(汽车行业)汽车发动机振动噪声测试系统
actran算例

actran算例Actran算例简介Actran是一种基于有限元方法的声学软件,用于分析声学系统和结构的振动、噪声和声音品质等问题。
Actran算例是指使用Actran软件进行模拟计算的实际案例,可以帮助用户了解Actran软件的功能和使用方法,同时还可以为用户提供参考和借鉴。
Actran算例分类根据不同的应用领域和问题类型,Actran算例可以分为多个分类。
以下是常见的几种分类:1. 汽车行业:汽车内部噪音、发动机噪音、风噪等;2. 航空航天行业:飞机内部噪音、发动机噪音、气流噪声等;3. 电子产品行业:手机、电脑等设备的声学性能分析;4. 建筑行业:建筑物内部声学环境分析。
以上仅是一些常见的分类,实际上根据不同用户需求和应用场景,还可以有更多不同的分类方式。
Actran算例特点1. 精度高:Actran软件采用了高级数值方法和计算技术,能够保证模拟结果精度高;2. 可靠性强:Actran软件经过多年发展和验证,已经成为业内公认的声学模拟软件之一,具有较高的可靠性;3. 易于使用:Actran软件提供了友好的用户界面和操作指南,使得用户可以轻松上手;4. 应用广泛:Actran软件可以应用于多个行业和领域,涵盖了各种声学问题。
Actran算例实例以下是几个常见的Actran算例实例:1. 汽车内部噪声分析:汽车内部噪声是一个重要的问题,特别是在高速行驶时。
使用Actran软件可以对汽车内部噪声进行分析和优化。
例如,在设计车门时,可以通过模拟计算来确定最佳密封方案,以降低车门的气流噪声。
2. 飞机发动机噪音分析:飞机发动机噪音是一种常见的问题。
使用Actran软件可以对飞机发动机噪音进行分析和预测。
例如,在设计新型飞机发动机时,可以通过模拟计算来确定最佳设计方案,以降低发动机噪音。
3. 建筑物内部声学环境分析:在建筑物内部,存在着各种不同的声学环境。
使用Actran软件可以对建筑物内部声学环境进行分析和优化。
乘用车城市工况制动系统振动噪声试验方法

FRONTIER DISCUSSION | 前沿探讨1 引言随着社会的进步和汽车的快速发展,人们对于物质生活水平逐步提高,汽车已经成为大众出行最常用的交通工具。
人们对其汽车的舒适性提出更高要求,其中乘用车制动系统振动噪声直接影响驾乘人员的体验,同时也是汽车行业内比较关注的行驶品质之一,也是制动系统开发的重难点课题之一。
乘用车城市工况行驶时,会受到路面环境、制动工况、驾驶习惯等不同影响,最能真切的反映现实用户用车的环境以及状况,制动系统在制动过程中不可避免地产生剧烈的振动和噪声,噪声一方面影响驾乘人员的舒适性,另一方面会加速摩擦片、制动盘的磨损,从而降低制动系统的使用寿命,增加维护保养的成本。
制动噪音是指汽车在制动过程中产生刺耳的尖叫声或摩擦声,制动噪音不仅会成为严重的的噪音污染,还会使得车内的乘员产生不舒服的感觉,影响驾驶员驾驶。
乘客在城市工况行驶中,人们耳边经常听到尖锐刺耳的噪声,这种噪声就是制动系统噪声。
2 试验所需器材介绍2.1 振动加速度传感器应使用频响范围在100Hz~16kHz、质量小于5g的单向振动加速度传感器,传感器最高工作温度不低于200℃,注意所选择的加速度传感器应不受电磁干扰。
2.2 车速测量仪器车辆速度测量仪要求速度测试区间覆盖1km/h~200km/h,准确度优于±2%,采集频率不小于10Hz。
2.3 整车制动减速度传感器应使用测量范围为±1g,准确度优于±5%。
2.4 压力传感器量程不小于 10MPa,准确度优于±5%。
2.5 数据采集分析系统使用多通道数据采集分析系统,应具有自动记录制动噪声的能力,A/D转换分辨率不低于24bit。
数据采集分析系统中应使用抗混滤波和高通滤波,以消除混叠和趋势项的影响。
2.6 声学测量用于噪声测量的测量系统应满足GB/T3785.1电声学声级计规定的1型仪器的要求,频率范围至少要覆盖20kHz~20kHz的频率范围。
汽车水泵噪声振动测试方案例子

