正渗透水处理技术概要

合集下载

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是一种用于水处理的高效技术,它能够去除水中的有机物、无机盐和微生物等有害物质,从而得到高纯度的水。

正渗透技术已经在工业生产、饮用水处理、海水淡化等领域得到了广泛的应用。

本文将从正渗透技术的原理、应用和发展趋势等方面进行探讨。

正渗透技术是一种通过半透膜对水进行过滤的技术。

正渗透膜是一种特殊的薄膜,能够让水分子通过,但是能够阻止大部分溶质(比如盐、有机物等)通过。

当水在一侧施加一定的压力时,水分子能够通过半透膜,而溶质则被阻止在另一侧,从而实现了对水的净化。

正渗透技术相比传统的过滤技术,具有更高的效率和更低的能耗,因此得到了广泛的应用。

正渗透技术在水处理领域有着广泛的应用。

它被广泛用于工业生产中的水处理。

在许多工业过程中,需要用到高纯度的水,而正渗透技术能够提供这样的水源。

正渗透技术也被广泛应用于饮用水处理。

在一些地区,地下水或者自来水中含有大量的盐分或者有机物,通过正渗透技术可以将这些有害物质去除,得到可以直接饮用的水。

正渗透技术还被用于海水淡化。

由于海水中含有大量的盐分,直接饮用是不可取的,而正渗透技术能够将海水中的盐分去除,得到淡水,从而解决了一些地区的淡水资源短缺问题。

随着科学技术的不断进步,正渗透技术也在不断发展。

一方面,正渗透膜的材料和技术不断得到改进,使得正渗透技术能够处理更加复杂的水质,提高了净化水的效率和纯度。

正渗透技术与其他技术的结合也越来越多,比如与超滤、电渗析等技术结合,能够更好地解决一些特殊水质的处理问题。

未来,正渗透技术还有望在污水处理、废水回收等领域发挥更大的作用。

《2024年正渗透膜技术及其应用》范文

《2024年正渗透膜技术及其应用》范文

《正渗透膜技术及其应用》篇一一、引言正渗透膜技术(Forward Osmosis, FO)作为一种新型的膜分离技术,在过去的十年中得到了广泛的研究和应用。

其独特的工作原理和优点使得它在水处理、生物医药、食品工业和能源等多个领域都有广泛的应用前景。

本文旨在全面地阐述正渗透膜技术的原理、特点以及在不同领域的应用。

二、正渗透膜技术概述正渗透膜技术是一种基于自然渗透压力差的膜分离技术。

它的基本原理是通过选择性的半透膜在膜两侧产生压力差,从而推动溶质和水分的净流。

该过程中不需要像传统的膜技术那样通过加压驱动水流,而是通过自然的浓度梯度或者由低渗透压溶液或渗析溶液的快速稀释产生的动力推动。

正渗透膜的材质主要是生物相容性好的高分子材料,具有高通量、高选择性和抗污染等特性。

同时,由于它可以在常温常压下工作,因此在操作过程中具有节能、环保的优点。

三、正渗透膜技术的特点正渗透膜技术具有以下特点:1. 节能环保:由于正渗透过程不需要额外的压力驱动,因此可以大大降低能耗。

同时,由于它可以在常温下进行操作,因此对环境的影响较小。

2. 高效分离:正渗透膜具有高选择性和高通量,可以有效地进行物质分离和纯化。

3. 抗污染能力强:正渗透膜材料通常具有良好的生物相容性,对生物污染有较好的抗性。

4. 应用范围广:正渗透膜技术可以应用于水处理、生物医药、食品工业和能源等多个领域。

四、正渗透膜技术的应用1. 水处理领域:正渗透膜技术在水处理领域的应用主要是海水淡化、苦咸水淡化、污水处理和饮用水处理等。

由于其不需要额外的压力驱动,因此在处理低浓度的水源时具有很高的经济效益和环保优势。

2. 生物医药领域:在生物医药领域,正渗透膜技术可以用于药物的纯化、浓缩和分离。

其高效、低能耗的优点使得其在生物医药领域有广阔的应用前景。

3. 食品工业:在食品工业中,正渗透膜技术可以用于食品的脱水、果汁浓缩、低盐调味品制备等。

此外,由于它具有良好的生物相容性,因此在食品包装中也得到了应用。

正渗透技术处理水和废水

正渗透技术处理水和废水

正渗透技术处理水和废水1 引言膜分离技术由于出水水质高、设备简单易操作、能耗相对较低、适应性强等特点,在水处理领域获得越来越多的关注.目前应用于水处理领域的几种膜分离技术.其中微滤(microfiltration,MF)、超滤(ultrafiltration,UF)、纳滤(nanofiltration,NF)和反渗透(reverse osmosis,RO)由机械压力驱动传质过程,是水和废水处理的常规技术.其他膜技术,如温度差驱动的膜蒸馏技术(membrane distillation,MD),电场驱动的电渗析技术(electro-dialysis,ED),一些由化学反应驱动的膜吸收技术(membrane absorption,MA)等也成为水处理领域的新型技术.正渗透(forward osmosis,FO)是一种由渗透压(浓度差)驱动的新型膜技术.可用于海水脱盐、废水处理等方面.FO膜是一种渗透膜.名义孔径在1 nm以下,用于截留溶解性离子和盐类等物质,与RO 相当.但与RO相比,FO无需外加机械压力,具有低压操作、低膜污染、高截留的优点,近年来在水处理领域受到较多关注.2 FO原理(Basic principle of FO)FO膜是一种选择性渗透膜,膜的一侧是低渗透压的待处理水,另一侧是高渗透压的汲取液,水分子透过FO膜从低渗透压侧扩散到高渗透压侧,从而实现水与杂质的分离(图 1).该过程的驱动力是膜两侧溶液的渗透压差,不需外界提供压力.图 1 FO工艺的原理示意图2.1 FO应用与运行效果2.1.1 海水(浓盐水)脱盐FO已被用于含盐废水、含盐地下水、盐湖水和海水的脱盐.大多数为实验室规模的小试研究,汲取液采用难挥发性(NaCl,Na2SO4,MgSO4等)或挥发性(NH3/CO2和NH4HCO3)盐溶液.其中Zhao等进行的盐湖水脱盐,回收率达到70%.McGinnis等采用中试规模的FO处理高盐水(TDS>70,000 ppm),回收率达到60%,与蒸发浓缩技术相当,出水水质达标(美国宾州地表水排放标准TDS < 500 mg·L-1,氯化物 < 250 mg·L-1,钡 < 10 mg·L-1钡,锶 < 10 mg·L-1).2.1.2 城市污水处理Li等采用实验室规模FO处理模拟城市径流,发现FO能保持较高的渗透水通量和截留率,实现稳定运行,微量金属离子、磷、硝酸盐和总氮的截留率可分别达到98%~100%、97%~100%、52%~94%和65%~85%,能够克服传统膜技术能耗高等缺陷.Linares等也利用FO处理模拟城市污水,进行实验室规模的研究,多数微量金属离子的截留率均高于99%,COD 和磷的截留率将近99%,氨和总氮的截留率可分别达到67%~68%和56%~59%.FO作为城市污水的一种处理方法,实现其稳定、连续和长期运行是重要目标.2.1.3 污水深度处理Cath等利用生活污水处理厂的二级和三级处理单元的出水和被污染的地表水作为待处理水,通过FO技术来制备饮用水,其对有机化合物的截留率较高(双氯芬酸>99%,二甲苯氧庚酸>80%,萘普生>90%,水杨酸>72%).在放大规模的中试试验中,FO对氨、硝酸盐和紫外(UV)吸收类化合物的截留率分别达到74%、78%和85%;Yangali-Quintanilla等也采用二级出水(沙特阿拉伯的吉达鲁韦斯污水处理厂)作为待处理水,间接稀释红海的海水,能量消耗为1.5 kWh·m-3,低于RO工艺的能耗(2.5~4 kWh·m-3).2.1.4 特殊类型废水FO还被用于染料废水、太空废水、含油废水、含氯废水、垃圾渗滤液等特殊类型废水处理的研究中.Ge等对染料(酸橙8)废水进行浓缩处理,浓缩倍数达3;同样,Zhao等也对染料(活性艳红K-2BP)废水进行处理,截留率基本为100%.此外,FO被应用到太空废水的回用,废水中所含的尿素被完全截留,废水的回收率达95%以上,.Hickenbottom等采用FO对原油和天然气开采时产生的钻井污泥及废水进行处理,水回收率为80%以上;Zhang等利用FO处理含油废水,废水中的油分子、NaCl和醋酸被截留,水回收率可达90%.Kong等利用FO处理含氯废水中的九种卤乙酸,截留率达73.8%.Cath等提到Osmotek(现HTI公司)利用中试规模FO处理垃圾渗滤液,平均水回收率达91.9%,多数有害物的截留率高于99.0%,最终出水污染物排放量达到美国污染物排放系统规定的标准.3 影响FO运行的因素3.1 膜FO膜是由支撑层和活性层构成的非对称性结构.支撑层使FO膜拥有较好的机械强度,结构相对疏松.而活性层相对于支撑层要薄,结构致密,透水性和截留性好,在FO分离过程中起关键作用.理想的FO膜需要满足以下要求:①高水通量和高盐截留量;②低浓差极化;③较强的耐酸碱性.3.1.1 膜材料(制备与改性)最早的商业化的FO膜是美国HTI公司生产的三醋酸纤维素膜/醋酸纤维素膜(cellulose triacetate/cellulose acetate,CTA/CA).该纤维素膜有亲水性强,高水通量,低膜污染和高机械强度,耐氯等优点,但是易水解、耐酸碱性差(pH 3~8).后来生产的复合薄膜(thin-film composite,TFC),材质是聚酰胺,该膜克服了前者的缺点,在pH为2~11都有较好的渗透性和稳定性,同时具有很好的耐压性.疏水性的支撑层提高了TFC膜的水通量,减小了内部浓差极化.近年来研究者针对不同需求制备FO膜.采用相转化法制备CTA/CA膜.研究者发现影响制备的条件主要为环境湿度、凝胶浴温度、热处理温度、填充剂和退火温度.也有研究者采用界面聚合法制备TFC膜,基膜为聚醚砜或聚砜,以间苯二胺(MPD)、均苯三甲酰氯(TMC)等作溶剂,在基膜上进行聚合得到复合膜.樊晋琼等通过超声将不同量的TiO2颗粒分散(约5 min)在水相或有机相中,采用界面聚合制备了TiO2/聚酰胺复合膜,膜的水通量是未添加TiO2膜的2倍,截盐率可以达到99.9%.此外,一些研究者为了缓解FO膜污染或提高FO截留效果对现有FO膜进行化学改性.Nguyen等采用两性离子氨基酸(L-DOPA)对CTA膜支撑层表面进行修饰,发现修饰后的膜具有更强的亲水性和防垢性,其污染程度要比未修饰膜低30%.Castrillón等用伯胺和聚乙二醇对TFC膜进行表面修饰,修饰后的膜防垢性同样增强,修饰后和未修饰的膜的水通量降低量分别是7.2%±2%和15.7%±5.3%.Wang等通过对二苄氯和聚苯并咪唑的交联实现了对FO 膜孔径的控制,使FO对氯化钠的截留率高达99.5%.3.1.2 膜性质目前已知对FO运行效果有影响的膜性质主要为表面电荷、亲疏水性、粗糙度、活性层及支撑层的厚度、孔隙率、弯曲度和孔结构等.FO膜表面往往带负电荷,会与被截留的污染物产生静电(排斥或吸引)作用,从而影响污染物的去除.疏水性相对较强的膜会使疏水的物质在膜表面沉积,形成污染层.膜表面形貌(粗糙度)也会影响污染物与膜之间的作用力,从而对膜污染产生影响.而活性层及支撑层的厚度、孔隙率、弯曲度和孔结构则更多地影响内外部浓差极化,详见本文4.1节.3.1.3 膜方向FO膜是非对称性膜,支撑层疏松,活性层致密.水处理过程中根据活性层朝向分为两种运行模式:活性层朝向原水(active layer facing the feed solution,AL-FS)和活性层朝向汲取液(active layer facing the draw solution,AL-DS).膜方向对水通量、截留率和膜污染也有较大影响.多数学者认为AL-FS比AL-DS模式具有优势.研究者在FO截留微量硼、砷、药物(卡马西平,磺胺甲恶唑)、卤乙酸(HAA)、二级出水中所含有机物(腐殖酸,生物聚合物,小分子酸等)的研究中发现AL-DS模式下,水通量虽然高,但会发生严重的内部浓差极化和膜污染,因此降低污染物的去除率.也有学者认为AL-DS模式更好.Zheng等采用FO对水中四环素进行去除的过程中发现当pH为7~8时,四环素带负电,由于FO膜支撑层所带的负电荷要高于活性层,在AL-DS模式下增强了膜与四环素之间的排斥作用,提高了其截留率.此外,Zhao等认为膜方向的选择决定于废水的成分,当处理高污染的废水(废水回用,膜生物反应器和食物蛋白的浓缩)或含盐量较高的水(海水脱盐和盐水浓缩)时,膜方向应选用AL-FS模式,可以减少膜污染,实现稳定和高水通量的运行;反之,则采用AL-DS模式.3.2 汲取液汲取液产生FO的推动力,对FO效率具有直接影响.汲取液再生一直是限制FO广泛应用的关键问题之一.汲取液的选取应该满足以下要求:高于原水的渗透压、易于再生、低返混扩散性、安全无毒、成本低、抗生物污损等.3.2.1 汲取液种类(1)无机盐类质量分数小,水溶性强的无机盐,可以产生高的渗透压,使FO具有较高的水通量.如KHCO3,NaHCO3,KCl,NaNO3和KNO3,NaCl等.质量分数相对较高的无机盐,如NH4H2PO4、(NH4)2HPO4、Ca(NO3)2、(NH4)2SO4等,往往具有溶质返混通量较低的优势.从降低汲取液再生成本角度,一些无机盐具有自身特性.