聚羧酸类高性能减水剂的合成及复配--

合集下载

浅谈聚羧酸系高效减水剂的作用机理及合成工艺

浅谈聚羧酸系高效减水剂的作用机理及合成工艺

浅谈聚羧酸系高效减水剂的作用机理及合成工艺近几十年来,我国的混凝土工程技术取得了很大进步,高性能混凝土、自密实混凝土的应用越来越广泛,因此,对高效减水剂的要求也越来越高。

聚羧酸系高效减水剂是近几年发展的新型高效减水剂,其主要成分为聚羧酸盐或脂的聚合物,其分散能力强,减水率高,对水泥的适应性好,将是今后高效减水剂研究和发展的重点。

研究开发新型的聚羧酸系减水剂受到国内外广泛关注,代表了高效减水剂的主要发展方向。

1、聚羧酸系高效减水剂的作用机理聚羧酸系减水剂由于其优异性能而引起业内广泛的关注。

为了有效开发这一类型的减水剂,对其减水机理的研究非常重要。

减水剂分散减水机理主要包括以下几个方面。

1.1水化膜润滑作用。

聚羧酸减水剂由于分子结构中存在具有亲水性的极性基,可使水泥颗粒表面形成一层具有一定机械强度的溶剂化水膜。

水化膜的形成可破坏水泥颗粒的絮凝结构,释放包裹于其中的拌合水,使水泥颗粒充分分散,并提高了水泥颗粒表面的润湿性,同时对水泥颗粒及骨料颗粒的相对运动具有润滑作用,所以在宏观上表现为新拌混凝土流动性增大,和易性好。

1.2静电斥力作用。

水泥颗粒的稳定性主要由静电斥力和范德华引力的平衡来决定。

减水剂加入到新拌混凝土中,其中的负离子就会在水泥粒子的正电荷的作用下定向吸附在水泥颗粒表面,形成扩散双电层的离子分布,使得水泥颗粒表面带上电性相同的电荷,产生静电斥力,使水泥颗粒絮凝结构解体,颗粒相互分散,释放出包裹于絮团中的自由水,从而有效地增大拌合物的流动性。

1.3空间位阻作用。

一般认为所有的离子聚合物都会引起静电斥力和空间位阻斥力两种作用力,聚羧酸类减水剂吸附在水泥颗粒表面,虽然使水泥颗粒的负电位降低较小,静电斥力较小,但是由于其主链与水泥颗粒表面相连,支链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥力,所以在掺量较小的情况下便对水泥颗粒具有显著的分散作用。

1.4引气隔离“滚珠”作用。

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。

聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。

聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。

聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。

对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。

1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。

聚羧酸盐类高效减水剂的原料与合成工艺

聚羧酸盐类高效减水剂的原料与合成工艺

聚羧酸盐类高效减水剂的原料与合成工艺本文介绍目前国外聚羧酸系高效减水剂合成的主要三种方法,供大家参考,如果需要进一步合作请与本网联系。

(一)可聚合单体直接共聚这种合成方法一般首先需制备具有聚合活性的大单体,如甲氧基聚乙二醇甲基丙烯酸酯,然后将一定配比的单体混合在一起直接采用溶液聚合而得成品。

这种合成工艺的关键在于活性大单体的合成,中间需经比较繁琐的分离纯化过程,成本较高。

日本采用短链甲氧基聚乙二醇甲基丙烯酸酯、长链甲氧基聚乙二醇甲基丙烯酸酯、甲基丙烯酸三种单体直接共聚合成了一种坍落度保持性好的商品混凝土外加剂。

其典型的合成示例如下:在装有温度计、搅拌器、滴液漏斗、N2导人管和回流冷凝管的玻璃反应容器中,装入500份水(质量份,下同),搅拌下通N2除氧,在N2气保护下加热到和摄氏80度,接着在4小时内滴加混合了250份短链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为4个)、50份长链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为23个)、200份甲基丙烯酸、150份水和13.5份链转移剂3-硫代乳酸的单体水溶液以及40份10%过硫酸按水溶液。

滴加完毕后,再在1h内滴加10份10%过硫酸铰水溶液并保温1h,得到重均相对分子质量为15000的聚合物水溶液为最终成品。

(二)聚合后功能化法该方法主要利用现有聚合物进行改性,通常采用已知分子量的聚羧酸,在催化剂的作用下与聚醚在较高温度下通过酯化反应进行接技,形成接技共聚物。

这种方法受现成的聚羧酸产品种类和规格的限制,调整组成和分子量比较困难。

此外,制备过程中聚羧酸和聚醚的相容性不好,酯化实际操作困难,伴随酯化的不断进行,水分不断逸出,也易出现相分离现象。

典型合成工艺:以烷氧基胺H2N(BO)—R为反应物与聚授酸接技出(BO代表氧化烯基团,n为整数,R为C1~C4烷基),利用聚羧酸在烷氧基胺中的可溶性,使酷亚胺化进行得比较彻底。

反应时,胺反应物加量一般为—COOH摩尔数的10%~20%。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺
但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系 高性能减水剂的合成工艺。因此,本文在此予以简介之。
二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚 酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
(3)、中和反应,将反应好的聚合物降温至50C以下,边搅拌边加入片 碱100kg,调节PH值6—乙反应完成,得到含固量为30%勺聚酯类聚羧酸系高 性能减水剂成品。
(二)、聚醚类聚羧酸系高性能减水剂合成工艺
(1)、合成工艺简图:
聚合反应―中和反应―成品
(2)、反应过程如下:
1、聚合反应:计量维生素C:,疏基乙酸:,配以580kg去离子水,泵 入滴定罐A备用,是为A料。计量丙烯酸,配以44kg去离子水,泵入滴定罐B备用,是为B料。往反应釜内加入去离子水930kg,烯丙醇聚氧乙烯醚1800kg,由室温升至55C,加入双氧水(配114kg去离子水),同时滴定A B料,B料3小时滴定完,A料小时滴定完,保温1小时。(温度控制60±2C)。
聚羧酸减水剂生产工艺
一、引言
一般认为, 减水剂的发展分为三个阶段: 以木质素磺酸钙为代表的第一代普通减 水剂阶段; 以萘系为代表的第二代高效减水剂阶段; 以聚羧酸系为代表的第三代 高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚 羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合 成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、 (甲基)丙烯酸、 烯丙醇聚氧乙烯醚等。2.在分子结构上, 聚羧酸系高性能减水剂的分子结构是线 形梳状结构, 而不是传统减水剂单一的线形结构。 该类减水剂主链上聚合有多种 不同的活性基团,如羧酸基团(一COOH羟基基团(一0H、磺酸基(一S03Na等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的 空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水 剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已 成为混凝土外加剂研究领域的重点和热点之一。

聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能张赐容;黄易云;宁平【摘要】通过采用聚乙二醇单甲醚和丙烯酸在甲基苯磺酸的催化作用下合成得大分子单体聚乙二醇单甲基丙烯酸酯,再将大分子单体与丙烯酸、烯丙基磺酸盐按一定的摩尔比进行聚合,得到聚羧酸系高效减水剂。

研究了单体的不同比例对高效减水剂性能的影响;并将聚羧酸系高效减水剂在高强混凝土中的应用进行了测试和探讨。

结果表明:以聚乙二醇单甲醚、丙烯酸、烯丙基磺酸盐等为原材料合成聚羧酸系减水剂对水泥具有十分优越的分散性和分散稳定性。

在实验中选用了不同的阻聚剂,阻聚剂的品种及用量对酯化反应有较大的影响。

聚羧酸系高效减水剂中添加消泡剂可以降低混凝土的含气量,提高混凝土的强度。

%Poly-carboxyl superplasticizer was prepared by utilizing acrylic acid,sodium allyl sulfonate and PEG-M acrylic ester.The influences of different monomer ratios and reaction conditions on the superplasticizer performance were studied.The superplasticizer was used in high performance concrete,and had excellent water reduce ability in concrete even at low dosage and the strength of the concrete was also improved.Experiments showed that PEG-M,acrylic acid,and sodium allyl sulfonate used as raw materials in preparing poly-carboxyl superplasticizer which was a very good and stable disperser in cement.Different monomers ratio was used in the preparation process of superplasticizer.Carboxyl and sulfonic group content in superplasticizer had a larger influence on the cementhydration.Hydroquinone and phenothiazine as inhibitors were used in the esterification,and the experiments showed that the phenothiazine hadbetter inhibit ability,and the color of finish good was also lighter than that of using hydroquinone.Defoamer was used in poly-carboxyl superplasticizer to reduce air existing in the concrete and to improve the strength of the concrete.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】4页(P75-77,90)【关键词】聚羧酸;高效减水剂;高性能混凝土【作者】张赐容;黄易云;宁平【作者单位】广州从化鳌头凌丰树脂加工厂,广东从化510900;华南理工大学材料科学与工程学院,广东广州510641;华南理工大学材料科学与工程学院,广东广州510641【正文语种】中文【中图分类】TU528纵观我国50多年混凝土外加剂的发展历史,第一代木质素减水剂与第二代萘系减水剂对混凝土综合性能的提高、生产施工方式的改善起到了巨大的作用[1]。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。

与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。

2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。

该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。

由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。

但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。

因此,本文在此予以简介之。

二、聚羧酸系高性能减水剂合成工艺简介。

聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。

聚酯类:包括酯化和聚合两个过程。

聚醚类:只有聚合一个过程。

(一)、聚酯类聚羧酸系高性能减水剂合成工艺。

1、合成工艺简图冷凝器去离子水↓↓聚乙二醇过硫酸铵↓→→→→→→酯化→→→→→计量槽→→聚合中和成甲基丙烯酸→→→→→→→→→→反应→→→→→计量槽→→反应反应品↑↑↑↑去离子水氢氧化钠2、反应过程如下:(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。

聚羧酸系高性能减水剂的合成及应用研究

聚羧酸系高性能减水剂的合成及应用研究

z H A N G Wa n f en g ( F u j i a n A c a d e m y o f B u i l d i n g R e s e a r c h , F u z h o u 3 5 0 0 2 5 )
Ab s t r a c t : B a s e d o n p r i n c i p l e s o f m a c r o mo l e c u l a r d e s i g n ,p o l y e a r b o x y l a t e s h i h —p g e r f o r ma n c e w a t e r —r e d u c i n g a g e n t w e e r s y n t h e s i z e d t h r o u g h t h e m i x t u r e o f
t i a t o r r o l e o f t h e t wo t ig r g e ed r b y f r e e r a d i c a l c o p o l y me iz r a t i o n . T h e p a p e r s r e s e a r c h e d t h e p o l y me i r z a t i o n f a c t o r s o n he t i n f l u e n c e o f p o l y c a r b o x y l a t e s u p e r p l a s t i - e i z e r s y n t h e s i s ,a nd o p t i mi z e d c o n di t i o n s we r e d e t e mi r n e d b y a s e ie r s o f e x p e ime r n t s .T h e TW —P S h a s b e e n u s e d i n mu c h i mp o r t a n t e n g i n e e in r g o f HPC,

混凝土外加剂合成与复配技术详解

混凝土外加剂合成与复配技术详解

混凝土外加剂合成技术复配技术的工程应用在众多高性能减水剂中,具有梳形分子构造的聚羧酸系减水剂由于其具有减水率高,混凝土坍落度经时损失小,掺量低。

等优点,已成为国内外外加剂研究与开发的热点[1~3]。

本文在总结现有聚羧酸系减水剂合成方法的根底上,采用了一种新的合成途径,试验合成了一代号为NKY的聚羧酸系减水剂。

1 现有的合成方法根据现在公开报道的文献,可以把聚羧酸减水剂的合成方法简单地归结为两类:一是先缩合后共聚;二是先共聚后缩合。

1.1 先缩合后共聚所谓先缩合后聚合就是先将脂肪族羧酸单体,通常是丙烯酸或甲基丙烯酸单体,与聚乙二醇醚进展缩合反响,在聚醚上引入活性双键,缩合成分子量在200至3000之间的活性大单体,然后由该大单体与各种羧酸单体共聚而得。