合肥XX汽车水泵噪声测试系统技术方案(删减后公开稿)N0.TYH170405D-02用户方:合肥XX汽车部件有限公司设计方:苏州太阳花感知技术有限公司二〇一七年四月六日合肥XX汽车水泵噪声振动测试系统技术方案N0.TYH170405D-021、测试系统名称:汽车水泵噪声振动测试系统1.1、测试目的:半消声室需要有足够大的空间尺寸和足够低的噪声底限,汽车水泵测试台架测试头布置在半消声室内,依据GB/T 17483、GB/T 6882、GB/T 6882、ISO3744等标准,测试水泵在指定的稳定速度下的声压级、声功率级和噪声功率谱。
振动测试在监视水泵泵体振动、水泵和测试台架部件的固有频率试验、寻找噪声源位置或其他与振动有关试验时使用。
1.2、内容:噪声振动测试系统主要包含传感器、动态信号采集器、噪声振动分析软件等组件。
根据适用测试标准(主要是ISO3744),对半消声室和水泵测试台架的制造提出要求,提供噪声振动测试的具体方案。
在用户指定的试验间内安装、调试噪声振动测试系统,合格后交付客户使用。
提供的服务包括:设计、制造、运输、调整、安装、发货、试验验收、试运转调整、交付和培训。
2. 测试系统的主要依据GB/T 3947:1996 声学名词术语GB/T 17483:1998 液压泵空气传声噪声测定规范GB/T 6881.1:2002 声学声压法测定噪声源声功率级混响室精密法GB/T 6881.3:2002 声学声压法测定噪声源声功率级混响场中小型可移动声源工程法第2部分:专用混响测试室法GB/T 6882:2008 声学声压法测定噪声源声功率级消声室和半消声精密法GB/T 3767:1996 声学声压法测定噪声源声功率级反射面上方近似自由场的工程法GB/T 3768:1996 声学反射面上方采用包络测量表面的简易法GB/T8098:1999 泵的噪声测量与评价方法IEC61672-1:2002 电声、声级计、第1部分:技术要求水泵振动、噪声测量规范 Q/JQ XXXX-2013 江淮汽车股份有限公司乘用车普通动力转向油泵试验规范Q/SQR.04.272-2006 奇瑞汽车有限公司企业标准ISO3740:2000 Acoustics - Determination of sound power levels of noise sources - Guidelines for the use of basic standardsISO3744:2010 Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Engineering methods for an essentially free field over a reflecting planeISO3745:2003 Acoustics - Determination of sound power levels of noise sources using sound pressure – Precision methods for anechoic and hemi-anechoic roomISO3747:2011 Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Engineering/survey methods for use in situ in a reverberant environment其中,ISO3740是声功率测试测试方法的综述和总则,它把噪声声功率测量方法分为精密级、工程级和简易级,并对测试场地提出具体分类和要求,不同的测试方法和测试环境对应ISO3744、ISO3745、ISO3747等国际标准。
nvh试验室的噪声指标

NVH试验室的噪声指标1. 介绍噪声、振动和刚度(NVH)试验室是一个专门用于测试和评估产品在噪声、振动和刚度方面性能的实验室。
在各个行业,如汽车、航空航天、电子设备等,NVH试验室起着至关重要的作用。
噪声指标是其中一个重要的评估指标,通过测量和分析噪声水平,可以评估产品的质量和性能,为产品改进和优化提供依据。
