函数求导,都要熟练掌握。

我曾经在课堂上讲过一道隐函数求导的题目,好多同学一开始都没思路,经过我一步步的引导,最后大家都恍然大悟。

一元函数积分学也是个大头。

不定积分、定积分的计算方法要牢记,还有积分的应用,比如求图形的面积、体积啥的。

记得有一次,我给学生们布置了一道利用定积分求旋转体体积的作业,有个同学居然用错了公式,算出了一个超级离谱的答案,把大家都逗乐了。

多元函数微积分学这里,偏导数、全微分、重积分可都不好对付。

大家在学习的时候,一定要多画图,通过图形来帮助理解。

我之前就碰到一个学生,学这部分的时候特别迷糊,我让他把书上的那些图形自己动手画几遍,嘿,效果还真不错,他慢慢就找到感觉了。

概率论与数理统计这一块,随机事件和概率、随机变量及其分布,这些知识点都要弄得清清楚楚。

有一回上课,我讲了一个关于二项分布的例题,结果下课后有个学生跑过来跟我说没听懂,我又耐心地给他重新讲了一遍,直到他完全明白为止。

线性代数部分,行列式、矩阵、向量,每一个概念都得搞明白。

特别是矩阵的运算,一不小心就容易出错。

我观察到很多同学在做矩阵乘法的时候,总是会忘记一些规则,导致结果错误。

所以啊,一定要多做练习,加深印象。

总之,2020 考研数学三的大纲涵盖的内容很多,大家一定要有耐心,一步一个脚印地去学习。

辽宁师范大学601数学分析2020年考研专业课初试大纲

辽宁师范大学601数学分析2020年考研专业课初试大纲

601《数学分析》考试大纲(学术型)
注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。

第一章实数集与函数
一.考核知识点
1.实数集的性质
2.确界定义和确界原理
3.函数的概念及表示法,基本初等函数的性质及其图形,初等函数
二.考核要求
(一) 实数集的性质
1.熟练掌握:(1)实数及其性质;(2)绝对值与不等式。

2.深刻理解:(1)实数有序性,大小关系的传递性,稠密性,阿基米德性,实数集对四则运算的封闭性以及实数集与数轴上的点的一一对应关系;(2)绝对值的定义及性质。

3.简单应用:(1)会比较实数的大小,能在数轴上表示不等式的解;(2)会利用绝对值的性质证明简单的不等式。

4.综合应用:会利用实数的性质和绝对值的性质证明有关的不等式,会解简单的不等式。

(二)确界定义和确界原理
1.熟练掌握:(1)区间与邻域;(2)有界集、无界集与确界原理。

2.深刻理解:(1)区间与邻域的定义及表示法;(2)确界的定义及确界原理。

3.简单应用:会用区间表示不等式的解,会证明数集的的有界性,会求数集的上、下确界。

8。

2020年全国硕士研究生招生考试考研数学考试大纲(数学一)

2020年全国硕士研究生招生考试考研数学考试大纲(数学一)
定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定
2
积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常 (广义)积分定积分的应用
考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换 元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、 旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等) 及函数的平均值. 四、向量代数和空间解析几何 考试内容 向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条 件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲 线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂 直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间 曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程 考试要求 1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的 条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量 运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互 关系(平行、垂直、相交等))解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念.

大连理工大学602数学分析2020年考研专业课初试大纲

大连理工大学602数学分析2020年考研专业课初试大纲

大连理工大学2020年硕士研究生入学考试大纲科目代码:602 科目名称:数学分析试题类型主要包括填空题,选择题,判断题,计算题,解答题,证明题和综合题等,具体考试大纲如下:一、数列极限1、数列极限的概念,ε-N语言。

2、数列极限的性质和运算法则。

3、数列极限的存在性、求极限的一些方法。

4、基本列的定义,Cauchy原理及其应用。

5、无穷大和无穷小的概念以及无穷大与无穷小的联系。

6、数集的上、下确界,数列的上、下极限。

7、实数的六个等价定理。

8、Stolz定理。

二、函数极限与连续1、集合的势,可数集与不可数集。

2、函数极限定义,ε—δ语言,函数极限的其他形式。

3、函数极限的性质,函数极限与数列极限的关系。

4、无穷小与无穷大的级的概念,o与O的运算规则。

5、函数在一点连续的定义及其性质,初等函数的连续性,间断点分类。

6、一致连续的定义,连续与一致连续的区别、一致连续的判别。

7、有界闭区间上连续函数的各种性质及其应用。

8、函数上、下极限的概念与性质。

三、函数的导数及其应用1、导数的定义,导数的几何意义,导数及高阶导数的运算规则,导数和高阶导数的计算。

2、微分的定义及其运算规则,一阶微分形式的不变性。

3、微分学的中值定理(包括Fermat定理, Rolle中值定理,Lagrange中值定理,Cauchy中值定理,Darboux定理 )及其应用。

4、函数的单调性,函数的极值和最值,函数的凹凸性等及利用导数研究函数。

5、L’Hospital法则及应用。

6、Taylor定理、各种余项的Taylor展开(包括Lagrange余项、Cauchy余项、积分余项的Taylor展式等)以及函数的Maclaurin展式,Taylor展开的应用。