T.Hirate等人网采用不同链长的甲氧基聚乙二醇醚与甲墓丙烯酸缩合,再由该大单体与甲基丙烯酸共聚而得一混凝土坍落度保持性很好的外加剂。

M.Ki-noshitam等人先合成了甲基封端的聚氧乙烯丙烯酸酯,然后与丙烯酸钠、烯丙基磺酸钠在水溶液中共聚,制得水溶性共聚物,作为混凝土外加剂使用时,只需添加0.01%—0.2%,便可改善混凝土的和易性,提高了混凝土的强度。

清华大学的李崇智[3]那么用过量的丙烯酸与不同分子量的聚乙二醇局部酯化,得到系列的聚乙二醇单丙烯酸酯,再与(甲基)丙烯酸及(甲基)丙烯磺酸钠共聚,所合成减水剂的水泥净浆流动度1h根本无变化。

华东理工大学包志军等的[6]合成方法如下:第一步在四口烧瓶中依次按配比参加聚乙二醇单甲醚、对苯二酚、对甲苯磺酸和甲基丙烯酸,加热搅拌,并升温至110~C,反响5h,得到大分子单体(MAMPEC);第二步同时滴加MAMPEG、丙烯酸和过硫酸铵水溶液经共聚反响后得成品,该产品在0.8%掺量,时的减水率达25.1%。

国内的研究者大多采用此种方法。

这种方法的优点是各官能团的摩尔比率可任意调节,分子设计多样性。

但缺点也是很多的,其一是功能性大分子单体的合成难度大,未形成商品化生产,如何保证双羟基的聚乙二醇只有一个羟基与丙烯酸发生酯化反响比拟困难,工艺复杂,控制不好那么会交联成网状高分子而失去流动性。

聚羧酸高性能减水剂合成简介

聚羧酸高性能减水剂合成简介

三、具体操作:
1、将马来酸酐(或马来酸)按所需量配制成5-7%溶液记为头料; 引发剂配成5-10%溶液待用。
2、加入所需量的APEG或TPEG,加热将其液化,然后加入头料;
氮气置换; 温度升到75-85℃,开始滴加引发剂,在80℃1.5-2h滴加完毕; 待引发剂滴加完毕,在80-90℃保温4-4.5小时,结束反应,降
2、针对具体的水泥及配合比还应进一步通过应用试验验 证,才能最终确定减水剂的最佳掺量。建议:使用时 预先混合到计量好的水中加入混凝土中,以保证混凝 土在最短的时间里搅拌均匀。
3、使用中也可以根据实际需要同某些适用的缓凝剂、消 泡剂、引气剂及木钠等减水剂复合使用一达到使用效 果。
2、PH值:根据奈斯特(Nernst)方程,利用一 对电极在不同PH值溶液中能产生不同电位差,这一 对电极有测试电极和参比电极组成,在25℃时每相 差一个单位PH值时产生59.15mV的电位差,PH值可 在仪器的刻度表上直接读出。
建议使用方案
1、建议用户在使用之前,通过自己的试验和复配技术来 确定该产品的使用方法和条件。减水剂的一般掺量为 胶凝材料(一般指水泥)0.5 %—1.2 %。由于各地区 水泥的差异性较大,特别是某些工地采用了一些特殊 的水泥或骨料甚至掺用其它的材料,都需要使用者适 当调整掺量已达到最佳的使用性能。
聚羧酸高性能减水剂工艺流程图示
溶液的配制
SG
SG

软水

NaOH



软水
Ycat


软水
工艺流程图
SG溶液 烯丙醇聚醚
顶料
碱溶液
剩余软水



混合成均一溶液 T=80~95℃ 滴加完毕 t=2~4小时

混凝土外加剂中聚羧酸盐减水剂的制备原理及作用机理

混凝土外加剂中聚羧酸盐减水剂的制备原理及作用机理

混凝土外加剂中聚羧酸盐减水剂的制备原理及作用机理聚羧酸盐高性能减水剂是由带有磺酸基、羧基、氨基以及含有聚氧乙烯侧链等的大分子化合物,在水溶液中,通过自由基共聚原理合成的具有梳型结构的高分子表面活性剂。

合成聚羧酸盐高性能减水剂所需的主要原料有:甲基丙烯酸、丙烯酸、丙烯酸乙酯、丙烯酸羟乙酯、烯丙基磺酸钠、甲基丙烯酸甲酯、2-丙烯酰胺基-2-甲基丙烯酸、甲氧基聚氧乙烯甲基丙烯酸酯、乙氧基聚乙二醇丙烯酸酯、烯丙基醚等,在聚合过程中可采用的引发剂为:过硫酸盐水性引发剂、过氧化苯甲酰、偶氮二异丁氰;链转移剂有:3-疏基丙酸、疏基乙酸、疏基乙醇以及异丙醇等。

虽然聚羧酸盐高性能减水剂是一种新型减水剂,具有许多突出的优点,但其作用机理目前仍尚未完全清楚,因此总结了以下一些常见观点,仅供参考:(1)聚羧酸类聚合物对水泥有较为显著的缓凝作用,主要由于羧基充当了缓凝成分,r-coo~与ca2+离子作用形成络合物,降低溶液中的ca2+离子浓度,延缓ca(oh)2形成结晶,减少c-h-s凝胶的形成,延缓了水泥水化。

(2)羧基(-cooh),羟基(-oh),胺基(-nh2),聚氧烷基(-o-r)n等与水亲和力强的极性集团主要通过吸附、分散、湿润、润滑等表面活性作用,对水泥颗粒提供分散和流动性能,并通过减少水泥颗粒间摩擦阻力,降低水泥颗粒与水界面的自由能来增加新拌商品混凝土的和易性。

同时聚羧酸类物质吸附在水泥颗粒表面,羧酸根离子使水泥颗粒带上负电荷,从而使水泥颗粒之间产生静电排斥作用并使水泥颗粒分散,导致抑制水泥浆体的凝聚倾向(dlvo理论),增大水泥颗粒与水的接触面积,使水泥充分水化。