如MgSO4和Na2SO4,由于SO42-可以被NF膜截留,因此可采用NF替代RO进行再生.NH4HCO3用作汲取液,通过适当加热,可生成氨气和二氧化碳(继续回用),从而得到较纯净的水,与现有的膜技术相比,能耗节省72%~85%.CuSO4作为汲取液时,回收时采用与Ba(OH)2发生置换反应,生成Cu(OH)2和BaSO4沉淀的方法,此过程无能量消耗,而且生成的Cu(OH)2还可以通过与H2SO4反应得到CuSO4,继续作为汲取液重复使用.某些含氮、磷、钾等无机盐是化肥中所含的主要成分,因此,被稀释后的汲取液可以直接进行农业灌溉,降低了回收再生的能耗费用.另外,海水作为汲取液,被稀释的海水在进一步进行海水淡化时,能耗和成本大大降低.选取汲取液时,还需考虑待处理水的成分.当待处理水中含有结垢的先驱物(Ba2+、Ca2+、Mg2+、SO42-和CO32-)时,MgCl2因不易结垢被认为是最好的汲取液.(2)有机类小分子有机类汲取液,易挥发回收.如Stone等采用一种由叔胺、二氧化碳和水的混合物作,称为可变极性溶剂(Switchable polarity solvents,SPS)作为汲取液.能够产生较高的渗透压(>13 Osm·kg-1).该汲取液通过鼓入CO2和氮气,适当的加热便可回收.还有研究者选用甲醚作为汲取液,将其放置在室温下,便可以挥发,实现分离,基本无能量的消耗.大分子有机类汲取液,具有低溶质返混通量等特点.如2-甲基咪唑基类化合物,两性离子(甘氨酸、脯氨酸、甜菜碱),EDTA钠盐,复杂化合物Na4[Co(C6H4O7)2]·2H2O(Na-Co-CA),木质素磺酸钠(NaLS),磷腈钠盐和锂盐等可以产生高的渗透压.聚合高分子电解质使FO具有高水通量,高盐截留率,基本无溶质返混现象,也可作FO 汲取液.聚丙烯酰胺(PAM),聚合水凝胶,胶质溶液,可产生较稳定的渗透压和水通量,溶质返混通量要远远低于其他汲取液.一些热敏性和水溶性较强的聚合高分子电解质,在45℃,2 bar条件下通过热UF过程便可回收.(3)纳米材料超亲水性的纳米颗粒,直径大约为5 nm,可产生较高的渗透压,可用于FO系统.Na等合成了一种超强亲水性柠檬酸磁性纳米材料(cit-MNPs).该材料被作为一种适用的汲取液应用到FO中.3.2.2 汲取液浓度汲取液浓度影响水通量.主要原因是浓度升高导致其渗透压升高,膜两侧的渗透压差(πD-πF)变大,渗透驱动力变大,水通量升高.有研究认为在一定的浓度范围内,水通量随着汲取液浓度的增加而增加,超过一定值后,水通量不再变化.如Cornelissen等采用ZnSO4作为汲取液时,浓度在0.5~2.3 mol·L-1范围内,水通量随浓度的增加而增加,超过2.3 mol·L-1,水通量基本不变;除此之外,Hau等用EDTA作为汲取液时,当浓度超过1.0 mol·L-1,水通量维持不变,原因是水通量的升高加重了支撑层内稀释型内部浓差极化.汲取液浓度对溶质返混通量的影响见解不一.有研究认为影响较小,基本可以忽略.也有研究汲取液(EDTA钠盐)浓度较低时,溶质返混通量随着汲取液浓度的增加而增加;浓度较高时,溶质返混通量变化不明显(Hau et al.,2014).汲取液浓度的增大可能增加溶液的粘度,从而增加泵的能耗.3.3 原水性质3.3.1 原水组成根据原水中主要物质组成可将原水分为无机类和有机类.其中无机类主要是含盐水.有机类包括染料废水、太空废水、含油废水,含氯水(卤乙酸)、城市污水,地表水中污染物(PhACs,TrOCs)等,详见本文2.1~2.4节应用部分.3.3.2 原水浓度原水中盐浓度的升高导致原水侧渗透压升高,膜两侧的渗透压差(πD-πF)变小,渗透驱动力变小,水通量降低,截留率降低不明显.3.4 运行条件3.4.1 温度温度影响FO的水通量、溶质返混通量和膜污染.温度升高使溶液的粘度降低,扩散和传质系数提高,减小浓差极化,提高水通量.温度升高,会使溶液渗透压升高,最终使水通量增加,见公式(1):(1)式中,π是渗透压(bar),R是气体常数(8.314 J·mol-1·K-1),T、V、aW分别是是温度(K)、摩尔体积(18 mL·mol-1)和水的活度.3.4.2 pHpH改变影响膜表面性质,进而影响FO的水通量和截留效果.研究者发现pH的改变会引起交联膜聚合结构构象和表面疏水性的改变,随着pH的增加,膜表面的电负性增强,使聚合物基体上可电离官能团之间的排斥作用增强,最终使平均孔径变大,渗透水通量增加;另外,随着pH增加,膜表面的亲水性会增强,有利于提高水通量.Xie等发现当pH高于5.8时,原水中模拟污染物磺胺甲恶唑呈电负性,pH升高使FO膜AL表面电负性增强,因此膜表面与污染物之间的斥力增强,从而提高了污染物的截留率(Xie et al. 2012).pH改变影响原水中污染物化学形态,进而影响FO的截留率.如Kim等用FO截留B3+时,当pH升高,B3+与OH-结合生成B(OH)3,水合半径增大,更易被截留;当pH继续升高,B(OH)3水进一步水解为B(OH)4-,B(OH)4-与FO膜表面负电荷产生排斥作用,截留率进一步提高.Xie 发现pH在3.5~7.5范围变化时,原水中的卡马西平呈电中性,因此不受膜表面电荷变化的影响,截留率也不受影响;但pH高于5.8时,呈现电负性的磺胺甲恶唑的截留率随pH升高而升高.pH改变影响汲取液溶质化学形态,进而影响返混通量.Hau等利用EDTA钠盐作为汲取液时,当pH高于7时,EDTA4-本身会结合自由态的Na+,生成Na[EDTA]3-,降低汲取液的返混通量.3.4.3 流速和流向原水和汲取液的流速升高,增大膜表面的水流剪切力,可以产生较快的渗透流稀释作用,提高传质系数,降低外部浓差极化,从而使FO水通量增加.但有些研究者认为当流速在小范围改变时,并不足以引起传质及外部浓差极化的改变.流向指原水流和汲取液流的相对方向,为顺流或逆流.但可能由于FO研究的规模都很小,流向对FO的影响并未体现出来.4 存在问题虽然FO成为近年来的研究热点,但目前仍未得到广泛应用,浓差极化、膜污染、汲取液溶质返混,汲取液的后处理等问题亟待解决.4.1 浓差极化4.1.1 外部浓差极化和内部浓差极化外部浓差极化发生在FO膜外部,即活性层和支撑层的表面.可分为浓缩型外部浓差极化和稀释型外部浓差极化.当采用AL-FS模式时,原水中水分子通过FO膜时,溶质(污染物)被截留,在膜的活性层与原水界面区域溶质浓度越来越高,发生浓缩型外部浓差极化(图2a),在膜的支撑层与汲取液界面区域溶质浓度会被水稀释;当采用AL-DS模式时,水分子通过FO膜进入汲取液,膜的活性层与汲取液界面区域汲取液被稀释,溶质浓度降低,发生稀释型外部浓差极化(图 2b),同时在膜的支撑层与原水界面区域发生浓缩型浓差极化.内部浓差极化发生在FO的支撑层内部,分为浓缩型内部浓差极化和稀释型内部浓差极化.当AL-FS 时,发生稀释型内部浓差极化(图 2a蓝色区域);当AL-DS时,发生浓缩型内部浓差极化(图2b蓝色区域).与发生在支撑层内部浓差极化相比,发生在支撑层外部的浓差极化可以被忽略.图 2内部浓差极化和外部浓差极化(a. AL-FS模式下的浓缩型外部浓差极化和稀释型内部浓差极化, b. AL-DS模式下的稀释型外部浓差极化和浓缩型内部浓差极化)4.1.2 浓差极化对水通量的影响(1)外部浓差极化2006年,McCutcheon等根据薄膜理论分析外部浓差极化.浓缩型外部浓差极化仅发生在原水侧:(2)稀释型外部浓差极化与浓缩型浓差极化相似,但是仅发生在汲取液侧:(3)式中,πFeed,m和πDraw,b分别是原水一侧膜表面和主体溶液的渗透压;πDraw,m 和πDraw,b分别是汲取液一侧膜表面和主体溶液的渗透压(bar);JW是水通量(L·m-2·h-1);κ是传质系数(m·s-1).传质系数κ与Sh密切相关,其中(4)式中,D是溶质的扩散系数(m2·s-1);dh是水力直径(m);Sh舍伍德数由公式(5)(6)获得:(5)(6)式中,Re是雷诺数,Sc是施密特数,L是管道长度(m).(7)式中,L,H分别是矩形槽的长(m)和高(m).水通量可以简化为:(8)式中,A是水透过膜的渗透系数(m3·m-2·s-1·bar-1).由公式(2)(3)(8),McCutcheon and Elimelech得到水通量可以表示为(9)该公式既包含了浓缩型外部浓差极化,也包含了稀释型外部浓差极化. 随后,Zhao等对该公式进行了修正,得到(10)但该模型并不包含内部浓差极.(2)内部浓差极化有学者采用溶液扩散理论对内部浓差极化进行研究,得到水通量公式(11:(11)式中,K为溶质在多孔支撑层内的阻力系数(s·m-1).而(12)式中,t、τ、ε为支撑层的厚度(m)、弯曲度、孔隙率.但是公式(12)仅适用于水通量较小的情况,对FO膜而言,水通量相对较大,因此需要深入研究,分别讨论浓缩型和稀释型内部浓差极化.对于浓缩型内部浓差极化(AL-DS模式下)和稀释型内部浓差极化(AL-FS模式下),水通量的表达式分别如公式(13)和(14):(13)(14)式中,B是溶质的渗透系数(m·s-1).(3)内部浓差极化和外部浓差极化为更好地表达浓差极化对水通量的影响,将以上内部浓差极化和外部浓差极化公式综合得到AL-DS和AL-FS模式下的浓差极化公式(15)(16):AL-DS模式(15)AL-FS模式(16)4.1.3 浓差极化的控制两种类型外部浓差极化均降低膜两侧的渗透压,使水通量降低.外部浓差极化可以通过增大流速,加剧膜表面湍流程度,增大膜表面剪切力等方法,使膜表面溶液浓度与主体溶液浓度尽可能地达到均一来削减其影响,也可以通过降低水通量,减小膜表面溶液浓度的变化,从而缓解外部浓差极化.内部浓差极化发生在支撑层内部,由公式(12)来看内部浓差极化与FO膜支撑层的弯曲度τ、厚度t、隙率ε、溶质的传质系数D有关,因此削减内部浓差极化,必须从膜制备和膜改性等方面考虑,使之成为无多孔支撑层结构的膜,使溶质分子无法渗透进入支撑层内部.4.2 膜污染膜污染问题是几乎所有膜分离技术的重要问题.膜污染使FO水通量下降.但在某些条件下可以有限的提高目标污染物的截留率,如Hancock等采用FO对TrOC(医药、个人护肤品,增塑剂和阻燃剂)进行截留,发现由于膜污染,污染物的截留率>99%;而对于微污染物,Linares等发现污染后的FO膜对亲水类中性化合物、疏水类中性化合物和离子态化合物的的截留率均高于未发生污染的膜.但膜污染过于严重时,会影响出水水质,甚至会增加能耗和处理成本.FO膜污染几乎是可逆的,比RO过程中发生的膜污染程度轻.原因是FO操作时压力小,形成的污染层较疏松,通过简单的物理清洗就可以去除.但若长期应用到实际废水的过滤工艺中,也会产生不可逆的膜污染,需要通过选择合适的化学试剂进行清洗,来恢复其通量.4.2.1 膜污染类型膜污染包括有机污染、无机污染和微生物污染.更多FO研究针对的是有机污染.有机污染与分子内的粘附力有紧密关系,而且有机物之间的相互作用也可能影响膜污染的速度和程度.FO膜表面的有机污染是由化学作用和水力作用共同导致,化学作用主要是架桥,水力作用包括渗透拖曳力和表面剪切力.能够在膜表面形成有机污染的物质包括海藻酸钠,牛血清白蛋白,腐殖酸,富里酸,溶菌酶等.导致膜表面无机污染的污染物主要为钙、硅等.钙离子除了直接在膜表面形成无机结垢污染,还能通过使有机污染物之间产生架桥作用,加重有机污染.硅纳米颗粒主要是在膜表面形成胶体污染.生物污染主要由水中的微生物及其所分泌的胞外多聚物(EPS)导致,尤其是在FO-MBR 中,原因是FO膜多呈疏水性膜,而生物聚合物中的蛋白质也多为疏水性物质,容易在膜表面沉积.4.2.2 膜污染的影响因素FO膜的亲疏水性,膜表面电荷,粗糙度,表面官能团对膜污染均有影响.对膜表面进行修饰或合成新复合薄膜,改变膜表面特性,可以使其防垢性增强.原水中的污染物也影响膜污染.往往污染物-膜表面、污染物之间会产生协同作用,使污染加重,水通量下降.操作条件对膜污染也有影响,主要是膜方向、温度和流速.AL-DS模式比AL-FS模式更易受污染.温度升高会使膜结垢和清洗问题加剧.温度的改变还会改变污染物的对流和扩散作用,从而影响膜污染.流速的提高可以增强膜表面的水力剪切作用,防止污染物在膜表面沉积.4.3 汲取液溶质返混FO过程中,由于膜两侧的浓度不同,汲取液中的溶质会通过FO膜进入原水中,这种现象被称为汲取液溶质返混.溶质返混使渗透压降低,引起膜污染,从而影响FO的稳定运行.溶质返混现象在FO过程中是不可避免的,受到汲取液物化性质(扩散性,离子或分子尺寸,粘度),流速,膜结构,内外浓差极化等因素的影响.4.4 汲取液再生汲取液再生是影响FO技术能耗的关键.传统用RO再生能耗太高.目前,汲取液的再生方法包括:①直接利用,如灌溉、沙漠修复;②热分离;③膜分离技术,如RO、NF、UF、MD、ED;④化学反应沉淀;⑤刺激响应及其相关的组合工艺等.汲取液再生是影响FO技术能耗的关键.传统用RO再生能耗太高.目前,汲取液的再生方法包括:①直接利用,如灌溉、沙漠修复;②热分离;③膜分离技术,如RO、NF、UF、MD、ED;④化学反应沉淀;⑤刺激响应及其相关的组合工艺等.具体参见污水宝商城资料或更多相关技术文档。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是一种基于渗透作用的分离技术,其工作原理是通过一定的膜过滤机制将水中的溶质分离出来。

