材料成形工艺液态金属铸造成形工艺3

合集下载

三种液态成形方法

三种液态成形方法

三种液态成形方法液态成形是工程领域中的一种重要成形技术,用于制造各种金属或非金属零件。

它通过将材料加热至液态,并注入到模具中,随后冷却并固化成所需形状。

液态成形方法具有制造复杂零件、提高生产效率和减少原材料浪费等优点。

下面将介绍三种常用的液态成形方法:压铸、注射成型和热挤压。

1.压铸压铸是一种通过将液态金属或合金注入高温模具中,并以高压使其充分充实和冷却而形成所需零件的成形方法。

压铸适用于制造具有复杂形状和精密尺寸要求的铝、镁、锌等金属零件。

工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造金属模具。

(2)准备材料:根据所需零件的要求,选择适合的金属或合金,并将其加热至液态。

(3)充填模具:将液态金属或合金注入已加热的模具中。

(4)施加压力:通过驱动液压系统,施加高压使液态金属或合金充实模具腔体,并排除有害气体。

(5)冷却固化:等待足够时间,让液态金属或合金冷却并固化成所需形状。

(6)分离模具:打开模具并取出成品零件。

(7)修整和后处理:将零件上的余料切割掉,并进行必要的表面处理。

2.注射成型注射成型是一种通过将液态或半液态塑料材料注入模具中,并在成型温度下固化成所需形状的成形方法。

注射成型适用于制造塑料零件,广泛应用于电子、汽车、日用品等领域。

工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造塑料模具。

(2)准备材料:选择适合注射成型的塑料树脂,并将其加热至液态或半液态。

(3)充填模具:将液态或半液态塑料注入已加热的模具中。

(4)冷却固化:等待足够时间,让塑料在模具中冷却并固化成所需形状。

(5)分离模具:打开模具并取出成品零件。

(6)修整和后处理:将零件上的余料切割掉,并进行必要的表面处理。

3.热挤压热挤压是一种通过将液态金属在高温和高压下通过模孔挤压成型的成形方法。

热挤压适用于制造具有长直形截面或复杂截面的杆、管和型材等零件。

工艺流程:(1)准备模具:根据所需零件的形状和尺寸,制造高温合金模具。

材料成形工艺液态金属铸造成形工艺2

材料成形工艺液态金属铸造成形工艺2
材料成形工艺
第一部分 液态金属铸造成形工艺
第一部分 液态金属铸造成形工艺
第一章 液态金属铸造成形工艺基础
1
液态金属铸造成形工艺
概述
第一章 液态金属铸造成形工艺基础
☺ 铸造:使熔融的金属液流入并凝固在预先制备的铸型中, 获得特定形状和性能的毛坯或零件(铸件)的方法或技术。
铸造的基本工艺要素是:熔融金属液 预先制备的铸型
解决方案: 利用动量矩守恒原理抑 制漩涡。
具体措施:
使用池形浇口杯;
使用浇口塞提高液面。
28
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
1、充型过程及其控制
1.2、液态金属在浇注系统中的流动情况
3). 金属液在直浇道中的流动情况
流动特点:
金属液在重力作用下沿 直浇道流动;
金属液在流动过程中因 势能降低有液流加速的 现象;
流体在运动状态下呈现出一种 抗拒运动的特性,称为粘性。
液态金属是有粘性的流体,其 粘度与其成分及温度相关。
在流动过程中液态金属的粘度随液态金属温度的降低而 不断增大,当液态金属中出现部分固相时,液体的粘度 急剧增加,其流速和流态也会发生显著改变。
11
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
可能导致金属液的离壁
流动。
29
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
1、充型过程及其控制
3). 金属液在直浇道中的流动情况
A. 直浇道的作用
将来自浇口杯的液流引入横浇道、内浇道或直接引入 型腔。
通过调整直浇道高度,可获得足够的水力学压头,保 证金属液在规定的时间内以适当的速度充满型腔。