2. 噪声指标的定义噪声指标是用于描述和量化声音特性的参数。
在NVH试验室中,常用的噪声指标包括声压级(Sound Pressure Level,SPL)、声功率级(Sound Power Level,SWL)、声能级(Sound Energy Level,SEL)等。
这些指标可以帮助我们了解噪声的强度、频率分布和时域特性。
2.1 声压级(SPL)声压级是衡量噪声强度的指标,通常以分贝(dB)为单位表示。
它是通过测量声音的压力水平,并将其与参考值相比较得出的。
在NVH试验室中,我们可以使用声压级来描述产品在不同工况下的噪声水平,以及噪声源的位置和强度分布。
2.2 声功率级(SWL)声功率级是衡量噪声源产生的声功率的指标,也以分贝为单位表示。
它是通过测量噪声源周围的声压级,并根据声场理论计算得出的。
声功率级可以帮助我们评估噪声源的功率大小,从而确定其对整个系统噪声水平的贡献。
2.3 声能级(SEL)声能级是衡量噪声在一段时间内的能量平均值的指标,同样以分贝为单位表示。
它是通过对声音的能量进行积分计算得出的。
声能级可以帮助我们了解噪声的持续时间和能量分布,从而更好地评估其对人体健康和环境的影响。
3. 噪声指标的测试方法在NVH试验室中,我们使用各种测试方法来测量和评估噪声指标。
以下是一些常用的测试方法:3.1 声压级测试声压级测试是通过使用声压级计来测量噪声的压力水平。
测试时,我们将声压级计放置在感兴趣的位置,并记录下相应的声压级数值。
为了获得准确的结果,我们需要注意测试环境的背景噪声,并在测试时保持一致的工况条件。
2024年汽车噪声控制技术的最新进展与发展趋势(3篇)

2024年汽车噪声控制技术的最新进展与发展趋势摘要汽车噪声是一个长期以来引起人们关注的问题。
为了提高驾驶者和乘客的舒适度,同时满足环境保护的要求,汽车制造商和研究机构一直在致力于降低汽车噪声。
本文将介绍2024年汽车噪声控制技术的最新进展与发展趋势,其中包括主动噪声控制技术、全车噪声控制技术和电动汽车噪声控制技术。
一、主动噪声控制技术主动噪声控制技术是通过检测车内外噪声源,并通过喇叭或振动装置发出逆向声波或振动,以抵消原始噪声的技术。
目前,该技术已经在高端汽车上得到应用,在2024年预计会得到更进一步的发展。
这些系统通过使用先进的传感器和算法来监测噪声源的位置和频率,并使用高性能喇叭和振动装置来抵消噪声。
预计未来的主动噪声控制系统将更加智能化,能够自动适应不同的驾驶环境和乘客需求。
二、全车噪声控制技术全车噪声控制技术是一种综合应用各种技术手段来降低整车噪声的技术。
它包括车身隔音技术、悬挂系统噪声控制技术、发动机和传动系统噪声控制技术等。
预计在2024年,全车噪声控制技术将更加成熟和普及。
通过改进车身隔音材料和结构,优化悬挂系统设计,使用先进的发动机和传动系统,汽车制造商将能够提供更低的噪声水平。
三、电动汽车噪声控制技术电动汽车具有非常低的噪声水平,这是其优势之一。
然而,在低速范围内,电机和轮胎噪声仍然是噪声的主要来源。
为了提高驾驶者和行人的安全感,并遵守道路交通规则,法规要求电动汽车在低速行驶时发出人为产生的声音。
预计在2024年,电动汽车噪声控制技术将进一步发展,以满足这些要求。
这些技术包括电机噪声控制技术和外部声音发生器技术。
通过优化电机设计和控制算法,以及使用外部声音发生器来模拟引擎声音,电动汽车制造商将能够提供符合要求的人为声音。
结论随着技术的不断发展和进步,2024年汽车噪声控制技术将实现更大的突破和进步。
主动噪声控制技术将更加智能化,全车噪声控制技术将更加成熟和普及,电动汽车噪声控制技术将满足更高的安全要求。
新能源汽车功率电子系统的噪声与振动控制

新能源汽车功率电子系统的噪声与振动控制随着环境保护和能源消耗问题的日益凸显,新能源汽车正成为全球汽车行业的热门话题。
然而,新能源汽车的发展面临着许多挑战,其中之一就是功率电子系统的噪声与振动控制问题。