正渗透技术在现代水处理、饮用水生产、海水淡化以及废水处理等方面有着广泛的应用。

正渗透技术可分为两种,一种是反渗透技术(RO),另一种是纳滤技术(NF)。

纳滤技术与反渗透技术的区别在于,纳滤技术能够过滤掉某些被反渗透技术所过滤不掉的低分子量物质,但是并没有反渗透技术过滤后的水那么纯。

反渗透技术是一种利用半透性膜来过滤含固体颗粒、溶质、细菌、病毒等物质的技术。

反渗透膜是一种有选择性的膜,其孔径大小为0.0001微米,可以将水分子、离子、小分子溶质等无机物质和大分子物质如有机物质,细菌、病毒、胶体等过滤掉。

反渗透技术的过程是:将水通过预处理后上半部分的工作膜,即反渗透膜时,由于该膜孔径较小,只能让水分子通过,无机物质、微生物及有机物质恰恰被拦截在膜的上游,从而使得下游的水质得到进一步提升。

纳滤技术是一种介于超滤和反渗透之间的型式过滤技术。

其内部器械不同于超滤技术、反渗透技术,并有所差异。

该技术对降低水中离子、无机盐、浑浊物质和颜色等方面有着重要的作用。

正渗透技术有许多优点,首先是处理过程低能耗,对环境污染小;其次是水处理效果好,可以过滤掉水中的大部分杂质,同时还可以通过对工作压力的调整控制过滤效能;最后是维护成本低。

相比之下,传统的相关水处理方式耗能大,损耗也多,维护成本较高。

总体而言,正渗透技术的应用范围十分广泛,特别是针对一些水质劣的地区,反渗透技术和纳滤技术都能够提供有效的方案。

水处理厂通过运用正渗透技术能够给市民提供更加健康、清洁的饮用水,对保障人们的生命质量和身体健康起到重要作用。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是利用高压将水通过半透膜,而溶质无法通过半透膜,从而实现水和溶质的分离。

在正渗透过程中,水分子经过半透膜的筛选,溶质被截留在半透膜的一侧,而纯净的水则通过半透膜被输送到另一侧。

这种方法可以有效去除水中的大部分离子、有机物和微生物,使得水质得到提高。

在水处理中,正渗透技术有着广泛的应用。

在海水淡化中,正渗透技术能够将海水中的盐分和杂质去除,生产出符合饮用水标准的淡化水。

正渗透技术也可以应用于工业废水处理,将废水中的有害物质去除,净化废水,保护环境。

正渗透技术还可以应用于饮用水处理、制药工业水处理、电子工业水处理等领域,为各行各业提供清洁的水资源。

正渗透技术在实际应用中有着许多优势。

正渗透技术能够高效去除水中的溶质,提高水质。

正渗透技术的操作简单、自动化程度高,能够降低人工成本。

正渗透技术对环境友好,不产生二次污染。

正渗透技术具有高度的可靠性和稳定性,能够长期稳定运行。

正渗透技术被广泛应用于水处理领域,得到了较为广泛的认可和推广。

正渗透技术也存在一些局限性。

正渗透技术的能耗较高,生产成本较高,需要较大的资金投入。

正渗透技术对水的净化程度较高,会让水失去一些对人体有益的矿物质,需要通过其他方式进行补充。

正渗透技术的半透膜容易受到污染和结垢,需要定期清洗和更换半透膜,增加了运维成本。

在应用正渗透技术时,需要充分考虑这些局限性,并进行合理的控制和调整。

在未来,随着科技的不断进步和正渗透技术的不断优化,相信正渗透技术在水处理领域的应用将会更加广泛。

未来,人们对水质要求的提高和环境保护意识的增强,将会推动正渗透技术的进一步发展。

随着正渗透技术的成本不断降低和技术的不断成熟,相信正渗透技术将会成为水处理领域的主流技术,为人们提供更加清洁的水资源。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是一种透过半透膜,将水中溶解的盐类,重金属离子、细菌和病毒等杂质物质过滤掉,使水质得到改善的技术。

正渗透技术不同于传统的过滤、沉淀和氧化等技术,它能更全面、更有效地去除水中的污染物,具有高效精密、能耗低、操作简单等特点,因此被广泛应用于水处理领域。

正渗透技术的原理是利用半透膜,将水中的杂质物质隔离开来,只让水分子通过半透膜,从而达到净化水质的目的。

半透膜是一种特殊的薄膜,它的孔径只有纳米级,比病毒和细菌都小,因此可以有效隔离微小的杂质物质。

根据杂质物质分子的大小、极性等不同特征,可以选择不同的半透膜和过滤条件,以达到定制化的净化效果。

正渗透技术的优点首先是高效净化。

通过正渗透技术处理后的水质能够达到高达99%以上的净化效果,对水中的重金属、细菌、病毒、溶解性有机物、无机盐等多种污染物质净化效果显著,不仅能够保持水源的纯度,还有助于改善水源的味道和气味。

其次,正渗透技术具有能耗低。

由于正渗透技术不需要使用化学试剂,并且其过程中没有产生污染物质,因此它的能耗较低,成本相对也比较低。

此外,它具有操作简单、体积小、占地面积小等优点,可以灵活地应用于不同的场合。

正渗透技术的发展还面临一些挑战。

首先,正渗透技术的成本相对较高,虽然能颠覆传统的水处理方法,但是对于一些地区的水处理厂,望而却步。

其次,正渗透技术对于水压力要求较高,需要一定的能量驱动水分子穿越半透膜,这也是正渗透技术使用更加广泛的一项挑战。

总之,正渗透技术是一种效果显著、操作简单、体积小、能耗低的水处理方法,其应用前景广阔。

通过不断优化技术、降低成本和提高效率,相信正渗透技术必将在未来的水处理行业中发挥更大的作用。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术
正渗透技术(reverse osmosis,简称RO)是目前最为普遍的水处理技术之一,其主要应用在污水处理、饮用水净化、工业废水回用等方面。

该技术通过半透膜将污染物、溶质分子等一系列物质从水中分离出来,从而实现水的净化和提纯。

正渗透技术的工作原理是利用高压力将污水或含盐水推进半透膜,然后通过半透膜的分离作用实现水和其他物质的分离。

在半透膜中,只有小分子量的水和溶剂可以通过并被收集起来,而大分子量的污染物质则被隔离在膜的另一侧,并被排出去。

正渗透技术的应用范围非常广泛,包括饮用水净化、海水淡化、工业废水回用、纯水制备、食品和药品的生产过程中等。

其中,海水淡化是正渗透技术最典型的应用之一。

如今,随着国内城市化和工业化的不断加快,水资源的供应和保护引起了越来越多的关注,正渗透技术的重要性也越来越凸显。

需要注意的是,正渗透技术需要借助高压力才能实现水的过滤和处理,因此设备成本较高,同时也需要一定的能源供应。

此外,半透膜会遇到筛选的问题,这意味着一些无害的物质也可能被拦截,因此在设计和使用正渗透技术时需要注意这一点。

总之,正渗透技术在现代水资源管理中具有非常重要的地位。

通过其高效、经济的处理方式,可以实现对水的有效治理和利用,对于保障水资源的供应、提高水质和水量效率以及促进经济可持续发展都具有非常重要的意义。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是一种高效的水处理技术,广泛应用于饮用水净化、工业废水处理等领域。