金属液态成形工艺概述

金属液态成形工艺概述
得毛坯或零件的金属材料加工成形方法。
铸造产品称为: 铸件、铸锭、铸坯、铸带等
一、金属液态成形工艺特点
1. 适应性强
铸件重量:几克 ~ 几百吨 铸件壁厚:0.5 毫米 ~ 1 米 铸件长度:几毫米 ~ 十几米 铸件材质:铁碳合金(鋳铁、鋳钢)、铝合金、铜合金、
镁合金、锌合金、钛合金、复合材料等
速箱体(灰口铸铁)
精密铸造件(不锈钢)
水轮机铸件(铜合金)
箱体(铝合金)
叶轮(钛合金)
一、金属液态成形工艺特点
1. 适应性强
铸件重量:几克 ~ 几百吨 铸件壁厚:0.5 毫米 ~ 1 米 铸件长度:几毫米 ~ 十几米 铸件材质:铁碳合金(鋳铁、鋳钢)、铝合金、铜合金、
镁合金、锌合金、钛合金、复合材料等
铸造方法几乎不受零件大小、形状和结构复杂程度的限制。
轧辊
异型件
装饰件
工艺品
一、金属液态成形工艺特点
2. 尺寸精度高
铸件比锻件、焊接件的尺寸精度高,更接近于零件的尺 寸,可节约大量的金属材料和机械加工工时。
一、金属液态成形工艺特点
2. 尺寸精度高
铸件比锻件、焊接件的尺寸精度高,更接近于零件的尺 寸,可节约大量的金属材料和机械加工工时。
形成的先进铸造技术
精密、优质化
精密成形与加工 近无缺陷成形
数字、网络化
数字造型 虚拟制造
网络制造
精确铸造成形 金属熔体的纯净化、致密化
铸造工艺CAD,铸造模具CAD/CAM一体化 铸造过程宏观模拟及工艺优化 铸件组织微观模拟及性能预测 分散网络化铸造系统
高效、智能化
快速制造 自动化制造系统
智能制造
快速原形及快速制模 铸造过程自动检测与控制,铸造机器人的应用

金属材料八大成形工艺

金属材料八大成形工艺

金属材料八大成形工艺
(6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中 冷却凝固而获得铸件的一种成型方法。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁 合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
金属材料八大成形工艺
金属材料八大成形工艺
(3)挤压 挤压:坯料在三向不均匀压应力作用下,从模具的孔口或 缝隙挤出使之横截面积减小长度增加,成为所需制品的加 工方法叫挤压,坯料的这种加工叫挤压成型Байду номын сангаас 应用:主要用于制造长杆、深孔、薄壁、异型断面零件。
金属材料八大成形工艺
(4)拉拔 拉拔:用外力作用于被拉金属的前端,将金属坯料从小于 坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品 的一种塑性加工方法。 应用:拉拔是金属管材、棒材、型材及线材的主要加工方 法。
金属材料八大成形工艺
(10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属, 不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的 铸件连续不断地从结晶器的另一端拉出,它可获得任意长或特 定的长度的铸件。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合 金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
金属材料八大成形工艺
(4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下 充填铸型,并在压力下结晶以形成铸件的方法.。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。
金属材料八大成形工艺
(5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填 充铸型而凝固成形的一种铸造方法。 应用:离心铸造最早用于生产铸管,国内外在冶金、矿山、交 通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工 艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、 内燃机缸套和轴套等铸件的生产最为普遍。

材料成形的方法

材料成形的方法

金属液态成形——液态金属在铸型中冷却、凝固形成零件。

液态成形是机械制造中生产机器零件或毛坯的主要方法之一。

常用的铸造。

一 铸造定义铸造(最广泛):将液态合金浇注到与零件的形状、尺寸相适应的铸型空腔中,使其冷却凝固,得到毛坯或零件的成形工艺(生产方法)。

二 铸造分类1.按铸型材料来分:砂型铸造、金属型铸造、石墨型铸造、陶瓷铸造;2.按充型方式来分:重力充型、高压充型、低压充型、离心力充型;3.按液态成形工艺方法的作用力不同又可分为两类:重力作用下的液态成形工艺方法:砂型铸造、金属型铸造、熔模铸造、气化模铸造、陶瓷型铸造等;外力作用下的液态成形工艺方法:离心铸造、压力铸造、低压铸造、挤压铸造等。