在扩散水泥颗粒的过程中,放出凝聚体锁包围的游离水,改善了和易性,减少了拌水量。

(3)聚羧酸分子链的空间阻碍作用(即立体排斥)。

聚羧酸类物质份子吸附在水泥颗粒表面呈“梳型”,在凝胶材料的表面形成吸附层,聚合物分子吸附层相互接近交叉时,聚合物分子链之间产生物理的空间阻碍作用,防止水泥颗粒的凝聚,这是羧酸类减水剂具有比其他体系更强的分散能力的一个重要原因。

聚羧酸高性能减水剂的复配和应用

聚羧酸高性能减水剂的复配和应用
分类
根据化学成分和性能特点,聚羧酸高 性能减水剂可分为标准型、缓凝型、 早强型和引气型等。
发展历程及现状
发展历程
聚羧酸高性能减水剂经历了从第一代木质素磺酸盐类、第二代萘系到第三代聚羧酸系的发展历程,性能不断提升。
现状
目前,聚羧酸高性能减水剂已成为混凝土外加剂的主导产品,广泛应用于建筑、水利、交通等基础设施建设领域。
高性能化
随着建筑行业对高性能混凝土的需求 增加,高性能减水剂的市场需求也将 持续增长。
智能化
借助人工智能、大数据等先进技术, 实现减水剂生产的智能化管理和优化, 提高生产效率和产品质量。
国际化
加强国际合作与交流,推动减水剂技 术的国际化发展,拓展海外市场。
06 实验研究及案例分析
实验设计思路和方法
VS
复配目的
通过复配,可以改善单一减水剂的缺陷, 提高减水率、保坍性、增强效果等,同时 降低成本,实现高性能减水剂的高效、经 济应用。
常见复配组分选择
聚羧酸系高性能减水剂
具有高减水率、低掺量、保坍 性好等优点,是复配中的主要 组分。
脂肪族高效减水剂
减水效果较好,价格较低,但 保坍性较差,可作为经济型复 配组分。
绿色生产技术创新
原料选择
采用可再生、低毒、低污染的原料,从源头上减少对 环境的影响。
生产工艺优化
改进生产工艺,提高资源利用效率,减少废弃物排放, 降低能耗和物耗。
产品性能提升
通过研发新型高效减水剂,提高混凝土的工作性能和 耐久性,减少对环境的负荷。
未来发展趋势预测
绿色化
未来减水剂的发展将更加注重环保性 能,推动绿色化生产和使用。
1 2 3
高性能混凝土
聚羧酸高性能减水剂可显著提高混凝土的流动性, 降低水灰比,制备出高强度、高耐久性的高性能 混凝土。

聚羧酸的合成原理

聚羧酸的合成原理

聚羧酸系减水剂的合成原理及方法聚羧酸系有机材料目前受到广泛关注,它主要用于混凝土减水剂、洗涤添加剂、涂料及油墨中的颜料分散剂等领域。

该类表面活性剂具有优良的洗涤、渗透、分散、乳化、破乳等性能,特别是具有低温洗涤效果好、耐硬水、生物降解性能好、配位性能强等优点。

因此,应用范围很广,将聚羧酸型高分子用作混凝土减水剂的历史不长,日本是其首要研究开发国和使用国。

近年来,聚羧酸减水剂在混凝土业中被广泛接受,并受到国内外混凝土外加剂研究者及使用者的日益关注。

究其原因,与传统的减水剂萘磺酸和磺化三聚氰胺缩合物相比,他们能在低掺量下赋予混凝土高分散性、流动性及高分散体系稳定性防止坍落度损失。

同时,工业萘价格上涨、萘系减水剂生产周期长、环境污染严重等问题日益突出也使聚羧酸系减水剂的应用势在必行。

目前,日本常用高效引气减水剂的主要成分正从萘磺酸盐加反应性高分子向聚羧酸系过渡,欧美各国亦紧追其后。

有关聚羧酸减水剂研究进展特别是对该类减水剂制备原理、作用机理、发展前景等方面综述报道较少。

笔者拟对该类减水剂的制备原理、作用机理、发展前景等方面研究进展做一综述。

1制备原理聚羧酸盐高性能减水剂是由带有磺酸基、羧基、氨基以及含有聚氧乙烯侧链等的大分子化合物,在水溶液中,通过自由基共聚原理合成的具有梳型结构的高分子表面活性剂。

合成聚羧酸盐高性能减水剂所需的主要原料有:甲基丙烯酸、丙烯酸、丙烯酸乙酯、丙烯酸羟乙酯、烯丙基磺酸钠、甲基丙烯酸甲酯、2-丙烯酰胺基-2-甲基丙烯酸、甲氧基聚氧乙烯甲基丙烯酸酯、乙氧基聚乙二醇丙烯酸酯、烯丙基醚等,在聚合过程中可采用的引发剂为:过硫酸盐水性引发剂、过氧化苯甲酰、偶氮二异丁氰;链转移剂有:3-疏基丙酸、疏基乙酸、疏基乙醇以及异丙醇等。

合成方法为:在配有电动搅拌器、温度计、滴液装置、以及回流冷凝管的圆底烧瓶中,通过水浴加热的方法缓慢滴加聚合单体溶液和引发剂溶液,在选用聚合单体时,应充分考虑其竞聚率的大学。

聚羧酸系高性能减水剂

聚羧酸系高性能减水剂

聚羧酸系高性能减水剂一、简介water-reducing admixture是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。

根据其减水及增强能力,分为普通减水剂(又称塑化剂)及高效减水剂(又称超塑化剂),并又分别分为一等品、合格品。

按组成材料分为:(1)水质素磺酸盐类;(2)多环芳香族盐类;(3)水溶性树脂磺酸盐类。

普通减水剂宜用于日最低气温5℃以上施工的混凝土。

高效减水剂宜用于日最低气温0℃以上施工的混凝土,并适用于制备大流动性混凝土、高强混凝土以及蒸养混凝土。

目前市场上常用的几种减水剂为:萘系高效减水剂,脂肪族高效减水剂,氨基超速高性能减水剂,减水激发剂,葡萄糖酸钠,木质素磺酸钠,木质素磺酸该,膨胀剂等。

聚羧酸系高性能减水剂聚羧酸系高性能减水剂是目前世界上最前沿、科技含量最高、应用前景最好、综合性能最优的一种混凝土超塑化剂(减水剂)。

聚羧酸系高性能减水剂是羧酸类接枝多元共聚物与其它有效助剂的复配产品。

经与国内外同类产品性能比较表明,聚羧酸系高性能减水剂在技术性能指标、性价比方面都达到了当今国际先进水平。

一、性能特点1、掺量低、减水率高,减水率可高达45%;2、坍落度轻时损失小,预拌混凝土坍落度损失率1h小于5%,2h小于10%;3、增强效果显著,砼3d抗压强度提高50~110%,28d抗压强度提高40~80%,90d抗压强度提高30~60%;4、混凝土和易性优良,无离析、泌水现象,混凝土外观颜色均一。