本文旨在探讨新能源汽车功率电子系统的噪声与振动控制方法,以提高驾乘体验和推动新能源汽车的进一步发展。
1. 噪声与振动的影响新能源汽车中的功率电子系统包括电动机驱动器、逆变器等部件,它们在工作过程中会产生噪声和振动。
这些噪声和振动不仅对车辆的驾乘舒适性有影响,还可能对其他车载电子设备的正常工作产生干扰。
因此,降低功率电子系统的噪声与振动是提高车辆整体性能和可靠性的重要一步。
2. 噪声与振动的原因分析噪声与振动的产生主要源于功率电子器件的工作原理和结构造成的电磁力和机械振动。
在电子器件中,电工化学过程、电磁力、温度变化等因素都会引起振动和噪声。
此外,功率电子系统中的电源和散热器等部件也可能造成振动和噪声。
3. 噪声与振动控制方法为了降低功率电子系统的噪声与振动,可以采用以下方法:(1) 材料选择与设计优化:选择合适的材料以降低振动和噪声产生的概率,通过优化设计减少组件之间的摩擦和机械不稳定性。
(2) 振动隔离与消除:采用隔振材料或隔振结构来减少传导振动的路径,降低振动对车辆内部其他部件的干扰。
(3) 噪声和振动的传导途径控制:通过调整和优化电子器件的布置和连接方式,减少噪声和振动的传导到车辆结构的路径。
(4) 散热与降温技术:控制功率电子器件的工作温度,减少温度变化引起的热膨胀和机械振动。
(5) 振动和噪声的检测与反馈控制:通过传感器等装置对振动和噪声进行实时监测,并通过反馈控制系统调整工作参数,以达到降低噪声和振动的目的。
4. 未来发展趋势随着新能源汽车技术的不断发展,功率电子系统的噪声与振动控制也将得到进一步改善。
未来的发展趋势包括使用更高性能的材料、结构与设计优化、智能化的振动与噪声控制系统等。
同时,随着电动汽车的推广,电动汽车功率电子系统噪声与振动控制的标准和法规也将逐渐完善。
实验技术-汽车驱动电机振动噪声实验

【实验技术】汽车驱动电机振动噪声实验0 引言随着纯电动汽车的快速发展,驱动电机得到了越来越广泛的应用。
对于驱动电机而言,它带来便利的同时,也恶化了汽车的驾乘体验,其电磁噪声一直是各大车企和科研院所攻坚克难的对象。
电机气隙中的电磁力首先作用在定子齿表面,经过定子传递至机壳,引起机壳产生振动并向外辐射噪声。
汽车驱动电机振动噪声实验在专用电机NVH台架上采集电机不同运行工况下的振动和噪声数据,对数据进行时频域分析、阶次分析等,研究电机的振动和噪声特性。
图1 汽车驱动电机振动噪声实验1 实验目的在专用电机NVH台架上采集电机不同运行工况下的振动和噪声数据,对数据进行时频域分析、阶次分析等,研究电机的振动和噪声特性,为评价和改进电机振动和噪声性能作为依据。
2 参考标准(1)GB 10069.1-1988 旋转电机噪声测定方法及限值噪声工程测定方法;(2)GB/T 18488.1-2015 电动汽车用电机及其控制器第1部分:技术要求;(3)GB/T 6882-2013 声学声压法测定噪声声功率级消声室和半消声室精密法;(4)执行行业或企业标准。
3 实验台架新能源汽车电机NVH性能实验室,具备半消声室、测功机、电池模拟系统、功率分析仪等。
可进行驱动电机稳态NVH测试、加减速非稳态NVH测试、电磁噪声及结构噪声的噪声源识别、各种噪声的声学贡献量分析、声功率与声压级测试。
(1)半消声室电机NVH半消声室如图2所示,大小:长6.0米*宽4.4米*高3.75米;截止频率:100Hz;背景噪声<30dBA。
图2 电机NVH半消声室(2)测功机电机测功机如图3所示,NVH型高速测功机,与被测件通过穿墙轴连接,降低测功机对被测件的噪声与振动干扰。
被测件端配置消声罩,可有效阻隔轴系噪声对测试的干扰,并配置被测电机负载分析仪及温度监控系统。
额定功率178KW;峰值功率231KW;额定转速点3961rpm;额定扭矩429Nm;峰值扭矩557Nm;扭矩控制精度:±0.17%FS;最高工作转速16000rpm;转速控制精度±1rpm。
《汽车振动与噪声》课件

CHAPTER
02
汽车振动分析
汽车振动类型
垂直振动
汽车在行驶过程中受到 路面不平的影响,产生 的垂直方向上的振动。
侧向振动