三 其铸造工艺如图所示四 铸造的特点1.能制成形状复杂、特别是具有复杂内腔的毛坯:如阀体、泵体、叶轮、螺旋浆等。

2.铸件的大小几乎不受限制,重量从几克到几百吨。

3.常用原材料来源广泛,价格低廉,成本较低,其应用及其广泛。

如机床、内燃机中铸件70~80%;农业机械40~70%。

4.但铸造生产过程较复杂,废品率一般较高,易出现浇不足,缩孔,夹渣、气孔、裂纹等缺陷。

五 铸造常见的主要问题组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。

基本工艺过程制作模样 配制型砂制作芯盒制作芯砂锻压:对坯料施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件或毛坯的成形加工方法。

主要方法:锻造:将坯料加热到高温状态后进行加工.冲压:将坯料在常温下进行加工.特点:(1)改善金属组织、提高力学性能(2)节约金属材料(3)较高的生产率(4)毛坯或零件的精度较高(5)不能加工脆性材料(6)不能获得形状复杂的毛坯或零件一自由锻:1.定义:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。

自由锻造时,除与上、下砧铁接触的金属部分受到约束外,金属坯料朝其它各个方向均能自由变形流动,不受外部的限制,故无法精确控制变形的发展。

铸造成形

铸造成形

• “砂型铸造” 时先将下半型放在平板上, 放砂箱、填型砂、紧实刮平,下型造完, 将造好的砂型翻转180度,放上半型,撒 分型剂,放上砂箱,填型砂并紧实、刮 平,将上砂箱翻转180度,分别取出上、 下半型,再将上型翻转180度和下型合好, 砂型造完,等待浇注。这套工艺俗称-“翻砂”。
清 铜螃蟹形
“铸造”俗称“翻砂”的 由来
四、熔模铸造(investment casting)
中国古代三大铸造技术
• 泥范铸造
• 失蜡铸造 • 金属型铸造
古青铜器主要制作法
青铜器的铸造,主要采用泥范铸造和失蜡铸造。 中国的青铜器铸造以泥范为主,并在近代兴起砂型 铸造之前的三千多年时间内,泥范分范合铸一直是 最主要的铸造成形方法,春秋中期以前几乎是唯一 的方法。这和美索不达米亚、埃及等地以失蜡铸造 为主的情况截然不问,是中国独有的技术道路。
接造出曲面分型面,代替挖砂造型,操作较简单。
应用:用于小批或成批生产,分型面不平的铸件。
刮板造型 特点:刮板形状和铸件截面相适应,代替实体模样,
可省去制摸的工序。
应用:单件小批生产,大、中型轮类、管类造型
特点:采用上、下、中三个砂箱,有两个分型面,铸件
的中间截面小,用两个砂箱时取不出模样,必须分模,操 作复杂。 应用:单件小批生产,适合于中间截面小,两端截面大 的铸件。 分型面 上砂箱 中砂箱 下砂箱 分型面
铸件名义尺寸的百分比。
5)铸造圆角 (curving of casting ) 定义:指设计铸件时,在璧间的连接和拐角处,应设
计处圆弧过渡,此圆弧称为铸造圆角。
作用:可避免热节形成;改善应力分布;避免砂型损
坏和产生砂眼。
凝固特性 热节、充型
确定浇铸位置和分型面