正渗透技术通过半透膜的选择性分离作用,可以有效去除水中的杂质和溶解物质,得到高纯度的水。

本文将就正渗透技术的原理、应用及发展趋势进行深入探讨。

一、正渗透技术的原理正渗透技术是一种利用半透膜对水中溶解物质和杂质进行分离的方法,其原理基于渗透压差和选择性透过性。

正渗透过程是一种自然界常见的现象,即两种浓度不同的溶液被隔离的半透膜分隔开来,高浓度的溶液由于渗透压的作用会向低浓度的溶液一侧移动,直到两侧的浓度趋于一致。

而在正渗透技术中,通过施加外部压力,将水分子从高浓度的溶液一侧通过半透膜,从而得到高纯度的水,而溶解物质和杂质则被阻隔在半透膜的一侧。

正渗透膜通常为一种多孔性的聚合物材料,其孔径可以控制在纳米级别,使得只有水分子可以透过,而溶解物质和微生物等大分子则无法通过,从而实现对水质的高效净化。

二、正渗透技术在饮用水净化中的应用在饮用水净化领域,正渗透技术被广泛应用于地表水、地下水和海水等各种水源的淡化处理。

对于某些污染较为严重的水源,传统的净化方法往往难以满足净化要求,而正渗透技术则能够有效地去除水中的有机物、无机盐、重金属等有害物质,得到高纯度的饮用水。

通过正渗透技术处理后的水质纯净,口感清甜,完全符合饮用水的卫生标准。

正渗透技术还可用于家庭饮用水净化设备的制备,在家庭中安装正渗透净水器,既方便又实用,可以有效保障家庭饮用水的质量和安全。

在工业生产过程中,会产生大量的废水,其中含有大量有机物、无机盐和重金属等污染物质,严重影响环境的水质和生态平衡。

传统的废水处理方法往往成本高且效果有限,而正渗透技术可以有效地解决这一问题。

正渗透技术在工业废水处理中的应用,主要包括脱盐、浓缩和废水回收等方面。

通过正渗透技术处理后的废水,不仅可以降低废水的排放量,减少对环境的污染,同时还可以实现废水资源化利用,节约水资源并降低生产成本。

正渗透膜技术及其应用

正渗透膜技术及其应用

正渗透膜技术及其应用正渗透膜技术及其应用引言:正渗透膜技术是一种重要的膜分离技术,通过压力差或浓度差使溶质在膜上转移到高浓度一侧,实现物质的分离与浓缩。

该技术已广泛应用于水处理、化学工程、食品加工等领域,并取得了显著的成效。

本文将详细介绍正渗透膜技术的原理、分类以及主要应用。

一、正渗透膜技术的原理正渗透膜技术是利用膜的微孔或多孔结构,使溶质在膜上不同侧的浓度差推动下传递,从而实现溶质的分离与浓缩的过程。

其主要原理是渗透压差的作用。

渗透压差是正渗透膜技术实现分离与浓缩的关键。

在正渗透膜技术中,渗透压差通过溶液浓度差和膜的选择性控制。

当溶液浓度差增大或膜对特定的溶质具有较高的选择性时,渗透压差相应增大,从而促进溶质在膜上的转移和分离。

不同溶质的渗透速率与其分子量、形状、电荷性质等密切相关。

二、正渗透膜技术的分类根据膜的结构和渗透机理的不同,正渗透膜技术可以分为以下几种类型。

1. 微孔膜微孔膜是一种具有孔径不小于0.1微米的膜,通过物理屏障作用实现分离。

常见的微孔膜有滤纸、滤膜、陶瓷膜等。

微孔膜适用于粒径较大的悬浊液的分离与浓缩。

2. 超滤膜超滤膜是一种具有孔径在0.001-0.1微米之间的膜,通过物理筛分效应实现分离。

超滤膜广泛应用于水处理、饮料生产等行业,可以有效去除水中的颗粒、胶体、细菌等悬浮物质。

3. 纳滤膜纳滤膜是一种具有孔径在1-100纳米之间的膜,通过溶质的尺寸排除效应实现分离。

纳滤膜适用于去除分子量较大的有机物质、重金属离子等。

4. 反渗透膜反渗透膜是一种具有非常小的孔径的膜,通过溶质的溶解和扩散作用实现分离。

反渗透膜在水处理领域得到广泛应用,可以高效去除水中的离子、微生物、有机物质等。

三、正渗透膜技术的应用正渗透膜技术已广泛应用于水处理、化学工程、食品加工等领域,以下将重点介绍其中的几个应用。

1. 水处理正渗透膜技术在水处理中的应用是其中最重要的应用之一。

通过正渗透膜技术,可以高效去除水中的溶解物质、胶体、微生物等,得到高纯度的水。

正渗透膜技术及其应用

正渗透膜技术及其应用

正渗透膜技术及其应用在当今社会,膜技术已经成为了许多工业和环境领域中的一项重要技术。

正渗透膜技术便是其中之一。

正渗透膜技术是一种基于渗透作用的分离技术,通过能量输入来实现物质之间的分离和纯化。

它已经广泛应用于水处理、药物分离、食品加工、废物处理和能源领域等。

正渗透膜技术的基本原理是利用膜的选择性通透性,通过液体中的溶质在膜中的扩散来实现物质的分离。

其中,正渗透膜是指溶剂可以通过膜而溶质留在膜的一侧,从而实现对溶质的分离。

这一技术区别于逆渗透膜技术,后者是溶质在膜中的扩散,而溶剂留在膜的一侧。

正渗透膜技术在水处理中有着广泛的应用。

例如,通过正渗透膜技术可以将海水中的盐分去除,实现淡化海水,从而解决了淡水资源短缺的问题。

此外,正渗透膜技术还可以用于水中微量有机物质的去除,如水中的重金属离子、农药、药物残留等。

因为正渗透膜可以实现非常高的分离效率和选择性,所以它在制备高纯水和饮用水中的应用也越来越广泛。

在药物分离领域,正渗透膜技术被用于制备高纯度的药物和生物制剂。

通过正渗透膜技术可以将溶液中的杂质和离子去除,从而得到纯净的药物溶液。

正渗透膜技术在这一领域有着高效、环保和节能的特点,因此被广泛应用于制药工业。

食品加工中,正渗透膜技术可以用于浓缩果汁和脱水过程。

通过正渗透膜技术,可以去除果汁中的水分,从而实现果汁的浓缩。

同时,正渗透膜技术还可以去除果汁中的颜色素和异味物质,从而提高果汁的品质。

在脱水过程中,正渗透膜技术可以实现从食品中去除水分,从而延长食品的保质期。

废物处理领域是正渗透膜技术的另一个应用领域。

通过正渗透膜技术可以对废水中的有机物质和无机盐进行分离和去除。

这种技术对于废水处理工艺的改进具有重要意义,可以降低处理成本和能耗。

同时,正渗透膜技术还可以用于处理含有有机物质和无机盐的工业废水,如纺织废水和化工废水。

能源领域也是正渗透膜技术的应用领域之一。

通过正渗透膜技术可以实现煤炭气化和天然气净化过程中的气体分离和纯化,提高能源利用效率。

正渗透水处理技术概要

正渗透水处理技术概要

正渗透水处理关键技术研究进展[摘要]正渗透是一种新型的膜分离技术,其分离的驱动力来源于原料液和汲取液之间自然存在的渗透压差,近年来正渗透技术已在国际上得到广泛关注。

简述了基于此技术的正渗透水处理过程的基本原理,指出了这种新型水处理过程的关键技术——正渗透膜和汲取液,根据各自的技术特点对其进行分类概述,并从实验室基础研究和技术的商业化进程两方面介绍了这两项关键技术取得的最新研究进展。

从水通量角度对不同体系进行了简单比较,分析了各材料和方法的优缺点,并对它们的应用前景进行了展望。

[关键词]正渗透;水处理;汲取液;海水淡化[中图分类号] TQ028.8 [文献标识码] A [文章编号] 1005-829X(2012)05-0005-05 Advance in the key techniques of forward osmosis water treatmentZhang Qian1,Shi Qiang2,Ruan Guoling1,Chu Xizhang1Abstract: Forward osmosis(FO) is a kind of new membrane separation technique. Its driving force comes from the naturally existing osmotic pressure difference between feed solution and draw solution. Forward osmosis (FO) technology has become increasingly attractive internationally,in recent years. The basic principles of the FO water treatment are introduced and the key techniques of the new type of water treatment process-FO membrane and draw solution -are pointed out. According to their own technical characteristics,the key techniques are classified and summarized. The newest research progress in the key techniques is introduced from the aspects of fundamental research in labs and the schedule of technique commercialization. Different systems are compared simply from the angle of water flux. The advantagesand disadvantages of various raw materials and methods are analyzed and their application foreground is prospected.Key words: forward osmosis;water treatment;draw solution;seawater desalination正渗透是一种新型的膜分离处理技术,与超滤、微滤和反渗透等常用膜分离技术相比,其不需要外加压力作为分离驱动力(或者在较低的外加压力下即可运行),而是靠溶液自身的渗透压差推动正渗透分离过程。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术水处理是指将自然界中的水经过净化、消毒等工艺处理后,变成符合特定用途要求的水。