用于配制高标号混凝土时,混凝土粘聚性好且易于搅拌;5、含气量适中,对混凝土弹性模量无不利影响,抗冻耐久性好;6、能降低水泥早期水化热,有利于大体积混凝土和夏季施工;7、适应性优良,水泥、掺合料相容性好,温度适应性好,与不同品种水泥和掺合料具有很好的相容性,解决了采用其它类减水剂与胶凝材料相容性差的问题;8、低收缩,可明显降低混凝土收缩,抗冻融能力和抗碳化能力明显优于普通混凝土;显著提高混凝土体积稳定性和长期耐久性;9、碱含量极低,碱含量≤0.2%,可有效地防止碱骨料反应的发生10、产品稳定性好,长期储存无分层、沉淀现象发生,低温时无结晶析出;11、产品绿色环保,不含甲醛,为环境友好型产品;12、经济效益好,工程综合造价低于使用其它类型产品,同强度条件下可节省水泥15-25%。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段;与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、甲基丙烯酸、烯丙醇聚氧乙烯醚等;2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构;该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团—COOH、羟基基团—OH、磺酸基—SO3Na等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应;由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一;但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺;因此,本文在此予以简介之;二、聚羧酸系高性能减水剂合成工艺简介;聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品;聚酯类:包括酯化和聚合两个过程;聚醚类:只有聚合一个过程;一、聚酯类聚羧酸系高性能减水剂合成工艺;1、合成工艺简图冷凝器去离子水↓↓聚乙二醇过硫酸铵↓→→→→→→酯化→→→→→计量槽→→聚合中和成甲基丙烯酸→→→→→→→→→→反应→→→→→计量槽→→反应反应品↑↑↑↑去离子水氢氧化钠2、反应过程如下:1、酯化反应制备大单体:计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份对苯二酚:、吩噻嗪:,升温至90℃,加入浓硫酸,继续升温至120℃,保持小时,后充氮气2小时,6㎡/时,每30分钟充1瓶,共4瓶,反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水;经减压蒸馏脱水,酸化反应更为完全;2、聚合反应:采用过硫酸铵引发、水溶液聚合法;计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸,分子量调节剂十二烷基硫醇,配以130 kg去离子水,泵入滴定罐A备用,是为A料;计量过硫酸铵,配以950kg 去离子水,泵入滴定罐B备用,是为B料;加去离子水1425kg入釜,升温至85℃,同时滴定A、B料;A料3小时滴定完,B料小时滴定完,保温小时;温度控制:90±2℃;3、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品;二、聚醚类聚羧酸系高性能减水剂合成工艺1、合成工艺简图:聚合反应→→中和反应→→成品2、反应过程如下:①、聚合反应:计量维生素C:,疏基乙酸:,配以580kg去离子水,泵入滴定罐A备用,是为A料;计量丙烯酸,配以44kg去离子水,泵入滴定罐B 备用,是为B料;往反应釜内加入去离子水930kg,烯丙醇聚氧乙烯醚1800kg,由室温升至55℃,加入双氧水配114kg去离子水,同时滴定A、B料,B料3小时滴定完,A料小时滴定完,保温1小时;温度控制60±2℃;②、中和反应:将聚合物降温至50℃以下,边搅拌边加入片碱,调节PH值6—7,反应完成;继加去离子水1100kg,得到含固量为40%的聚醚类聚羧酸系高性能减水剂成品;三、几点补充1、在聚酯类聚羧酸系高性能减水剂的合成中,减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯的合成是决定减水剂性能的关键因素;因此,我们应该通过对不同分子量的聚乙二醇与甲基丙烯酸在不同摩尔比,不同反应温度、不同阻聚剂掺量、不同催化剂掺量、不同反应时间等试验条件下的研究,确定最佳的酯化工艺,达到95%以上的酯化率;2、通过对不同引发剂掺量、不同分子量调节剂掺量、不同反应温度、不同反应时间等试验条件下的研究,确定最佳的聚合工艺;3、关于PH值控制;PH值在6—7范围内较好:当PH值低于4时,聚合物浑浊,其净浆流动度、混凝土坍落度全无;当PH值高于9时,其净浆流动度、混凝土坍落度开始下降;四、结束语聚羧酸系高性能减水剂的研发,应用是混凝土外加剂发展史上的一个里程碑;由于其分子结构可调性比较大,我们应该通过改变分子结构中官能团的种类和数量赋予其更高的性能;如低温早期强度型、高坍落度保持型、抗收缩型、低粘型等等;无疑,聚羧酸系高性能减水剂将成为混凝土外加剂技术的发展方向,其市场亦将面临一个极大的发展机遇;。

聚羧酸减水剂的合成及复配技术综述

聚羧酸减水剂的合成及复配技术综述

1引言高效减水剂等作为混凝土外加剂在整个工程建设中发挥着重要作用,减水剂的发展可分为三个阶段:以木钙为主的普通减水剂,到以萘系为主的高效减水剂,再到以聚羧酸系为代表的高性能减水剂,而聚羧酸高效减水剂相比前两者具有良好的环保性能和技术优势,被广泛用于现代化混凝土工程中,其含有有害物质量较少,且减水率高,掺量较少,能显著提升混凝土强度,因而快速获得建筑工程应用,比如三峡工程等多个建筑工程中均使用了聚羧酸减水剂。