汽车在转弯或行驶在弯 道时,由于离心力作用
产生的侧向振动。
纵向振动
由于发动机、传动系统 等内部组件的往复运动
产生的纵向振动。
扭转振动
由于发动机扭矩波动或 传动系统的不平衡引起
的扭转振动。
振动产生的原因
路面不平
汽车行驶在凹凸不平的路面上,导致垂直振 动。
传动系统不平衡
传动系统中齿轮、轴承等组件的不平衡或误 差,导致扭转振动。
发动机扭矩波动
发动机内的燃烧和机械运动产生的扭矩波 动是纵向振动的主要原因。
轮胎不平衡
轮胎质量分布不均或安装不当,引起侧向和 垂直振动。
振动对汽车性能的影响
03
汽车在高速行驶时,空气动力学产生的气流会对车身产生振动
和噪声。
振动与噪声对汽车性能的影响
舒适性
振动和噪声会影响乘客的舒适感,过大的振动和 噪声会对乘客的身体健康产生不良影响。
安全性
过大的振动和噪声可能会影响驾驶员的判断力和 反应速度,从而影响驾驶安全。
车辆寿命
长期的振动和噪声可能会对汽车的零部件产生疲 劳损伤,从而影响车辆的使用寿命。
油耗
过大的噪声可能增加车辆的油耗,影响经济性。
风噪声
其他噪声
汽车行驶时,空气与车身、车窗等相互作 用产生的声音。
如传动系统、冷却系统等产生的声音。
噪声产生的原因
机械振动
发动机、传动系统等部件的振动是产生汽车 内部和外部噪声的主要原因。
气动噪声
气流与车身、车窗等相互作用产生的声音。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(汽车行业)汽车发动机振动噪声测试系统附件1汽车发动机振动噪声测试系统用途及基本要求:该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。
该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。
系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。
设备技术要求及参数设备系统配置数据采集系统壹套;数据测试分析软件壹套;传声器2个;加速度计2个;声强探头1套;声级校准器1个;笔记本电脑壹台数据采集、控制系统技术要求主机箱壹个;供电采用9~36V直流和200~240V交流;便携式采集前端,适用于实验室及现场环境;整机消耗功率<150W;工作环境温度:-10︒C~50︒C;中文或英文WindowsXP下运行,操作主机采用笔记本电脑;输入通道数:4个之上,其中2个200V极化电压输入通道、不少壹个转速输入通道;输入通道拥有Dyn-X技术,动态范围160dB;每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz;系统留有扩充板插槽,根据需要能够进壹步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等;系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。
大系统可分拆成多个小系统独立运行;采集前端的数据传输具备二种方式之壹:①通过10/100M自适应以太网传输至PC;②通过无线通讯以太网技术传输至PC,通信距离在100米之上。
使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;多分析功能:对同壹信号可同时进行FFT和CPB分析和显示处理;对同壹信号也可同时设置不同的分析带宽进行分析;输入通道采用至少24位的A/D;自动检测带传感器电子数据表的传感器(即插即用)数据测试分析软件系统技术要求多通道输入测量信号且行采集、处理和存储;根据需要能够进壹步扩充;多通道实时在线显示;能测量传递函数、自功率谱、互功率谱、自相关函数、互相关函数、能测量相干函数、概率密度函数、脉冲相应函数、倒频谱、时域波形,能进行动态信号的微积分、四则运算、编辑等;系统具有自动报告生成功能。