7、函数作图。

四、不定积分1、原函数的定义及不定积分的运算规则,基本公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年考研数学大纲主要内容
出国留学考研网为大家提供2018年考研数学大纲主要内容,更多考研资讯请关注我们网站的更新!
2018年考研数学大纲主要内容
数学老师将深度剖析一下数学考试大纲,主要为2018考研学子介绍和分析一下数学考试大纲的框架及所包含的内容要点。

首先数学考试大纲的全称是《全国硕士研究生招生考试数学考试大纲》,由教育部考试中心编写,由高等教育出版社出版。

考试大纲包含七部分的内容,本文先介绍前四部分内容。

(一)考试性质
这一部分主要介绍的是数学考试是为高等院校和科研院所招收工学、经济学、管理类硕士研究生而设置的具有选拨性质的全国招生考试科目。

其目的是测试考生是否具备具有继续攻读硕士学位所需的数学知识和能力。

这一部分主要是简介,2018考生可以简略阅读即可。

(二)考查目标
这一部分主要是对考生的一些要求。

要求考生要比较系统的理解数学的基本概念和基本理论,掌握一些数学的基本方法,具备一些抽象思维的能力、逻辑推理能力、空间想象能力、运算能力和分析综合能力等。

这一部分建议2018考生看看即可,不是重点内容。

(三)试卷分类及使用专业
这一部分相比前两部分是重要一些的,主要介绍的是全国硕士研究生数学考试的分类,主要分为数学(一)、数学(二)和数学(三)以及须使用数学(一、二、三)的招生专业。

这一部分是重要的,考生根据自己的本科专业来分析一下自己要考数学几,然后有针对性的来复习备考。

(四)考试形式和试卷结构
考试形式是闭卷、笔试,满分150分。

考试时间180分钟。

数学(一)的考试内容:高等数学56%、线性代数22%、概率论与数理统计22%;数学(二)的考试内容:高等数学78%、线性代数22%;数学(三)
的考试内容:高等数学56%、线性代数22%、概率论与数理统计22%。

题型结构:单项选择题8个,每个4分,共32分;填空题6个,每题4分,共24分;解答题9个,共94分。

(五)考试内容和考试要求
全国硕士研究生招生考试数学考试大纲中最重要的就是这部分内容。

这一部分主要介绍了2017年硕士研究生数学考试的具体考试内
容和考试要求。

介绍的是数学(一)、数学(二)、数学(三)的考试要
求及考试内容,先后顺序分别是:高等数学、线性代数、概率论与
数理统计。

先说明考试内容,然后给出考试要求,这一部分需要考
生深度阅读,这是考试的命题来源,非常重要。

1.数学(一)
高数包含八部分的内容,分别是:函数、极限、连续;一元函数
微分学;一元函数积分学;向量代数和空间解析几何;多元函数微分学;多元函数积分学(包括三重积分、曲线曲面积分);无穷级数;常微分
方程。

线性代数包含六部分的内容:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。

概率论与数理统计包含八部分的内容:随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数
定律和中心极限定理、数理统计的基本概念、参数估计、假设检验。

2.数学(二)
高数包含五部分的内容,分别是:函数、极限、连续;一元函数
微分学;一元函数积分学;多元函数微分学;多元函数积分学;常微分
方程。

线性代数包含六部分的内容:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。

3.数学(三)
高数包含六部分的内容,分别是:函数、极限、连续;一元函数
微分学;一元函数积分学;多元函数微积分学;无穷级数;常微分方程
和差微分方程。

线性代数包含六部分的内容:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。

概率论与数理统计包含七部分的内容:随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数
定律和中心极限定理、数理统计的基本概念、参数估计。

(六)题型示例及参考答案
这一部分给出了三套试卷,分别是数学(一)、数学(二)、数学(三)的题型示例,也就是告诉考生考试试卷的具体形式。

这一部分
可以做一做,感受一下考研的数学试题难度及重难点。

后面备有答案,考生可以自己对一下答案。

(七)附录
这一部分主要给出了近两年的硕士研究生考试数学考试真题及答案解析,建议考生好好做一下历年考研数学真题,并深度剖析一下
答案解析,可以有针对性的提高自己的答题步骤,尽量是自己多拿
点分。

相关文档
最新文档