2国内外研究综述首先,1986年由日本研发了亲水性官能团聚羧酸减水剂,这种减水剂具有低坍损速度和高效减水率,之后将其运用于混凝土工程中。

1995年后,相比其他类型的减水剂,这种聚羧酸高效减水剂在工程中实现了广泛应用,占据整个建筑工程的80%。

日本将这种减水剂作为高性能AE减水剂,并在之后纳入了国家行业标准中,欧美对于聚羧酸高效减水剂的相关研究滞后于日本,由于美国等发达国家发现,将聚羧酸高效减水剂加入混凝土后会影响减水性能以及混凝土沁水性能,因此使用量较少,仅达到20%左右。

从国内研究上来看,21世纪我国在建设工程和工业生产中才开始使用和研究聚羧酸高效减水剂,早期主要使用马贝、西卡等减水剂产品,但由于这种材料成本高,无法实现广泛应用,只能够利用一些大型工程建设中。

伴随着科学技术发展,对于减水剂原材料,分子结构,工艺设计进行改进优化,之后使其成本降低可用于一般工程建设中。

如根据郭广仁等研究学者,研发了聚羧酸高效减水剂,这种减水剂相比其他减水剂来说能够显著降低掺量达到 1.50%,其含气量达5%,同时减水率能够达到30%以上。

国内目前聚羧酸减水剂相关研究已经获得很多进展,但由于这种减水剂会发生化学反应和本身存在敏感性等问题,国内外研究学者纷纷针对聚羧酸减水剂的工艺进行优化筛选,深入探讨其与水泥的适应性等问题。

3在实际应用中聚羧酸减水剂的问题分析在混凝土预拌过程中原材料差异性,地域性以及技术人员使用,理论知识等相关因素均会影响其使用效果。

聚羧酸系高效减水剂

聚羧酸系高效减水剂

合成工艺优化
改进合成工艺,降低生产 成本,提高生产效率,实 现大规模生产。
作用机理研究
深入研究聚羧酸系高效减 水剂的作用机理,为新产 品研发提供理论支持。
市场前景与竞争格局
市场需求持续增长
随着基础设施建设的不断 推进,聚羧酸系高效减水 剂的市场需求将持续增长 。
产品质ห้องสมุดไป่ตู้竞争
各厂家在产品质量上展开 竞争,通过提高产品质量 和性能来获取更大的市场 份额。
合成工艺流程
2. 将混合液加热至 一定温度,加入链 转移剂;
4. 反应结束后,将 产物冷却至室温, 调节pH值至中性;
1. 将单体、催化剂 、引发剂等原料混 合均匀;
3. 继续加热并保持 一定时间,使聚合 反应进行;
5. 经过滤、干燥等 步骤,得到聚羧酸 系高效减水剂成品 。
合成影响因素与控制方法
聚羧酸系高效减水剂
汇报人: 2023-11-17
目录
• 聚羧酸系高效减水剂概述 • 聚羧酸系高效减水剂的合成与制备 • 聚羧酸系高效减水剂的性能与测试方法 • 聚羧酸系高效减水剂的应用领域与效果 • 聚羧酸系高效减水剂的发展趋势与挑战 • 聚羧酸系高效减水剂的案例分析与应用实

01
聚羧酸系高效减水剂概述
催化剂和引发剂用量
催化剂和引发剂用量不当可能导致聚合反应进行不均匀, 影响产物质量。控制方法为选择合适的催化剂和引发剂用 量。
03
聚羧酸系高效减水剂的性 能与测试方法
物理性能测试
颗粒度
聚羧酸系高效减水剂的颗粒度应 符合规范要求,以确保其在使用 过程中具有良好的分散性和流动
性。
密度
聚羧酸系高效减水剂的密度应稳 定,且与混凝土的配合比设计相 匹配,以确保混凝土的抗压强度

聚羧酸系减水剂的合成原理与复配技术课件

聚羧酸系减水剂的合成原理与复配技术课件
不饱和单体是合成聚羧酸系减水剂的主要原料,常见的有丙 烯酸、甲基丙烯酸等。
聚羧酸系减水剂的合成方法
聚羧酸系减水剂的合成方法主要包括自由基聚合和离子聚 合。自由基聚合是常用的合成方法,通过引发剂引发单体 聚合,形成高分子聚合物。离子聚合则是通过离子交换剂 的作用,使单体离子化后再聚合。
聚羧酸系减水剂的合成过程中,温度、压力、反应时间等 工艺参数也会影响其性能和产率。因此,选择合适的工艺 参数对于合成高性能的聚羧酸系减水剂至关重要。
高性能混凝土
高性能混凝土是一种新型混凝土材料,具有高强度、高耐久性和高工作性等特点。聚羧酸系减水剂在高性能混凝土中的应用 可以提高混凝土的工作性能和耐久性,降低水灰比,减少收缩和开裂。
聚羧酸系减水剂可以与其他外加剂如缓凝剂、引气剂等配合使用,进一步改善高性能混凝土的性能。
自密实混凝土
自密实混凝土是一种不需要振捣即可自行密 实的混凝土,具有高流动性和稳定性。聚羧 酸系减水剂在自密实混凝土中的应用可以提 高混凝土的流动性和稳定性,减少离析和泌 水现象。
与其他外加剂的复配
聚羧酸系减水剂与缓凝剂的复配
01
通过复配缓凝剂,可以调整混凝土的凝结时间,满足工程需求。
聚羧酸系减水剂与引气剂的复配
02
引气剂可以提高混凝土的抗冻性和耐久性,但需注意控制气泡
含量。
聚羧酸系减水剂与增稠剂的复配
03
增稠剂可以改善混凝土的工作性,提高坍落度。
与不同水泥的适应性研究
聚羧酸系减水剂与通用水泥的适应性
减水剂分子具有较强的抗硬水能力, 能够在不同水质条件下保持稳定的减 水效果。
03
聚羧酸系减水剂的应用领 域
混凝土预制构件
预制构件是建筑行业中的重要组成部 分,聚羧酸系减水剂在混凝土预制构 件中的应用可以提高混凝土的流动性, 降低用水量,减少构件表面气泡和裂 纹,提高构件的耐久性和力学性能。