金属材料制备工艺

金属材料制备工艺

金属材料制备工艺一、引言金属材料是工业生产中应用广泛的材料之一,其制备工艺对材料的性能和质量具有重要影响。

本文将介绍金属材料制备的一般工艺流程及常见的制备方法。

二、金属材料制备工艺流程金属材料的制备工艺一般包括原料准备、熔炼、铸造、加热处理和成形等环节。

1. 原料准备金属材料的原料通常是金属矿石或金属化合物。

在原料准备环节,需要对原料进行选矿、破碎、粉碎等处理,以获得具备一定纯度和颗粒度的原料。

2. 熔炼熔炼是将金属原料加热至熔点并使其熔化的过程。

常用的熔炼方法包括电弧炉熔炼、电感炉熔炼、氩弧熔炼等。

通过熔炼,可以得到液态金属。

3. 铸造铸造是将熔融金属倒入预先准备好的铸型中,并使其冷却凝固,获得所需形状的金属制品。

铸造方法主要包括砂型铸造、金属型铸造、压铸等。

铸造工艺的选择与所需制品的形状、尺寸和性能要求密切相关。

4. 加热处理加热处理是指对铸件或其他金属制品进行加热和冷却处理,以改变其组织结构和性能。

常用的加热处理方法有退火、淬火、正火等。

加热处理可以提高金属制品的硬度、强度、耐磨性等性能。

5. 成形成形是通过机械加工或其他方法将金属材料加工成所需形状和尺寸的工艺。

常见的成形方法有锻造、轧制、拉伸、冲压等。

成形工艺可以进一步改善金属材料的性能,并满足不同应用的需求。

三、常见的金属材料制备方法除了一般的工艺流程外,金属材料的制备还有一些特殊的方法和技术。

1. 粉末冶金粉末冶金是指利用金属粉末作为原料,通过混合、压制和烧结等工艺制备金属制品的方法。

粉末冶金可以制备出具有特殊形状和复杂结构的金属制品,并具有较高的密度和机械性能。

2. 电化学方法电化学方法是利用电解池中的电流和电解质溶液对金属进行电解、沉积或溶解的方法。

通过电化学方法可以制备出具有高纯度、均匀性好的金属材料。

3. 薄膜制备薄膜制备是一种制备薄膜材料的方法,常用于制备金属薄膜、合金薄膜等。

常见的薄膜制备方法有物理气相沉积、化学气相沉积、溅射沉积等。

工程材料及成形工艺 第3版 第9章 铸造

工程材料及成形工艺 第3版 第9章 铸造
第9章 铸 造
9.1 铸造工艺基础 9.2 砂型铸造 9.3 铸造工艺 9.4 铸件的结构工艺性 9.5 特种铸造
9.1 铸造工艺基础
9.1.1 铸造概念
将液态合金浇注到与零件形状、尺寸相适应的
铸型空腔中,待其冷却凝固,以获得毛坯或零件的
生产方法称为铸造。
铸造的基本过程:
液态 金属
充型
凝固 收缩
铸件
哇,铸造真简单!!
与其它成型方法相比,铸造在机器制造业中应用极其广 泛。在机床、内燃机、重型机器中,铸件重量占70~90%;在 风机、压缩机中铸件重量占60~80%;在农业机械中铸件占 40~70%;在汽车中铸件占20~30%。
铸造具有如下优点:
1.适于复杂零件:适于用来生产复杂外形复杂内腔的 零件。
9.1.2 合金的铸造性能
1 合金的流动性
流动性是液态金属充满铸型型腔, 获得形状完整、轮廓清晰铸件的基本条 件。流动性好的合金,充型能力强,流 动性差的合金,充型能力差。如果金属 的流动性不足,则会在金属液还未充满 铸型前就停止了流动,使铸件产生浇注
不足或冷隔缺陷。
影响流动性的因素主要有: (1)合金的成分(2)浇注条件 (3)铸型条件 (4)铸件结构
机 器 造 型
过 程
水 管 接 头
下 型 的
3、砂芯制造
砂芯的主要作用是形成铸 件的内腔,有时也形成铸件的 局部外形。砂芯用芯盒制造。
刷涂料:提高耐高温性, 防止粘砂。
烘干:提高强度和透气性。
4、合 型
将上型、下型、砂芯 组合在一起的过程称为合 型,又称合箱。
合型工作包括: ①铸型的检查; 压铁 ②下芯; ③合上下型; ④上、下型的定位; ⑤铸型的紧固。