正渗透技术是水处理领域中的一种重要技术,其应用非常广泛,可以用于饮用水净化、工业废水处理等领域。

本文将就正渗透技术在水处理中的应用进行详细介绍和讨论。

正渗透技术是一种通过半透膜将水中的溶质和溶剂分离的技术。

在正渗透技术中,水分子通过半透膜的微孔滤除,同时其它溶质则被半透膜阻隔,从而达到了水的净化目的。

正渗透技术是一种物理性质的分离技术,相比传统的化学处理方法,其优点在于不需要添加化学药剂,净化后的水质较好,有着较高的水质纯度。

正渗透技术在水处理中的应用非常广泛,例如在城市饮用水净化、海水淡化和工业废水处理等领域都有着重要的应用价值。

下面将分别介绍这几个领域中正渗透技术的应用。

首先是在城市饮用水净化中,正渗透技术可以有效地将水中的杂质、有机物和微生物滤除,得到高纯净度的饮用水。

在水资源稀缺的地区,正渗透技术尤其重要,它可以将地表水、地下水等含盐及含污染物的水资源转化为可饮用的纯净水。

这对于解决城市饮用水资源紧缺的问题有着重要的意义。

其次是在海水淡化领域,正渗透技术同样有着广泛的应用。

海水中的盐分含量较高,无法直接饮用或用于农业灌溉等用途。

而通过正渗透技术,可以将海水中的盐分和杂质滤除,得到淡化后的水资源,可以解决一些海水淡化地区的饮水问题。

通过结合太阳能、生物质能等可再生能源,通过正渗透技术淡化海水,也有望在未来成为一种有效的可持续发展的水资源解决方案。

最后是在工业废水处理中,正渗透技术由于其高效的净化效果和对水质纯度要求的符合,也得到了广泛的应用。

工业废水中含有各种有机物、重金属离子和微生物等废物,采用传统的化学处理方法难以有效清除这些物质,而正渗透技术可以彻底滤除这些废物,使废水得到有效的处理和净化。

值得一提的是,虽然正渗透技术在水处理中有着诸多优势,但同时也存在着一些挑战和问题。

首先是正渗透设备和技术的成本较高,需要经过较长时间的投资回报期。

废水处理正渗透技术解析

废水处理正渗透技术解析

废水处理正渗透技术解析1 引言2015年8月,世界资源研究所发布了2040年国家水资源压力排名,预计中国将从中等水资源压力国家变为极高水资源压力国家.为应对水资源压力,世界各国不断加强水处理领域的研发力度,各种水处理技术被相继开发,其中再生水回用、海水淡化等技术被广泛采用.作为水处理领域的重要支撑技术,微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)等膜法水处理技术经过长期的发展已有较多的商业化应用,在水处理领域发挥了举足轻重的作用.随着国家经济转型战略的不断推进,“节能减排”、“零排放”等环保要求不断提高,能耗更低、水质更优且回收率更高的水回用技术亟需发展.正渗透技术,作为新型“零排放”技术的关键技术,因其具有能耗低、膜污染小、水回收率高等优点受到国内外学者的广泛关注.正渗透是指水从较低渗透压一侧通过选择性渗透膜流向较高渗透压一侧的过程,由于此过程为自发过程,不需要额外能量的输入,而整套正渗透技术也仅在汲取液重浓缩阶段需要一定的能量输入,因此正渗透技术能耗相对较低. McGinnis和Elimelech(2007)利用正渗透进行海水脱盐,最低能耗仅为0.84 kWh·m-3,与反渗透脱盐相比降低72.1%.在膜污染方面,由于MF、UF、NF、RO工艺都是基于压力过滤的原理,较容易形成滤饼层,导致较重的膜污染;正渗透由于不需额外液压力,不易形成滤饼层,膜污染较小,且较易清洗.Mi和Elimelech 等(2010)以硫酸钙作为膜结垢污染物对正渗透膜污染进行了研究,结果表明,与RO膜污染清洗需要复杂的酸碱清洗相比,在进行长时间正渗透实验后,用清水对膜表面进行清洗,其通量可恢复96%以上.在海水淡化水回收率方面,与单级RO 30%~50%的水回收率相比,FO 具有高达85%的水回收率;除此之外,正渗透膜的寿命较长,通常是反渗透膜寿命的2倍.正是基于以上主要优点,正渗透技术近年来持续受到国内外学者的广泛关注.图 1为以“正渗透”和“forward osmosis”为固定词组在中国知网和Web of Science中进行主题检索并统计出的近年来正渗透相关出版物的情况.可以发现研究人员对正渗透技术的关注正在不断增加;相对于国外正渗透研究,国内研究发展较慢,但近几年发展较快.根据文献统计结果可知,正渗透技术的主要研究热点集中在正渗透膜制备、浓差极化消除及模型建立、新型汲取液开发及浓缩、正渗透技术应用等方面.图 1中国知网和Web of Science中正渗透相关出版物数量统计2 正渗透膜理想的正渗透膜应需具备截留率高、水通量高、亲水性好的功能层,厚度薄、孔隙率高、曲折因子低、机械强度高的支撑层,同时还需具备耐腐蚀能力较强和应用范围较广等特征.最早研究中使用的正渗透膜主要是反渗透膜和改性的纳滤膜.随着研究的不断深入,发现由于反渗透膜具有较厚的多孔支撑层,其内浓差极化较大,导致水通量降低较快.为此,国内外众多研究机构相继开展了正渗透膜的研发工作.美国HTI公司是世界上较早从事正渗透膜研发的公司,其商品化的FO膜极具代表性,在正渗透膜市场中占据绝对优势.除HTI公司外,目前,国际上对正渗透膜进行商业推广的公司还主要有美国Oasys公司、丹麦Aquaporin公司、美国Porifera公司和英国Modern Water公司;另外,国内外许多高校、研究机构,如耶鲁大学、南洋理工大学、新加坡国立大学、中国海洋大学、中科院上海高等研究院等在正渗透膜制备与研究领域也做出了突出贡献.在正渗透膜研制过程中,特别是利用诸如醋酸纤维素为材料制备对称膜或利用同一材料合成非对称膜时,采用的主要制备方法是相转换法,包括浸沉凝胶法、蒸气相凝胶法、热凝胶法、控制凝胶法和溶剂蒸发凝胶法,但通常相转化法制成的膜分离层较厚.美国HTI公司在早期的正渗透膜研究中,采用的膜材料主要是二醋酸纤维素(醋酸含量小于55%).然而研究发现二醋酸纤维素不够稳定,长期浸没在水中时易发生水解.之后,三醋酸纤维素(醋酸含量大于55%)逐渐替代了二醋酸纤维素.三醋酸纤维素正渗透膜(CTA)以亲水性较好的三乙酸纤维素或三乙酸纤维素与其衍生物的混合物作为致密皮层和多孔支撑层,以聚酯网丝为骨架嵌入支撑层中来提供主要的承载强度;聚酯网嵌入支撑层的方式大大缩小了膜的厚度,膜整体厚度仅约为50 μm左右,较薄的膜支撑层使溶质通过多孔支撑层的传质阻力减小,从而大大减小了正渗透膜的内浓差极化.随着研究的深入,出现了第三代新生膜——复合膜.复合膜通常是利用层层组装法在多孔支撑层的上面利用不同的材料构成致密的活性层.复合膜可以通过对活性层材料的优选使其具有较高的分离能力,其合成方法包括:界面聚合法、原位聚合、溶液涂敷法和等离子体聚合法,其中界面聚合法和原位聚合为主要采用方法.HTI公司开发了一种TFC膜合成方法,该方法通过非溶剂致相分离法将聚砜支撑层附于聚酯纤维上以提供主要的强度支撑,以聚酰胺为材料,利用界面聚合法合成膜活性层.尽管聚酰胺材料活性层膜污染大于醋酸纤维素活性层膜污染,且膜厚度约为115 μm,大于CTA 膜,但其结构参数却与CTA膜相近,表明其有较高的孔隙率和较低的曲折度,其水通量约为CTA膜的2~3倍,且与CTA的适用pH范围(3~8)相比,TFC正渗透膜的适用范围更广(pH 2~12).这种合成方法是目前TFC正渗透膜制备的主要方法,国内外多数研究者在TFC正渗透膜的研发中参考了这种方法.Ren和McCutcheon等(2014)对HTI公司的TFC膜进行了研究,结果发现,当渗透膜活性层朝向原料液时,以1 mol·L-1的氯化钠为汲取液,纯水为原料液,水通量可达22.9 L·m-2·h-1,盐通量为6.4 g·m-2·h-1.Yang等(2009)研发了一种中空纤维型正渗透膜,在23 ℃时,利用5 mol·L-1的氯化镁作为汲取液,纯水为原料液,水通量可达33.8 L·m-2·h-1,盐通量小于1 g·m-2·h-1.Wang等(2010)设计了中间有孔隙夹层的双醋酸纤维素活性层,由于双层活性层的存在,使盐通过率和盐反向通量都有显著的降低,但膜的水渗透阻力有一定的增大;在22 ℃时,以5 mol·L-1的氯化镁为汲取液,水通量为48.2 L·m-2·h-1,盐反向通量小于6.5 g·m-2·h-1.Wang等(2010)研制了一种正渗透中空纤维膜,当膜活性层朝向汲取液时,以0.5 mol·L-1氯化钠为汲取液,纯水为原料液,水通量可达32.2 L·m-2·h-1,盐通量与水通量的比值为0.11 g·L-1.近年来,正渗透膜的制造方法在不断增加,制造水平有了较大的提高,并已开发出包括平板型、中空纤维型和螺旋管式等多种型式的膜,但是正渗透膜的研制仍在水通量、截盐率、抗污染能力、性价比等几个因素中寻求折衷点,难以做到面面俱到,需要进一步从新型膜材料、膜改性、膜合成方法等多个方面开展进一步的深入研究. Ma和Tang等(2012)首次将合成的沸石-聚酰胺纳米复合材料渗透膜应用在正渗透当中,发现加入沸石后正渗透膜的水通量最大可提高50%,但截盐率有所降低.Nguyen和Zou等(2014)利用纳米银和纳米二氧化钛对正渗透膜表面进行修饰,结果发现改性后的正渗透膜具有良好的抑菌功能,细菌去除率是原膜细菌去除率的11倍;同时,膜污染清洗后,改性膜的通量可恢复至初始通量的67%~72%,高于未修饰膜可恢复的初始通量(33%),表明改性膜防污能力增强.Lv和Ma等(2013)利用聚乙二醇衍生物对FO膜表面进行原位化学改性,尽管水通量比原膜低,但原子力显微镜的分析结果显示,改性膜与有机污染物间的粘附力较原膜减小,表明改性膜对有机物的抗污染能力增强.钟溢健和王秀蘅等(2015)利用聚乙烯醇修饰准对称结构无机薄膜,修饰后的膜表面荷电更高,以2 mol·L-1氯化钠为汲取液,纯水为原料液,水通量可达67.08 L·m-2·h-1,高于原膜12%,而比盐通量为0.15 g·L-1,低于原膜12%.正渗透膜作为正渗透技术的核心组件,其制造技术的提升和价格的降低无疑是正渗透技术商业化应用的重要驱动力,因此,机械强度高、化学稳定性好、亲水性强、价格低廉的正渗透膜材料及内浓差极化更低的对称膜是未来的研发焦点.3 浓差极化浓差极化的存在会极大地削弱膜活性层两侧的实际渗透压差,是影响正渗透技术性能发挥的主要限制因素.为此,国内外大量的有关正渗透膜及汲取液的研究都以降低浓差极化为着力点.正渗透过程中,所采用的正渗透膜常为包括活性层和多孔支撑层的非对称结构膜,根据膜的放置方向不同可产生不同形式的浓差极化,包括稀释型内浓差极化、浓缩型外浓差极化、浓缩型内浓差极化和稀释型外浓差极化(如图 2).通常情况下,除利用正渗透技术进行压力阻尼渗透产能外,正渗透膜的放置方向通常是活性层朝向原料液,支撑层朝向汲取液(如图 2a).在此膜向时,由原料液汲取的水分通过膜活性层进入膜支撑层进而进入到汲取液主体溶液时,膜支撑层孔隙中的汲取液以及支撑层外的表层汲取液会被稀释,即分别形成稀释型内浓差极化和稀释型外浓差极化;而由于原料液中的溶质难以通过渗透膜,容易在活性层表面集聚,导致活性层表面渗透压高于原料液主体溶液渗透压,即形成浓缩型外浓差极化.当渗透膜的活性层朝向汲取液,支撑层朝向原料液时(如图 2b),原料液溶质会被截留在多孔支撑层内和多孔支撑层表面,导致其渗透压大于原料液主体溶液的渗透压,形成浓缩型内浓差极化和浓缩型外浓差极化;而汲取的水分通过多孔支撑层和活性层到汲取液主体溶液过程中,会稀释活性层外的表层汲取液,产生稀释型外浓差极化.图 2正渗透浓差极化示意图(a.活性层朝向原料液;b.活性层朝向汲取液)由外浓差极化形成机理可知,降低外浓差极化主要依靠增大质量传递系数k,质量传递系数可由下列公式得出:(1)(2)式中,D为溶质扩散系数(在溶液中溶质传输只有扩散时,溶质扩散速率与浓度梯度的比值(m2·s-1)),dh为水力直径(为了计算雷诺数,给非圆管流动取一个合适的特征长度;其中,圆管的直径即为其特征长度(m),Re为雷诺数(用来表征流体流动情况的无量纲数),Sc为施密特数(无量纲,运动黏性系数和扩散系数的比值,用以描述同时有动量扩散及质量扩散的流体),L为通道长度(m).由公式(1)、(2)可知,质量传递系数主要受水流通道设计和水力条件影响,因此,通过合理的流道设计以及错流、湍流等水力条件的改变可降低甚至消除外浓差极化. Linares等(2014)研究了不同尺寸的网格状垫片对水通量的影响,发现合适的垫片结构可以有效的提高水通量,表明水流通道的结构对流体状态的影响能够进一步影响到外浓差极化;程世营和张捍民等(2015)研究了垫片法改善浓差极化的现象,认为当将垫片放置在原料液廊道(远离膜)和汲取液廊道(贴紧膜)时,可有效减轻浓差极化现象.Tan和Ng等(2008)研究了汲取液不同循环流速下,水通量的变化情况,发现随着流速的增大,水通量不断增加,表明汲取液流速的增大能够显著降低外浓差极化.因此在一定水力条件下,外浓差极化可以忽略不计,只有当膜表面流速较低的情况下,才考虑其一定的影响.相对于外浓差极化,内浓差极化对正渗透的性能影响极大,稀释性的内浓差极化会导致膜活性层汲取液一侧的渗透压远小于汲取液主体溶液的渗透压,极大降低了活性层两侧的有效渗透压差;而浓缩型内浓差极化则导致膜活性层原料液一侧的渗透压远大于原料液主体溶液的渗透压,从而较大降低了活性层两侧的有效渗透压差;因此,内浓差极化的消除在正渗透过程中至关重要.