测试报告模板可根据用户需求定制,用户可从Word中自动得到实时更新的测量曲线和数据等;函数可用各种图形类型显示,包括:瀑布图、彩色等高线图、条状图、线状图、曲线图、阶梯形曲线图、叠图、多值图等;声强测试分析功能,能够进行噪声源识别;符合外部应用程序的多种输出数据格式,能自由进行多种数据格式转换;基本系统(包括数据采集和分析系统)在国内的用户提供2000年以后用户列表。
具有良好的使用纪录和系统维护升级纪录,在国内有维修站。
压电加速度传感器技术要求量程:±50g;灵敏度:10-120mV/g;频率范围:0.2Hz~6kHz;温度范围:-54℃~+120℃;质量:小于5g;电缆数量:5米长度的2根。
传声器技术要求规格:Φ12.7mm(1/2英寸)传声器、带配套前置放大器;即插即用;灵敏度:50mV/Pa;动态范围:16~138dB;频率范围:20~20kHz;可能导致传声器损坏的温度湿度极限值:-40℃,+80℃,93%RH;用于三角架上的专用支撑声强探头技术要求1/2英寸探头壹对;动态范围:16~160dBA;探头间距:12mm、50mm;频率范围:35Hz~5kHz;满足IEC10431级型国际标准声级校准器4.7.1频率:1000Hz;4.7.2校准声压级:94dB和114dB;4.7.3校准精度:±0.2dB笔记本电脑配置及要求CPU≥P4/3.2G,RAM≥1G,HD≥120G,DVD/CD-RWWindowsXP要求供货商提供的技术资料各种控制、测量装置的电路图(原理图和线路图)。
各种外购件、传感器、仪器仪表等规格、型号、制造商及其产品说明书。
使用操作说明手册。
安装、维修手册。
其他应提供的文件。
技术服务及验收供应商要对用户技术人员进行有关方面的培训:供应商应选派技术熟练的机械、电器及自动化控制方面的专家对用户技术人员机械技术指导和培训,确保买方能够理解和掌握系统各部的原理,正确使用和操作,基本能独立完成合同规定的各项试验及维修试验系统。
验收方法:由供应商专家以实物为试验对象,给验收小组演示技术规格书中规定的各种功能,测量参数等。
出具“验收报告(或纪要)”且双方签字确认。
硬件验收后壹年内免费保修;软件终身免费升级。
附件2耐尘试验机技术指标壹、设备基本规格性能:1.实验空间:900X900X900(WXHXD)mm2.外部尺寸:1550X1800X1400(WXHXD)mm3.满足标准:需要符合下列规范IEC60529,JIS,CNS,GB4208-93的耐尘试验要求二.设备详细技术规格:1.试验机主要性能指标:1.1浮尘试验:A.具有控制面板独立操作:F1:60000mg/m3,F2:3000mg/m3,F3:100mg/m3三种浮尘浓度标准试验条件B.可实现浓度调节;可满足不同样品和不同标准的等级试验C.气压调解式喷尘方式,保证箱体浓度的均匀性1.2流尘试验:最大流速:10m/s(可调);满足IEC60529规定的风速和灰尘浓度要求:风速5m/s 浓度5000mg/m3;风速10m/s浓度100mg/m32.结构材料:2.1内部采用SUS#304不锈钢板。
2.2外部:SUS#304不锈钢板粉体涂装。
2.3浮尘喷尘气压调解系统壹套;流尘喷尘系统壹套:鼓风机:1HP壹部;鼓风机采用变频器控制,数字显示,可设定0-100HZ。
2.4同步振动灰尘均匀器,确保每次灰尘浓度保持壹致和箱体内壁不附着大量灰尘2.5用于抽真空的真空抽尘电机1/2HP壹组2.6风速计:测试流尘试验中风速大小2.7加热式除湿线2条,避免试验灰尘因潮湿粘结3.控制系统:3.1.温湿度数字显示直读数字式3.2.温度范围20±15℃,只显示3.3.湿度范围20-80%RH,只显示3.4震荡时间用定时器,数字显示,可设定0–99秒。
3.5均匀时间用定时器,数字显示,可设定0–999秒。
3.6总定时器0–99小时,数字显示壹组。
3.7灰尘浓度:2-4g/m33.8机器标配吸气系统:真空吸气速度:≦60倍于被测物壳内空气体积/每小时3.9机器标配吸气系统:真空吸气量:80倍于被测物壳内空气体积(压差小于1.98Kpa)4.试验设备应具备以下保护装置:4.1.箱门开启保护开关。