材料液态成形工艺

材料液态成形工艺

第一节 金属铸造工艺简介
2.收缩导致的铸件缺陷
(1)缩孔和缩松 铸件在凝固过程中,由于金属液态收缩和凝
固收缩造成的体积减小得不到液态金属的补充 ,在铸件最后凝固的部位形成孔洞。其中容积 较大而集中的称缩孔,细小而分散的称缩松。 缩孔和缩松的形成过程示意图分别见图7-6和 图7-7。使铸件的凝固按薄壁-厚壁-冒口的 顺序先后进行,让缩孔移入冒口中,从而获得 致密的铸件,如图7-8所示。
第一节 金属铸造工艺简介
(2)铸造应力、变形和裂纹
铸造应力按其形成原因的不同,分为热应力、 机械应力等。
减少铸造应力就应设法减少铸件冷却过程中各 部位的温差,使各部位收缩一致,如将浇口开在 薄壁处,在厚壁处安放冷铁,即采取同时凝固原 则,如图7-9所示。
铸造应力是导致铸件产生变形和开裂的根源。 图7-10为“T”形铸件在热应力作用下的变形情 况,虚线表示变形的方向。
,易产生浇不足、冷隔和粘砂等缺陷。铸钢的收缩性大 ,产生缩孔、缩松、裂纹等缺陷的倾向大 。
3.铸造有色金属 常用的有铸造铝合金、铸造铜合金等。它们大都具有
流动性好,收缩性大,容易吸气和氧化等特点,特别容 易产生气孔、夹渣缺陷。
六、新型材料-金属间化合物及其铸造性能 特点
第三节 砂型铸造
第三节 砂型铸造
根据造型材料不同,可将铸造方法分为砂型铸造 (Sand Casting Process) 和 特 种 铸 造 (Special Casting Process)两类。
图7-1所示为砂型铸造工艺过程示意图。
第一节 金属铸造工艺简介
第二节 铸造工艺基础知识
一、液态金属的充型能力
液态金属的充型能力(Mold Filling Capacity)是指液 态金属充满铸型型腔,获得形状完整、轮廓清晰铸件的能 力。

第二章 液态成型

第二章 液态成型

2.1.1 液态金属的充型能力
(1) 液态合金的充型能力与流动性
液态金属充型一般是纯液态下充满或边充 型边结晶 充型能力:液态合金充满铸型型腔,获得形状 完整,轮廓清晰铸件的能力。
衡量充型能力可用所能形成的铸件最小壁厚
不同金属和铸造方法铸造的铸件最小壁厚/mm
砂型 灰铸铁 铸钢 铝合金
3
金属型
>4
熔模
0.4~0.8
壳型
0.8~1.5
压铸
——
4
8~10
0.5~1
2.5
——
3
3~4
——
——
0.6~0.8
充型能力的好与差, 首先取决于铸 造合金的流动性;同时又受到外界条件, 如铸型性质、浇注条件、铸件结构等因 素的影响,是各种因素的综合反映。
流动性:液态铸造合金本身的流动
能力。 衡量流动性一般采用螺旋试样 长度
合金成分对流动行的影响
金属在结晶状态下流动
Fe-C合金流动性与状态图的关系
总的来说,流动性好的合金在多数 情况下其充型能力都较强;流动性差的 合金其充型能力较差。 但也可以通过改善其它条件来提高 充型能力(如提高熔炼质量、浇注温度 和浇注速度,改善铸型条件及铸件结构 等),以获得健全铸件。
(2) 影响合金充型能力的主要因素
铸造应力是热应力、相变应力和收缩应力 三者的矢量和。 在不同情况下,三种应力有时相互抵消, 时相互叠加;有时是临时的,有时是剩余的。 但在实际生产中,对于不同形状的铸件,其铸 造应力的大小分布是十分复杂的。
铸件中各种应力与产生部位的关 系
铸造应力对厚薄不均、截面不对称,细长杆、板及 轮类结构,当残余应力 >屈服强度,产生翘曲变 形。

材料成型原理与工艺(01)-液态金属成形概论

材料成型原理与工艺(01)-液态金属成形概论
对机械性能有一定影响,对材料的塑性、冲击韧性影响很大, 对机械性能有一定影响,对材料的塑性、冲击韧性影响很大, 尤其对材料的疲劳强度影响更严重。 尤其对材料的疲劳强度影响更严重。
夹杂物的排除: 夹杂物的排除:
金属液静止处理、真空浇注,加熔剂, 金属液静止处理、真空浇注,加熔剂,过滤法
2012-1-8
凝固区域
固相区、凝固区、液相区
凝固方式
逐层凝固方式 体积凝固(糊状凝固方式) 体积凝固(糊状凝固方式) 中间凝固方式
2012-1-8 22
如果合金的结晶温度范围很宽,且铸件的温度分布较 为平坦,则在凝固的某段时间内,铸件表面并不存在 固体层,而液、固并存的凝固区贯穿整个断面。由于 这种凝固方式与水泥类似,即先呈糊状而后固化,故 称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄 铜等都是糊状凝固的合金。 中间凝固方式 大多数合金的凝固介于逐层凝固和糊状 凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口 铸铁等具有中间凝固方式
气压保温浇包
15
采用德国KW公司技术的新二线主机,发动机缸体造型生产线。
罗兰门第制芯中心
2012-1-8 16
二、液态金属在铸型中的流动
1、 液态金属充型能力的基本概念 、
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力, 叫做液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属充填铸型一般是在纯液态下充满型腔的,也有边充型边结晶的 情况,在充型过程中当液态金属中形成晶粒堵塞充型通道时,流动则停 止,造成铸件“浇不足”缺陷。 液态金属的充型能力(实验-螺旋形试样):
2012-1-8
18
思考题 1 1. 液态金属成形的概念是什么?液态金属 液态金属成形的概念是什么? 成形具有哪些优点? 成形具有哪些优点? 2. 液态金属成形生产过程。 液态金属成形生产过程。