由于内浓差极化产生于膜的多孔支撑层内,且多孔支撑层中汲取液溶质主要以分子扩散的形式存在,受膜支撑层外部水利条件影响较小,极难消除,因此,如何降低内浓差极化是解决浓差极化的难点.由内浓差极化的形成机理可知,如何加强溶质在膜支撑层内的扩散成为降低内浓差极化的出发点和落脚点.根据已有的针对内浓差极化的研究,溶质在膜多孔支撑层内的传质阻力K的公式可以表达为:(3)式中,t为支撑层厚度(m),τ为支撑层弯曲度(mm·m-1),ε为支撑层孔隙率(块状材料中孔隙体积与材料在自然状态下总体积的百分比(%).由公式(3)可知,为了使内浓差极化最小化,应尽量减小正渗透膜的支撑层厚度t、降低支撑层弯曲度τ、增大多孔支撑层孔隙率ε和溶质扩散系数D,这也是国内外众多学者的努力方向.Song和Sun等(2011)利用纳米纤维对正渗透膜进行修饰,修饰后的纳米复合膜支撑层具有较低的弯曲度,结构参数较小,较大地减小了内浓差极化;Zhao和Zou等(2011)的研究发现,汲取液的理化性质对多孔支撑层的内浓差极化有极大的影响,当汲取液粘度较大,离子或分子粒径较大时,内浓差极化尤为严重.除此之外,新型膜结构的研发和膜改性对降低内浓差极化也极为重要.Wang等(2010)设计了中间有孔隙夹层的双醋酸纤维素活性层,由于双层活性层的存在,较大地减小了多孔支撑层中的内浓差极化.综上所述,选择溶质传质阻力较低的正渗透膜和溶质扩散系数较高、性能良好的汲取液是减小内浓差极化的关键因素.4 汲取液及其浓缩方法选择一种良好的汲取液对正渗透操作至关重要.通常情况下,理想的汲取液应具备溶解度高、渗透压高,稳定无毒,不改变正渗透膜材料的性能和结构,易分离,能够重复使用等特征.根据溶质性质的不同,汲取液可以分为无机离子汲取液、有机分子汲取液、其它类型汲取液等.4.1 无机汲取液目前,无机汲取液在正渗透中应用最为广泛,无机汲取液通常因无机分子质量较小,溶解度较高而产生极高的渗透压,因此,高渗透压的优势使其在高盐废水处理、废水“零排放”浓缩过程中具有优势;然而无机汲取液溶质反向渗透常常较大,会增加原料液的盐度.主流无机汲取液是碳酸氢铵和氯化钠溶液.早在2005年,McCutcheon和Elimelech等(2006)就利用碳酸氢铵作为汲取液进行正渗透实验,取得了良好的效果;通过加热可以回收氨气-二氧化碳、获得高品质水、浓缩并再生汲取液,尽管如此,产品水中仍会含有一定的氨气.目前,在正渗透技术实际应用和中试过程中,碳酸氢铵作为汲取液应用最为广泛,其优点是渗透压高,且加热至60 ℃即可分解,以氨气和二氧化碳的气体形式蒸出,便于回收进行重浓缩;由于碳酸氢铵汲取液回收系统可以充分利用低品位废热,降低能耗,特别适用于具有可利用废热的场所,如热电厂,太阳能充足地区等.氯化钠溶液也是常用的汲取液,主要原因是氯化钠溶解度高,渗透压高,不会有膜结垢现象,且较为廉价,特别是在沿海地区,可以直接利用海水进行正渗透,有利于技术的推广应用;但氯化钠反向渗透通量较大,回收系统主要是采用反渗透系统或蒸发器蒸发浓缩,这两种回收方法通常都不能利用低品位废热,在实际应用过程中能耗反而要高于普通RO系统.除此之外,国内外学者对其它无机汲取液也进行了较多研究.Achilli(2010)对14种无机盐汲取液在正渗透中的性能进行了研究,结果表明,碳酸氢铵、氯化钙、硝酸钙、氯化钠、氯化镁等几种无机汲取液性能较优,然而考虑到碳酸根离子与原料液中可能含有的阳离子会产生沉淀,而含有钙离子的汲取液则容易加重膜结垢,因此,相对而言氯化镁作为汲取液最好.随着研究的深入,在一些研究中,汲取液选择的基本原则被渐渐打破,一些低毒的大分子汲取液也进入了研究范围.Boo和Elimelech等(2015)利用二氧化碳-三甲胺(TMA)作为汲取液进行正渗透实验,与氨气-二氧化碳汲取液相比,TMA分子较大,反向通量降低,加之热分离温度较低,其重浓缩能耗较低;然而TMA的扩散系数较小,导致浓差极化较大,水通量有所降低,且TMA对环境和人体有一定的毒性,只能限于工业应用.4.2 有机汲取液由于无机汲取液通常分子量较小,溶质反向渗透通量通常较大,不仅会造成汲取液溶质的损失,而且会对原料液造成污染,同时会提高原料液的渗透压,从而降低膜两侧原料液和汲取液间的有效渗透压差.而有机汲取液通常分子量较大,可以在很大程度上降低溶质的反向渗透,且即使发生反向渗透也不会影响原料液的盐度.此外,有机汲取液容易通过纳滤或超滤系统进行重浓缩;有些有机汲取液,如葡萄糖等可以直接利用,不需重浓缩回收,受到较多学者的关注.如HTI公司开发以可食用糖类或饮料为汲取液的“水袋”,可从污染水源直接制备出达到饮用水标准的水,并已经成功应用于航天、军事或救灾等领域.Yen和Chung 等(2010)研究了2-甲基咪唑有机化合物作为汲取液的正渗透性能,发现其渗透压高达35 MPa,揭示其有一定的应用潜力.Hau和Chen等(2014)以乙二胺四乙酸钠盐为汲取液,利用正渗透对高营养盐污泥进行脱水实验,发现可将污泥浓缩至32000 mg·L-1;并利用纳滤对汲取液进行重浓缩,发现纳滤系统对乙二胺四乙酸钠盐的截留率为93%.Lutchmiah等(2014)研究了氨基酸、甜菜碱等多种两性表面活性剂作为汲取液对正渗透的影响,发现两性表面活性剂在不影响水通量的前提下,能够降低盐的反向通量.杨晶和李玉平等(2014)考察了聚丙烯酸钠作为汲取液的正渗透性能,发现其水通量要略高于相同渗透压的氯化钠汲取液的水通量,溶质反向通量远小于氯化钠汲取液的溶质反向通量,约为其1/10.4.3 其它类型汲取液随着对汲取液研究的不断深入,研究人员陆续研发了多种不同类型的新型汲取液及其回收系统.但整体上,与无机汲取液和有机汲取液相比,并未表现出太大的优势,仅限于实验室研究.新加坡南洋理工大学Ling和Chung等(2010)创新地开发了3种高水溶性的磁性纳米颗粒作为汲取液溶质,并利用磁场对其进行回收,取得了较好的效果.Ge和Chung等(2011;2012)利用不同粒度的聚乙二醇二酸通过热分解法对超顺磁纳米颗粒进行了修饰,并将其作为汲取液溶质进行正渗透实验,发现其存在磁颗粒集聚等问题;在后续研究中,他们以聚合高分子聚丙烯酸钠碱性溶液作为汲取液,成功避免了颗粒集聚现象,开辟了一条新型汲取液的发展途径.Cai和Hu等(2013)利用半交织网状结构热敏水凝胶(N-异丙基丙烯酰胺在聚丙烯酸钠中形成的聚合物)作为汲取液,在40 ℃时,水凝胶可释放全部汲取的水,但正渗透过程中水通量极小.李建军和张捍民(2014)制备了透明质酸-聚乙烯醇电敏水凝胶,并作为汲取液进行正渗透研究,发现在水通量方面,电敏水凝胶汲取液优于文献报道的热敏水凝胶汲取液.当前,汲取液的研发方向较多,然而,无论无机汲取液、有机汲取液还是其它类型汲取液,都需围绕高渗透压、低反向渗透、稳定无毒、重浓缩方便且能耗低等特性,尤其是重浓缩方式及能耗,因为正渗透技术应用过程中,主要能耗发生在重浓缩过程.汲取液重浓缩方法主要有加热法、电磁法、膜过滤法(超滤、纳滤、反渗透)等.加热法主要用于类似碳酸氢铵、二氧化碳-三甲胺等热敏性汲取液,尽管加热法通常需要消耗大量的热量,但在可获得低品位废热的情况下,此浓缩方法极具应用前景;电磁法主要用于一些具有磁性的汲取液,由于此类汲取液常存在集聚现象,且渗透压有限,因此应用较为受限;膜过滤法应用范围较广,无论是有机汲取液还是无机汲取液都可以通过膜法进行重浓缩,此情况下,正渗透起到类似于膜系统前处理的作用.Holloway(2007)利用FO+RO对厌氧消化池污泥脱水沥出液进行处理时,证明FO+RO的能耗要高于RO系统.Altaee等(2014)等对比了FO+RO系统和RO系统在海水淡化中的应用,认为尽管FO的能耗极低,但FO+RO系统的能耗要高于RO系统.因此,膜过滤浓缩方法除在应急、高污染行业废液处理时可能应用外,开发前景相对受限.5 正渗透技术应用随着正渗透技术研究的不断深入,正渗透应用领域也不断拓宽.目前,已经开展了正渗透在海水淡化、废水处理、压力阻尼渗透发电、食品浓缩、应急水袋、渗透泵等领域的应用研究,并在海水淡化、石油化工废水处理等项目中得到了一些商业化应用.5.1 海水淡化在海水淡化领域,传统的多级闪蒸一直是主流技术,其能耗约为5.66 kWh·m-3.随着膜技术的快速发展,能耗较低的反渗透海水淡化技术在海水淡化市场的份额日渐增大,在存在能量回收装置的情况下,RO海水淡化装置能耗可降至约3.02 kWh·m-3.正渗透技术的出现,进一步降低了海水淡化的能耗.McGinnis和Elimelech(2007)以碳酸氢铵为汲取液,利用精馏塔对汲取液进行重浓缩,发现利用正渗透进行海水淡化的能耗仅为0.84 kWh·m-3,与反渗透脱盐相比降低72.1%.之后,英国Modern water公司于2012年在阿曼Al Najdah 建设并运行了第一座正渗透海水淡化厂,成为世界上首家建立商业化正渗透海水淡化厂的厂商.尽管如此,Altaee等(2014)认为在不考虑膜污染情况下,FO+RO系统用于海水淡化的能耗高于单纯RO系统.因此,在可获得低成本热源并利用加热法浓缩汲取液的条件下,正渗透技术在海水淡化领域的应用前景更加广阔.5.2 废水处理在制备高品质再生水过程中,膜技术具有较大的应用优势,其中,反渗透是经常采用的技术之一.然而反渗透过程必然伴随着大量浓缩废水的产生,这是反渗透技术应用过程中的一个“顽症”.正渗透过程虽然也会产生浓缩废水,但由于其废水浓缩倍数极高,产生的浓缩废水量相对较少,且通过后续的蒸发结晶等技术可达到“零排放”,因此,相对于RO技术具有更好的应用前景.国内外大量研究表明,正渗透技术对多种污染物皆有较高的去除率,为其在废水处理中的应用提供了理论支撑.Cui和Chung等(2014)利用正渗透技术对6种重金属废水进行处理,发现重金属去除率可达99.5%.Achilli等(2009)将正渗透与MBR结合,发现可以去除98%的氨氮和99%的总有机碳,表明正渗透与MBR表现出较好的协同性.Xie和Nghiem等(2013)利用正渗透-膜蒸馏方法对矿井废水进行处理,发现痕量有机物去除率可达91%~98%.在废水处理领域,正渗透技术的应用研究在不断拓展,如生活污水处理、垃圾渗滤液废水处理、页岩气废水处理、染料废水处理等等,但大多数仅处于实验室研究阶段,仅有少量实际应用案例.美国Oasys公司(Coday et al.,2014)在美国Permian盆地的页岩气废水处理项目,是世界上第一个运用正渗透膜技术处理石油化工废水的项目.国内北京沃特尔公司(李禾,2015)将传统石灰混凝澄清预处理技术和正渗透技术相结合,为长兴电厂设计、建设了22 m3·h-1的电厂脱硫废水“零排放”系统,实现了100%的废水回用,填补了低成本解决电力行业脱硫废水“零排放”的技术空白.然而,正渗透技术并不适应于所有废水处理领域.Holloway(2007)利用FO+RO对厌氧消化池污泥脱水沥出液进行处理,尽管实验表明FO+RO 具有较高的水通量,膜污染程度较低,但FO+RO系统的能耗略高于RO系统.当废水盐度较低,污染物含量较少时,RO系统能耗处于较低水平,FO+RO系统难以有较强优势;而随着盐度和污染物含量的增加,RO系统能耗和膜污染程度骤增,此时,FO+RO系统可因其膜污染小、浓缩倍数高而优势渐显.当然,利用RO系统进行汲取液重浓缩时,汲取液通常采用热稳定性的溶质,这类溶质通常渗透压较高,对废水的浓缩倍数较高,但与RO系统相比,能耗也会较高;对于以碳酸氢铵一类的热不稳定的溶质制备的汲取液,通常采用加热法进行重浓缩,加热法可以充分利用低品位热,与RO系统相比具有明显的节能优势,然而因此类汲取液渗透压有限,废水浓缩倍数也有限.因此,高渗透压、易重浓缩的汲取液的开发对正渗透的实际应用具有极为重要的推动作用.5.3 压力阻尼渗透发电压力阻尼渗透(PRO)发电全过程无碳排放,对环境影响极小,为世界清洁能源提供了一条最新途径.PRO发电主要适用于沿海地区,特别是江河入海口处,既可以利用江河的淡水作为原料液,又可利用海水或海水淡化后的浓水作为汲取液,膜活性层朝向海水测,即形成正渗透过程,淡水被汲取到海水侧,被稀释的海水以一定流速排回海中,在其排放途径中设置发电装置,即可发电产能,另外海水侧由于产生较高压力,通过压力传质装置可为原料液和汲取液提供泵入压力.PRO发电起源于20世纪70年代,然而在PRO发电起始阶段,膜功率密度极低,Statkraft公司研究认为只有膜功率密度大于5 W·m-2时才具有商业应用价值;然而压力阻尼渗透过程中,由于在汲取液测会产生较高压力,在此压力下,若正渗透膜强度较低,则极易受到损坏,难以产生较高的膜功率密度.经过国内外学者长期不懈努力,目前,平板PRO膜的压力可以承受22 bar,功率密度可达18 W·m-2,而中空PRO膜的压力可以承受20 bar,功率密度可达27 W·m-2.PRO膜的长足发展对PRO发电的实际应用起了重要的推动作用,而今后,在不加重浓差极化、降低水通量的前提下,更高强度正渗透膜的研发对压力阻尼渗透发电至关重要.。