聚羧酸减水剂生产工艺.pdf

聚羧酸减水剂生产工艺.pdf

聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。

与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。

2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。

该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。

由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。

但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。

因此,本文在此予以简介之。

二、聚羧酸系高性能减水剂合成工艺简介。

聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。

聚酯类:包括酯化和聚合两个过程。

聚醚类:只有聚合一个过程。

(一)、聚酯类聚羧酸系高性能减水剂合成工艺。

1、合成工艺简图冷凝器去离子水↓↓聚乙二醇过硫酸铵↓→→→→→→酯化→→→→→计量槽→→聚合中和成甲基丙烯酸→→→→→→→→→→反应→→→→→计量槽→→反应反应品↑↑↑↑去离子水氢氧化钠2、反应过程如下:(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HPEG和TPEG实例
• 氧化-还原共轭体系: • 预备:(1)AA36克+去离子水20克 • (2)L-抗坏血酸0.3克+巯基乙酸0.69+去离子水 110 • (3)NOH13克+水260 • 合成前1小时备好 • 流程: • 1.在在配有搅拌和加热装置的四口瓶(1000毫升) 中加入去离子水200克。边搅拌边加入TPEG共365克; 加热搅拌溶解到60度后直接加双氧水(30%浓度)3 克。
• 2.在搅拌保温状态下,开始滴加(1)[滴加 控制时间3h左右];稍后5分钟后开始滴加 (2)[控制滴加时间3.5h左右]。全部滴加完 毕后开启加热到60度。并在此温度范围继 续搅拌1h. • 3.降温到50度以下。在10分钟左右缓慢加入 (3)。调节PH值在6-7。 • 抽检。成品
聚羧酸类高性能减水剂复配
4.具体投料比例(以100公斤MPEG计): MPEG1000-100公斤=100摩尔 MAA=100摩尔*4*86/1000=34.4公斤 对甲苯磺酸=MPGG1000的100公斤*2%=2公 斤 • 对苯二酚=MAA的34.4公斤*1%=0.344公斤
• 5.实验室操作参考: • 把计量好的MPEG1000共200克;对苯二酚 0.69克;对甲苯磺酸4克依次投入干净的有 配套加热的四口烧瓶中,在80度熔化,滴 加计量好的MAA68.8克,滴加时间在30-50 分钟,加完后升温到130度。分别在每一小 时间歇抽真空。收集冷却下来的液体。在 130度反应6小时以上。
1.APEG参考合成工艺
• 国内目前APEG共聚工艺大体是俩种反应体系: 一是采取75度以上温度纯氧化体系;二是45度 左右的氧化-还原体系。 • 各供应商为推广产品也提供不少合成工艺。 • 就目前来看,人们习惯的把每个百分点价格来 讨论减水剂成本。其实产品的成本我认为应该 是同混凝土配合比,同掺量(比如都配成掺量 C*1%的)的成品成本对比。另外还要考虑广 泛的适应性。APEG虽然价格较HPEG和TPEG低, 但是综合成本还是不一定低。
• 备注: • 抽真空时,通过管道阀门控制:放空阀门, 打开真空泵,缓慢关闭阀门,随着反应釜 内的真空度增大。 • 反应釜内的甲基丙烯酸和水通过冷凝器冷 却。注意观察反应釜内,防止爆沸,若发 现应慢慢打开阀门减少真空度,防止液体 冒锅,直到真空度稳定在一定值釜内不爆 沸。大概抽10分钟左右。
• • • •
• 后聚合生产温度在90士2度。大单体和酸及MAS混合液 体单独计量滴加,滴加时间为3小时左右5分钟;引发剂 一般用过硫酸铵(APS),用量为(MAA+MAAMPEG+MAS)*2%左右;引发剂水溶液也单独计量滴加, 滴加时间为3小时左右5分钟。 • 链转移剂使用巯基乙酸或者3-巯基丙酸,用量为大单体 体重量的1%左右。 • 反应釜内计量一定数量的去离子水并加热到90士2度。 在搅拌和能调节温度情况下,俩种溶液同时开始滴加, 待俩种溶液滴加完毕后。继续在搅拌状态下恒温3小时。 抽样检测后根据需要浓度补充一定数量的去离子水。 • 一般最后成品浓度是20%左右。