《材料成形工艺》课件

《材料成形工艺》课件
建筑领域
在建筑领域中,焊接工艺被用 于钢结构、钢筋混凝土结构的
连接和加固。
05
热处理工艺
热处理工艺的原理
热处理是通过加热、保温和冷却的方式改变金属材料的内部组织结构,以达到改善其力学性能、提高 耐腐蚀性和加工性的目的。
热处理过程中,金属材料内部的原子或分子的运动速度会随着温度的升高而加快,当温度达到一定的临 界点时,原子或分子的排列会发生改变,形成新的晶体结构。
焊接工艺的原理基于金属的热传导和热对流,以及液态金属的流动和结晶。
焊接工艺的种类
01
熔焊
将待焊接的金属加热至熔化状态,然后通过液态金属将两块金属连接在
ห้องสมุดไป่ตู้
一起。常见的熔焊方法有电弧焊、气焊等。
02
压焊
通过施加压力将两块金属连接在一起,常见的压焊方法有电阻焊、摩擦
焊等。
03
钎焊
利用熔点低于母材的钎料,将其加热至熔化状态,润湿并填满母材接头
模锻
将金属坯料放入模具中,在压力 作用下进行塑性变形,以获得所 需形状和尺寸的加工方法。
特种锻造
针对特殊要求或特殊材料,采用 特殊的工艺和工具进行塑性变形 的加工方法。
锻造工艺的应用
航空航天领域
由于对材料性能要求极高,锻造工艺广泛应用于航空航天领域的 各种零件制造,如发动机叶片、涡轮盘等。
汽车工业
热处理工艺的原理就是通过控制加热、保温和冷却三个阶段的时间和温度,使金属材料内部组织结构发 生变化,从而达到所需的性能要求。
热处理工艺的种类
第一季度
第二季度
第三季度
第四季度
退火
将金属材料加热到一定 温度后保温一段时间, 然后缓慢冷却至室温。 退火可以消除金属内部 的应力,提高其塑性和 韧性。

液态金属成型

液态金属成型

gx −
1 ∂P +ν ρ ∂x
∂ 2u ∂ 2u ∂ 2u ∂ u ∂u ∂u ∂u ∂ x2 + ∂ y2 + ∂ z2 = ∂t + u ∂x + v ∂y + w∂z
∂ 2v ∂ 2v ∂ 2v ∂ v 1 ∂P ∂v ∂v ∂v gy − +ν + + 2 = + u + v + w 2 2 ρ ∂y ∂x ∂y ∂z ∂y ∂z ∂t ∂x gz − 1 ∂P +ν ρ ∂z ∂ 2w ∂ 2w ∂ 2w ∂ w ∂w ∂w ∂w ∂ x2 + ∂ y2 + ∂ z2 = ∂t + u ∂x + v ∂y + w ∂z
五、实验报告 分析总结铝合金的熔炼处理工艺流程,比较精炼处理、 变质处理、 振动以及冷却条件对 铝合金组织及性能的影响。
实验二、液态成型过程 CAE 实验 一、基础理论 计算机辅助工程( Computer Aided Engineering,简称 CAE)技术是一门以 CAD/CAM 技术水平的提高为发展动力,以高性能计算机及图形显示设备的推出为发展条件,以计算 力学和传热学、 流体力学等的有限元、 有限差分、 边界元、 结构优化设计及模态分析等方法为 理论基础的新技术。目前液态成型 CAE 主要以铸件的温度场模拟和流动场模拟为主,软件 水平已经达到实用化,国内外均有商品化软件出现。国外主要有德国的 MagmaSoft、美国的 ProCAST、 Flow3D、 韩国的 AnyCAST 等,国内主要有华中科技大学的华铸 CAE、 清华的 FTStar、华北工学院的 CastSoft 等。 1)温度场模拟 温度场模拟主要是利用传热学原理,分析铸件的传热过程,模拟铸件的冷却凝固进程 ,