正渗透膜污水处理技术

正渗透膜污水处理技术

在 提 高处 理效 果 的基 础上减 少 能耗 、节 约 资 源尤 为重 要 。
MB R近 年 来 被 广 泛 应 用 , 但 存在 工艺 成本 高 、 膜 污染 严重 、 能 耗 和 运 行 费 用 较 高 等 问题 。 而F O具 有 能 耗 较 低 …、 分 离 效
图3 HT 1 正渗透膜( T F C — E S ) 的 S E M
3 . 1 驱 动 液
膜。
宗同强【 2 ] 等用 高 温裂 解气 质 联用 的方 法 , 对 C T A — E S 、
C I — N W、 T F C — E S膜 成 分 分 别 进 行 了鉴 定 , 并 通 过 扫 描 电 子 显微镜 ( S E M) 对 3种 膜 的 表 面 和 截 面 进 行 了 仔 细 的观 察 。 C T A — E S 、 C T A— N W、 T F C — E S膜 的 扫 描 电 子 显 微 镜 图 如
图 l ~ 图 3所 示
驱 动 液 为 整 个 系 统 提供 直 接 驱 动 力 . 因 此 驱 动 液 的选 择 是 正 渗 透 系统 的 一 个 关 键 因 素 。 理 想 的 驱 动 液 除 无 毒 和 成 本 低 廉还需满 足 : ( 1 ) 有 较 高 的 渗 透 功 效 , 即 它 在 水 中应 该 具 有 较 高 的 溶 解 度 …, 以 及 它应 该 具 有 较 小 的 分 子 量 以 便 能 产 生 较 高 的 渗 透 压 。根 据 范 特 霍 夫 f V a n 2 H o  ̄ 定 律 推 导 出 的 莫 尔 斯 ( Mo  ̄ e ) 方程 , 溶液 的渗透压 7 r 可用式 ( 1 ) 计算 。
动力 . 在 渗透压差 的作 用下 自发 的从 低渗透 区域( 原料液 ) 通 过选 择透过性膜 到高渗透压 区域 ( 驱动液 ) 的过程 。 此 过程原

《2024年正渗透膜技术及其应用》范文

《2024年正渗透膜技术及其应用》范文

《正渗透膜技术及其应用》篇一一、引言正渗透膜技术是一种新型的膜分离技术,以其独特的传质机制和优越的性能在许多领域得到了广泛的应用。

该技术利用高渗透压的驱动作用,使水分子从低浓度溶液自然渗透到高浓度溶液,具有能耗低、污染小、传质速率快等优点。

本文将对正渗透膜技术的基本原理、特性以及其在不同领域的应用进行详细的阐述。

二、正渗透膜技术基本原理正渗透膜技术利用具有高选择性的膜材料和不同浓度溶液间的渗透压差来达到物质分离和纯化的目的。

当具有较高渗透压的溶液(如高浓度的盐溶液)与低渗透压的溶液(如淡水)被正渗透膜隔开时,由于渗透压差的存在,水分子会自然地从低渗透压侧的溶液中通过正渗透膜向高渗透压侧的溶液中移动。

这种传质方式无需外部施加压力,因此具有较低的能耗。

三、正渗透膜技术的特性正渗透膜技术具有以下特点:1. 自然传质:无需外力驱动,通过渗透压差实现自然传质。

2. 能量效率高:相对于传统的压力驱动的膜分离技术,正渗透膜技术具有较低的能耗。

3. 抗污染能力强:由于正渗透膜技术的传质方式,对污染物的抗性较强,不易发生膜污染。

4. 适用范围广:可应用于海水淡化、污水处理、生物医药、食品工业等领域。

四、正渗透膜技术的应用1. 海水淡化:正渗透膜技术可用于海水淡化,通过将海水与高浓度的盐溶液隔开,利用渗透压差实现海水的淡化。

2. 污水处理:正渗透膜技术可用于处理含有重金属离子、有机物等污染物的废水,通过将废水与特定的高浓度溶液隔开,实现废水的净化。

3. 生物医药:在生物医药领域,正渗透膜技术可用于药物的分离纯化、生物大分子的浓缩等过程。

4. 食品工业:在食品工业中,正渗透膜技术可用于果汁、乳品等食品的浓缩、分离和纯化。

五、结论正渗透膜技术作为一种新型的膜分离技术,具有独特的传质机制和优越的性能。

其通过利用高渗透压的驱动作用,使水分子自然地从低浓度溶液向高浓度溶液移动,具有能耗低、污染小、传质速率快等优点。

正渗透膜技术在海水淡化、污水处理、生物医药、食品工业等领域具有广泛的应用前景。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术正渗透技术是一种目前在水处理领域广泛应用的先进技术,它通过半透膜将水中的溶质和杂质分离出来,从而实现净化水质的目的。

正渗透技术不仅可以用于工业废水处理,还广泛应用于家庭自来水净化和海水淡化等领域。

本文将对正渗透技术的原理、应用及未来发展进行探讨,以期为读者对该技术有更深入的了解。

一、正渗透技术的原理正渗透技术是一种利用半透膜的选择渗透性来分离溶质和溶剂的物理分离技术。

其原理是通过施加较高的压力,使水分子从溶液侧通过半透膜向纯水侧迁移,而溶质则被留在溶液侧,从而达到净化水质的目的。

正渗透技术所使用的半透膜是一种高分子材料,其孔径比水分子小得多,但比溶质分子大。

当施加一定压力时,只有水分子可以通过半透膜,而溶质则被截留在半透膜的溶液侧。

这样一来,原来的溶液就变成了净水,其中的溶质则被留在溶液侧形成浓缩液。

1. 工业废水处理:工业生产中产生的废水往往含有大量的有机物、重金属和其他污染物,传统的废水处理方法往往难以处理这些污染物。

而正渗透技术可以有效地将水中的污染物分离出来,从而实现工业废水的净化和再利用。

2. 家庭自来水净化:随着生活水平的提高,人们对自来水质量的要求也越来越高。

正渗透技术可以有效地将自来水中的杂质和有害物质去除,从而提高自来水的质量,保障家庭用水安全。

3. 海水淡化:全球淡水资源的日益紧缺,海水淡化成为解决淡水资源匮乏的重要途径。

正渗透技术可以将海水中的盐分和杂质去除,从而获得高质量的淡水资源。

4. 医药和食品加工:在医药和食品加工行业,正渗透技术也被广泛应用于浓缩、分离和净化等工艺中,提高了产品的纯度和质量。

随着科学技术的不断进步和应用领域的不断拓展,正渗透技术在水处理领域的应用前景可谓广阔。

1. 技术不断完善:随着对正渗透技术原理的深入研究,半透膜材料和设备技术也在不断完善,使得正渗透技术在能耗和设备成本等方面逐渐得到优化。

2. 应用领域不断拓展:除了在工业废水处理、自来水净化和海水淡化等传统领域中的应用,正渗透技术还可以在环境保护、医疗卫生、食品安全等方面发挥重要作用。

正渗透水处理关键技术

正渗透水处理关键技术

正渗透技术是近几年世界才开始关注并投入应用的一种新的水处理工艺。

相对于反渗透技术而言,正渗透由于在水处理过程中不需要反渗透那样的加压过程,因此,可以实现工业污水的零排放和海水淡化的低成本运行,从而达到高效、节能、环保。

以海水淡化为例,正渗透处理工艺可使海水淡化产水率从现行技术的40%提升至85%,所产生的高浓度海水可以使从海水中提炼溴、镁、钾成为可能,经济价值极高。

同时可大幅降低海水淡化的运行成本,减少高盐度海水对环境造成的污染,能耗为现行水技术能耗的70%。

目前正渗透技术处于产业化前期,一旦成熟,可以在海水淡化、污水处理、化工、航天、医疗等多个领域得到应用。

2005 年,美国耶鲁大学M. Elimelech 教授课题组开发了一种正渗透海水淡化技术。

这项技术的关键在于其汲取液,它是将氨气与二氧化碳按照一定比例混合溶解于水中配制成一定浓度的铵盐溶液作为汲取液,这种汲取液既具有较高的渗透压,又能方便地从水中分离,图2 为该系统示意图〔30〕。

据报道,汲取液浓度为6 mol/L 时,其渗透压达2.53×107 Pa,以0.5 mol/L NaCl 溶液作原料液,系统渗透压差达2.17×107 Pa。

对于稀释后的汲取液,将其加热到60 ℃,其中的铵盐被分解为氨气和二氧化碳,采用合适的方法(如蒸馏)就能与水分离,得到产品水,分离出的氨气和二氧化碳可以循环使用。

正渗透膜技术水处理工艺在我国尚属空白。

2013年,沃特尔股份公司投资入股了美国Oasys公司,引进这一国际领先的正渗透技术。

目前,这家公司在河北省黄骅市建立的首个正渗透技术海水浓缩中试装置已投入使用,此举将为下一步海水淡化及综合利用实验室的研究工作提供可靠的运行数据。

国内首个采用正渗透技术的工业废水零排放和海水淡化及综合利用实验室在北京中关村科技园昌平园。

实验室以“工业废水零排放”和“海水淡化及综合利用”两大宗旨为目标,由中工国际子公司北京沃特尔技术股份有限公司与中石化抚顺研究院联合组建。

正渗透技术简析20130827

正渗透技术简析20130827

技术
反渗透 (RO, Reverse Osmosis) 正渗透 (FO, Forward Osmosis)
驱动力
需外加高 压,耗能 高 仅依靠两 相间自然 渗透压, 无需外压
水回收率
30-50%
环境影响
浓盐水直 接排放, 危害环境 高的水回 收率使盐 析出,无 浓盐水排 放,环境 友好
膜寿命
长期高压下 运行,膜表 面易结垢或 有机物污染 非压力驱动 膜过程,几 乎无膜污染 问题困扰
技术核心之二:正渗透膜材料
目前最好的商业化正渗透膜材料是美国HTI公司的支撑型高强度膜,膜为3层结构: 致密皮层,多孔支撑层和网格支撑结构。膜皮层和多孔支撑层亲水,呈电中性, 厚度约为50μm,据报道,该材料是由醋酸纤维素类高分子制备而来。 以挪威Statkraft公司为核心的研究团队,开发了与反渗透膜材料具有类似结构的复 合正渗透膜材料,用于P R O过程,利用淡水和海水混合自由能获得能源。研 究团队另一个小组的Peinemann等人使用强度较高的聚醚酰亚胺中空纤维膜作 为支撑层,通过界面聚合成膜,形成中空纤维式的复合正渗透膜。与反渗透膜 材料相比,复合正渗透膜支撑层具有较高的开孔率,能够有效降低内浓差极化。 新加坡国立大学开发的聚苯并咪唑(Polybenzimidazole,PBI)中空纤维纳滤膜 材料,所得到的膜表面带正电荷,对二价阳离子有较高的截留率,在实验室中 证明具有较好的正渗透性能。 综合起来,正渗透膜应具备以下几个特征: (1)致密的、低孔隙率的皮层,高截留率; (2)膜的皮层具有较好的亲水性、较高的水通量; (3)膜支撑层尽量薄,高孔隙率; (4)较高的机械强度; (5)具有耐酸碱的抗化学腐蚀能力,可以在较宽的p H范围以及各种不同组成的 溶液条件下正常运行。