4.2.突波保护开关。
4.3.鼓风机超载保护开关。
4.4.警报器。
4.5.无融丝开关。
5.试验设备采用附件及功能5.1.耐压透明窗口,室内灯5.2.测试用引线孔(硅胶真空封填)。
5.3.附灰尘托盘壹只5.4.强化玻璃窗口5.5.试验室内灯5.6.调压装置2只5.7.WIKA压力表7.0kg/cm2壹组5.8.面积式流量计,最大值6nm3/h或1.4nm3/min。
5.9.空气精密型调压过滤器壹组。
(滤水率99.9%)5.10.滤袋式灰尘过滤器壹组5.11.50μm精密筛网最大间距小于75μm二组5.12.测试用引线孔(硅胶真空封填)。
5.13.标准用试验耗材滑石粉10公斤5.14.浓度自测系统:以质量抽取法及特殊空气流量计,从灰尘箱中吸取1M3的空气量,再抽取过程中,灰尘粒子将会被滤纸吸附,将滤纸秤重后即可得知浓度mg/m3,惟浓度高于3000mg/m3时,吸取之空气量将小于1m3。
该系统之部品名称:1.数字显示流量计NL/M2.真空负压电机3.气动式或电动式球型阀4.滤纸固定夹附件3耐水试验机技术指标壹.基本性能指标1.实验空间:1800X2000X1800(WXHXD)mm2.外箱尺寸:2600X2450X2000(WXHXD)mm3.满足标准:需要同时能够满足IEC60529GB4208-93的IPX1至IPX6六个等级试验要求:滴水试验、淋雨试验、喷水试验;配水器自动可调水压满足各个等级标准的水压流量控制,雨量和压力稳定均匀二.耐水试验机详细技术要求2.1滴水试验:测试范围IEC60529IPX1,X2透明耐压储水箱,附标高尺及可移动式磁簧液位控制水位。
滴水盆滴水孔喷嘴0.3X0.8Φ212H,(青铜板制)间距20mm*20mm滴水盆直径:460mm水平回转式物架及和铅锤线成15度角的样品台1RPM旋转减速马达不锈钢循环供水泵1HPX1组,附针状进水调整阀。
负压吸引设备壹套,产生压差使非滴水试验状况下不滴雨不锈钢盛水盆1组不锈钢滴水盆固定架1组电动式可调整滴水盆高度壹组,控制器直接调整不需试验人员手动调节高度;且可微调式滴水距离调整至所需要的范围IPX1.2附有选择开关且自动调整滴水流速IPX1.2的测试规格完全符合标准的规定IPX1流速1+0.05mm/min–0需测试10分钟IPX24个位置滴淋2.5分钟,滴淋时和铅锤线成1500角倾斜,流速为3+0.05mm/min-0,4个位置完全由机械控制旋转角度,每次转动900,4个位置合计转动2700。
5υm微小过滤器壹组,进口过滤网和滤布防止滴水时滴水孔堵塞现象发生2.2摆动管淋雨试验:测试范围:IEC60529IPX3,4下部旋转盘:SUS#304不锈钢盘,1----10RPM可调整下部摆动管15∮SUS#304不锈钢管,喷嘴直径分别为0.4mm摆动管,半径为200,400,600,800mm各壹组(喷嘴和喷嘴距离50mm);满足多种样品试验所需摆管半径摆管俩端附有球型放水阀及空气进气阀(测试完自动清除管内积水)箱内附有空气喷枪壹组,方便清理测试物表面水渍流量及压力(A)水流压力:50---600kpa可调对应ISOIPX3X480kpa对应ISOIP4K400kpa(B)能够在工控计算机设置及显示(以KG/CM2或BAR表示)(C)水流量:(总流量=每孔流量×孔数)流量:每孔0-O.07L/min可调Φ0.4mm喷嘴时每孔流量0-0.1l/min±5%IPX3X4(D)摆动管机构马达:原装步进马达(含减速机组)每秒摆动速率20-900/s能够在工控计算机设置及显示(摆动精度±20)(E)摆动角度±150-±1800能够调节且在工控计算机设置及显示,喷嘴角度600或1800俩种对应IPX3X4(不含4K)三.喷射水试验:测试范围:IECIPX5,6喷射喷嘴固定架:可移动SUS#304不锈钢骨架壹套20∮高压橡胶软管耐压达10BAR之上口径6.3及12.5喷嘴各壹组装置包括供水系统以及软管喷嘴俩部分;其中供水系统最大压力1000KPa(可调),最大流量100L/min(可调)。