• (4)MPEG通过酯化才能引入不饱和键。 但酯键键能低,特别是聚合形成减水剂大 分子后。酯键很容易脱落,造成部分酯化 逆反应。从而引起产品PH值降低,降低产 品性能。 • (5)最近市场好多厂家停止生产酯类产品。 原因是工艺控制麻烦。对生产和储存设备 要求高。储存稳定性差。
三。醚类聚羧酸类高性能减水剂
APEG实例
• 一步直接投料工艺: • 1.在配有搅拌和加热装置的四口瓶(1000毫升)中 加入去离子水180克。边搅拌边加入APEG2400共240 克(1摩尔);马来酸酐(MA)34.3克(0.35摩尔) • 2.升温到60度。搅拌至全部溶解后依次投入MAS 6克; APS 2.4克。待全部溶解透明后,继续加热到75-80度。 在此温度范围搅拌保温3小时后,继续加热到85-90 度,恒温搅拌30分钟。 • 3。加入四口瓶90克去离子水,并降温到55度以下, 边搅拌边缓慢加入NaOH(30%浓度)约78克调节PH 值到7以上. 成品
• 醚类是指直接用一定分子量的含有不饱和 键封端的聚氧乙烯醚直接与其他含有不饱 和键的小分子量单体在酸性条件下直接共 聚成聚羧酸类高性能减水剂。目前市场上 这种醚大概分为三种:1,APEG(烯丙基封 端聚氧乙烯醚).2,HPEG(异丁烯醇封端 聚氧乙烯醚)。3,TPEG(异戊烯醇封端聚 氧乙烯醚)
一。酯类聚羧酸高性能减水剂合成 工艺
• 一般酯类聚羧酸高性能减水剂合成所用MPEG 的分子量都是在600-1200左右;也有专门跟厂 家订做分子量600。800.1000的。MPEG是环氧 乙烷在碱性条件下,用甲醇做起始剂生产的。 一般成品都经过用醋酸中和后PH值在7左右。
• 所用含有不饱和键的酸一般为:(甲基)丙烯 酸;衣糠酸;马来酸(酐);富马酸等。目前 使用最多的是甲基丙烯酸和衣糠酸。
• APEG是个不错的产品,虽然聚合活性较差。 但是很容易做出缓凝和早强类聚羧酸高性 能减水剂。特别是缓凝类聚羧酸类高性能 减水剂。相对HPEG和TPEG就不容易做到。 • 一般用于APEG聚合形成主链的不饱和酸是 马来酸(酐);富马酸;丙烯酸等。甲基 丙烯酸由于双键键位所决定的键能较高, 不容易打开。所以很难与APEG直接共聚。
• (1)一般情况下酯化率和反应釜的罐装度有 关。越小,同时间酯化率越高。反之亦然。 • (2)酯化过程中存在很多不确定因素,很难 通过测定数据来计算酯化率,往往以相对酯化 率来表示。若以羧酸的转化率来表示,建议酯 化结束后的酯化率应达到99%以上,相对酯化 率的稳定反应酯化反应的稳定。 • (3)建议使用分子量分布窄的,切PEG含量小 于0.5%的MPEG。条件允许,建议用高效液相 色谱进行分析各产物的含量。
• 一般把聚羧酸类高性能减水剂分为4代: 第一代是MPEG酯化共聚类 第二代是烯醇类封端的PEG直接共聚类 第三代是:酰胺/亚酰胺型。 第四代是:两性 或非离子型 目前醚类聚羧酸类高性能减水剂是指用APEG, HPEG,TPEG直接共聚的三种产品
• APEG:烯丙醇封端聚氧乙烯醚。分子量有 1200和2400俩种。大部分使用分子量2400的。 如:APEG2400;F54;540等 • HPEG:异丁烯醇封端聚氧乙烯醚。大部分使 用分子量2400的。有的叫国产封端改性聚醚; GPEG;SPEG;109;608;H004等。生产使用 的起始剂异丁烯醇是国内生产所以得名。 • TPEG:异戊烯醇封端聚氧乙烯醚。大部分使用 分子量2400的。有的叫国外封端改性聚醚。生 产使用的起始剂异戊烯醇(3甲基-2-丁烯醇) 是国外生产所以得名。市场上有108;501等
• 目前聚羧酸类高性能减水剂的复配国内好多人 进行了研究。特别是好多人把对萘系减水剂的 复配方法搬过来使用。为此出现不少问题。建 议将复配好的成品模拟实际使用的储存环境和 时间再进行测试验证。 • 经验:复配最好,最有效的办法是采用2种以 上不同性质的羧酸原液。然后再考虑小料
• 一般用于复配的小料是葡萄糖酸钠;食用糖等。 柠檬酸(钠)等夏天容易发酵的小料最好别用。
• 参考实例:MPEG1000酯化和聚合工艺配方 • 1.主要原料: • MPEG1000;对苯二酚;对甲苯磺酸;甲基丙 烯酸(MAA,分子量86);甲基丙烯磺酸钠 (MAS,分子量158.2);过硫酸铵(APS) • 2.酯化配方: • 摩尔比:MAA/MPEG=4/1 • 对苯二酚用量为MAA重量的1% • 对甲苯磺酸用量为MPEG1000重量的2%
• 用于APEG的接枝其他基团作用的不饱和小高分 子较多。也比较灵活。如:烯丙基磺酸钠 (AS);甲基烯丙基磺酸钠(MAS);丙烯酰 胺;苯乙烯磺酸钠;2-丙烯酰胺-2-甲基丙烯磺 酸钠(AMPS);(甲基)丙烯酸甲酯;丙烯 酸羟乙酯;醋酸乙烯酯等。 • 在去离子水中自由共聚一般氧化(引发)剂使 用过硫酸铵(或者钾);双氧水。还原剂使用 L-抗坏血酸;甲醛合次亚硫酸氢钠;焦亚硫酸 钠等
聚羧酸类高性能减水剂的合成 及复配
主要针对目前市场常用羧酸工艺 北京科峰技术发展有限公司 潘科 锋
一。合成总述
• 目前市场所使用聚羧酸类高性能减水剂人 们习惯性的分为醚类和酯类。 • 酯类一般是指用不同分子量的MPEG(甲氧 基封端的聚氧乙烯醚)在浓硫酸或者对甲 苯磺酸等催化剂作用下与含有不饱和键的 羧酸进行酯化。形成所谓的“大单体”。 然后再用“大单体”和其他含有不饱和键 的小分子单体在酸性条件下进行开链共聚, 生成聚羧酸类高性能减水剂
• 2.在搅拌保温状态下,开始滴加(1)[滴加 控制时间1h40min左右];稍后5分钟后开始 滴加(2)[控制滴加时间1h左右]。全部滴 加完毕后开启加热到50-55度。并在此温度 范围继续搅拌30min. • 3.缓慢加入(3)。调节PH值在6.5-7范围 • 成品。抽样检测
• 由于各供应商的APEG产品存在重均分子量 不同和分子量分布不同,甚至同一个供应 商的不同批次产品都有差异。建议对每批 次的材料经过合成小实验再确定配方工艺。
• • • • • • •
7.几个供应商的经验比例数据: MAA/MPEG-MAA/MAS 克莱恩 5 / 1 /0 海安石化 4.5/ 1 /0.1 科隆 3 / 1 /0.15 奥克 5 / 1 /0.3 以上数据仅供参考。由于供应商的MPEG波 动。建议还是要经过小试确定。
二。酯类产品生产注意和个人观点
• 催化剂一般使用浓硫酸和对甲苯磺酸
• 酯化反应是可逆反应。在隔绝空气或者厌 氧条件下进行。在酯类聚羧酸高性能减水 剂合成中,酯化的好坏对最终产品的性能 起决定作用,是控制的关键! • 酯化温度一般在125-135度。由于在此温度 下MAA有可能自聚。所以要在反应中加对 苯二酚或者吩噻嗪等做阻聚剂。
• 以上反应在130度恒温7小时左右后,将四 口烧瓶整体冷却到50度以下,然后将收集 的液体倒回烧瓶。再加入20%(约67克)的 水配成80%的大单体溶液,以保证大单体是 液态,便于后聚工艺的取料和计量。
相关文档
最新文档