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术

浅谈水处理中的正渗透技术【摘要】正渗透技术在水处理中扮演着重要的角色。

本文首先介绍了正渗透技术的原理,即通过半透膜将水中的溶解物质和微生物分离,从而提高水质。

其次探讨了正渗透技术在水处理中的应用,包括海水淡化、废水处理等方面的实践经验。

分析了正渗透技术的发展趋势,包括新型膜材料的研发和工艺的改进。

正渗透技术在水处理领域具有广阔的应用前景,对提高饮用水质量,解决水资源短缺等问题具有重要意义。

通过不断的技术创新和实践应用,正渗透技术将为改善人类生活环境,保护水资源做出更大的贡献。

【关键词】- 正渗透技术- 水处理- 原理- 应用- 发展趋势- 意义1. 引言1.1 浅谈水处理中的正渗透技术的重要性浅谈水处理中的正渗透技术是一种非常重要的技术,它在水处理领域发挥着关键的作用。

随着人口增长和工业化进程的加快,水资源日益紧缺,水污染也日益严重,如何高效地进行水处理成为了一个亟待解决的问题。

而正渗透技术正是应运而生的,它通过膜技术实现对水中溶质的除去,可以有效去除水中的杂质、细菌和病毒,使水质得到提升。

正渗透技术具有高效、可靠、环保等优点,被广泛应用于饮用水处理、工业废水处理、海水淡化等领域。

在饮用水处理中,正渗透技术可以有效去除水中的重金属、有机物和微生物,提高饮用水的安全性和口感;在工业废水处理中,正渗透技术可以实现资源化利用,减少排放,保护环境。

正渗透技术已经成为现代水处理领域不可或缺的一部分。

深入研究和推广正渗透技术对于改善水质、保障人类健康和可持续发展具有重要意义。

只有不断创新和提升技术水平,才能更好地应对日益严峻的水资源挑战。

2. 正文2.1 正渗透技术的原理正渗透技术的原理主要是基于半透膜的特性。

在正渗透过程中,水分子会沿着浓度梯度从低浓度的溶液穿透到高浓度的溶液中。

这是因为半透膜上的微孔只允许水分子通过,而阻止其他溶质的传递,从而实现了对水的高效过滤。

正渗透技术的原理基于物质的渗透和扩散规律,利用半透膜对水和溶质的选择性透过性,实现了水的净化和分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正渗透水处理关键技术研究进展[摘要]正渗透是一种新型的膜分离技术,其分离的驱动力来源于原料液和汲取液之间自然存在的渗透压差,近年来正渗透技术已在国际上得到广泛关注。

简述了基于此技术的正渗透水处理过程的基本原理,指出了这种新型水处理过程的关键技术——正渗透膜和汲取液,根据各自的技术特点对其进行分类概述,并从实验室基础研究和技术的商业化进程两方面介绍了这两项关键技术取得的最新研究进展。

从水通量角度对不同体系进行了简单比较,分析了各材料和方法的优缺点,并对它们的应用前景进行了展望。

[关键词]正渗透;水处理;汲取液;海水淡化[中图分类号] TQ028.8 [文献标识码] A [文章编号] 1005-829X(2012)05-0005-05 Advance in the key techniques of forward osmosis water treatmentZhang Qian1,Shi Qiang2,Ruan Guoling1,Chu Xizhang1Abstract: Forward osmosis(FO) is a kind of new membrane separation technique. Its driving force comes from the naturally existing osmotic pressure difference between feed solution and draw solution. Forward osmosis (FO) technology has become increasingly attractive internationally,in recent years. The basic principles of the FO water treatment are introduced and the key techniques of the new type of water treatment process-FO membrane and draw solution -are pointed out. According to their own technical characteristics,the key techniques are classified and summarized. The newest research progress in the key techniques is introduced from the aspects of fundamental research in labs and the schedule of technique commercialization. Different systems are compared simply from the angle of water flux. The advantagesand disadvantages of various raw materials and methods are analyzed and their application foreground is prospected.Key words: forward osmosis;water treatment;draw solution;seawater desalination正渗透是一种新型的膜分离处理技术,与超滤、微滤和反渗透等常用膜分离技术相比,其不需要外加压力作为分离驱动力(或者在较低的外加压力下即可运行),而是靠溶液自身的渗透压差推动正渗透分离过程。

此外,相对于外加压力驱动技术,其还具有回收率高和膜污染情况相对较轻等显著优点〔1-2〕。

近年来,以美国和新加坡等为代表的诸多国家的研究机构已经开展了正渗透水处理技术的相关研究;以HTI 和Oasys Water 为代表的一些公司也在积极推进正渗透水处理系统的商业化,并且取得一定进展。

随着人类对节能和环保型技术的不断追求,正渗透水处理技术将会获得社会各界越来越多的关注,此项技术也将得到更加深入的研究。

1 基本原理正渗透水处理技术是以需处理的液体作为原料液(FS),选取一种具有相对较高渗透压的溶液作为汲取液(DS),在正向渗透压差驱动下,水分子透过正渗透膜进入到汲取液侧,浓缩的原料液被排出系统。

稀释后的汲取液在回收系统中以特定方式进行回收,同时制得淡水,回收的汲取液进入系统循环利用。

通过对正渗透过程原理的分析,可知正渗透水处理的关键技术在于两个核心——正渗透膜和汲取液。

2 正渗透膜的研究及应用理想的正渗透膜应具有以下特点:多孔支撑层亲水性好,以提高产水通量,降低膜污染;选择透过层较为致密,以保证截留率;膜厚度尽量薄,以减小水通过的阻力,同时减小浓差极化〔3〕;要有较好的机械强度,能够承受一定的压力和剪切力;膜材料具有一定的耐酸碱腐蚀能力,能够在较宽的pH 范围内使用,并且能够经受酸碱清洗液的冲击〔4-5〕。

2.1 实验室FO膜研究在正渗透研究前期,科研人员多采用已经比较成熟的反渗透膜,实验发现正渗透产水量远低于预期,经过对比试验和分析,发现反渗透膜的多孔支撑层是制约产水通量提高的主要因素〔6-7〕。

据此,以美国和新加坡为代表的诸多国外科研机构对多种膜材料和形式进行了研究与测试,并取得一定进展。

2.1.1纳滤膜改性对纳滤膜进行改性可以有效收缩膜孔径和孔径分布范围,提高膜性能。

Jincai Su 等〔8〕通过干湿相纺纱过程制备了中空纤维纳滤膜,采用不同的热处理步骤对纳滤膜进行改性。

测试结果表明,连续经过60 ℃和90 ℃水浴热处理的纳滤膜孔径明显收缩,孔径分布范围变窄,正渗透性能良好,但当原料液中盐度增大时,由于内部浓差极化(ICP)的影响,膜性能比(实验水通量/理论水通量)下降。

Sui Zhang 等〔9〕采用L-S 法制备了具有超薄选择层的醋酸纤维素膜,有效降低了内部浓差极化的影响。

M. Sairam 等〔10〕通过相转化法在50 μm 尼龙纤维上制备了醋酸纤维素FO膜(CA膜),并研究了不同致孔剂和热处理温度对膜性能的影响。

研究表明制备的CA膜性能与致孔剂性质及热处理温度有关:使用氯化锌作致孔剂,热处理温度为70 ℃时纯水系数为0.27×10-5L/(h·m2·Pa),脱盐率(NaCl)可达95%。

聚苯并咪唑(PBI)的力学性能优异,热稳定性和化学稳定性良好〔11〕。

Kaiyu Wang 等〔12-13〕将PBI 纳滤膜用于正渗透,发现孔径为0.32 nm 时水通量和二价盐截留率较高;采用对二氯苄交联改性后其孔径明显收缩。

但是PBI 亲水性较差,且当pH 为中性时不带电荷,因此B. R. Digman〔14〕使用氨基乙磺酸、对苯二胺、乙二胺对PBI 纳滤膜进行了表面改性,提高了膜表面带电性和亲水性,但脱盐率仍然较低。

聚醚砜(PES)具有优异的力学性能、良好的热稳定性和化学稳定性,是很好的制膜材料。

Y. Yu 等〔15〕在无纺布上直接刮制了纳米孔径的聚醚砜正渗透膜(PES-FO膜)。

与商业mesh-CTA膜相比,PES-FO膜的水通量增加近2 倍,反向盐扩散通量降低了50%。

2.1.2复合膜改性法界面聚合法可通过分别优化支撑层和选择层的材料及结构,达到优化膜性能的目的。

耶鲁大学的N. Y. Yip 等〔16〕采用相转换方法在无纺布(40 μm)上制备了具有孔状和海绵状结构的聚砜支撑层,然后经界面聚合制备了厚度仅为(95.9±12.6)μm 的复合膜。

以1.5 mol/L 的NaCl 溶液为汲取液、去离子水为原料液时,膜的水通量>18 L/(m2·h),脱盐率>97%。

在1.5 mol/L 碳酸氢铵溶液中浸泡7 d 后,未发现膜降解,说明其具有很好的化学稳定性。

Jing Wei 等〔17〕在玻璃板上直接刮制了聚砜支撑层,然后在70 ℃超纯水中热处理2 min,待冷却至室温后再进行界面聚合,制得了厚度为75 μm 左右的复合FO 膜;以2.0mol/L NaCl 溶液为汲取液,10 mmol/L 的NaCl 为原料液时,水通量最高可达54.3 L/(m2·h)(汲取液在活性层侧)。

F. C. C. Alves〔18〕使用聚酰亚胺为膜材料,以50 μm 的尼龙纤维为支撑,制得聚酰亚胺基底,然后以1,6-乙二胺作交联剂制得FO 膜,实验结果表明P84 质量分数为18%,m(DMF)∶m(1,4-二氧己烷)=1∶6 时性能最好,水通量为5.95 kg/(m2·h),脱盐率为87.1%。

2.1.3双选择层膜受ICP 影响,正渗透实验中水通量远低于理论通量。

若膜上下表面均有致密皮层,就可有效阻止溶解盐渗透进入微孔层,有效减缓ICP。

基于这种设想,Qian Yang 等〔19〕用共挤出技术制备了双层聚苯并咪唑-聚醚砜(PBI-PES)纳滤中空纤维膜,其具有超薄选择层、底部完全开孔的水通道和微孔海绵状支撑层结构,性能与商业FO膜相近。

Kaiyu Wang 等〔20〕用相转化法和热处理制备了上、下表面皮层都较致密,中间为多孔亚层的醋酸纤维素膜;以5 mol/LMgCl2溶液为汲取液、去离子水为原料液时,水通量可达48.2 L/(m2·h),反向盐扩散通量为6.5 g/(m2·h)。

表1 列举了多种正渗透膜的测试数据〔8-9,13,19,21-24〕。

根据纳滤膜的分离机理和实验结果,改性膜对单价盐的截留率可能仍然较低,这限制了其处理原料液的范围;复合膜截留性能好,但ICP 程度较严重,通过改变支撑层可得到高性能正渗透膜,应用前景较好,且目前国外公司已开发出相关产品;双选择层膜是针对ICP 现象设计的膜,目前研究还较少,随着研究的深入,可能成为正渗透膜的一个很好选择。

表1 正渗透膜的实验通量注:原料液均为去离子水。

2.2 商业FO膜2.2.1 HTI 公司的CTA-FO膜20 世纪90 年代Osmotek 公司(现HTI)开发出特殊的正渗透膜,这种膜是以三乙酸纤维素(CTA)为材料,采用相转化法制得的。

根据应用上的不同要求,HTI 开发了2 种FO 膜:CTA-NW 和CTA-W。

其中CTA-NW 为层状结构,三乙酸纤维素层下面为无纺支撑层,由聚乙烯包覆的聚酯纤维构成(图1 d、e);CTA-W 则采用聚酯筛网取代无纺支撑层,将三乙酸纤维素层包覆并嵌入在聚酯筛网内(图1 a、b)。

CTA-NW 较CTA-W 的脱盐率更高,但水通量较低。

表2 列出了近年来采用HTI 公司CTA-FO膜的相关正渗透研究数据〔10,17,25-28〕。

相关文档
最新文档