液态金属成型

液态金属成型

液态金属成型金属液态成型论文作者:刘永星摘要:金属液态成型又称为铸造,是将液态金属在重力或外力作用下充填到型腔中,待其冷却凝固后,获得所需形状和尺寸的毛坯或零件,即铸件的方法,它是成形毛坯或机器零件的重要方法之一。

工程材料除切削加工以外有各种成型方法,包括金属液态成型、金属塑性成形、材料连接成型、粉末冶金成型以及塑料、橡胶、陶瓷等非金属材料成型及复合材料成型等。

材料成型技术主要讲述金属材料成型和非金属材料成型,现对金属液态成型进行详细论述。

关键词:金属液态成型、成型方法、生产流程、成型原理、选择成型依据一、金属液态成形金属材料在液态下成形,具有很多优点:(1)最适合铸造形状复杂、特别是复杂内腔的铸件。

(2)适应性广,工艺灵活性大。

(3)成本较低。

但液态成形也有很多不足,如铸态组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能、特别是冲击性能低于塑形成行件;铸件涉及的工序很多,不易精确控制,铸件质量不稳定;由于目前仍以砂型铸造为主,自动化程度还不够高,工作环境较差;大多数铸件只是毛坯件,需经过切削加工才能成为零件。

砂型铸造是将熔融金属浇入砂质铸型中,待凝固冷却后,将铸型破坏,取出铸件的铸造方法,是应用最为广泛的传统铸造方法,它适用于各种形状、大小及各种常用合金铸件的生产。

砂型铸造的工艺过程称为造型。

造型是砂型铸造最基本的工序,通常分为手工造型和机器造型两大类。

手工造型时,填砂、紧实和起模都用手工和手动完成。

其优点是操作灵活、适应性强、工艺装备简单、生产准备时间短。

但生产效率低、劳动强度大、铸件质量不易保证。

故手工造型只适用于单件、小批量生产。

机器造型生产率很高,是手工造型的数十倍,制造出的铸件尺寸精度高、表面粗糙度小、加工余量小,同时工人劳动条件大为改善。

但机器造型需要造型机、模板以及特质砂箱等专用机器设备,一次性投资大,生产准备时间长,故适用于成批大量生产,且以中、小型铸件为主。

材料成型与工艺课后答案 1-3,1-4

材料成型与工艺课后答案  1-3,1-4

铸造工艺图:铸造工艺图是利用各种工 艺符号,把制造模样和铸型所需的资料, 直接绘在零件图上的图样。
它是制造模样和铸型,进行生产准备和铸件检验的依 据——基本工艺文件 收缩余量
工 浇注位置 艺 方 分型面的选择 案
工 加工余量 艺 参 起模斜度 数 铸造圆角 型芯及芯头
浇 组成及作用 注 常见类型 系 统 冒口
2)铸件的大平面应朝下,减少辐射,防开裂夹渣。
3)面积较大的薄壁部分应置于铸型下部或垂直、 倾斜位置。防止产生浇不足、冷隔。
4)易形成缩孔的铸件,较厚部分置于上部或 侧面。考虑安放冒口利于补缩。
5) 应尽量减少型芯的数量。
6)要便于安放型芯、固定和排气。
Back to page-4
浇注位置
较大的铸件,宜将内浇道
从铸件薄壁处引入,以利 铸件同时凝固,减少铸件 的内应力、变形,防止裂 纹产生。
二、浇注位置的选择-六点注意
浇注位置:浇注时铸件在铸型中所处的空间位置;浇 注位置对铸件质量及铸造工艺都有很大影响。选择时应考 虑如下原则:
选择原则:
1)铸件的重要加工面和受力面应朝下或位于侧面, 避免砂眼气孔和夹渣。
1)冒口就近设在铸件热节的上方或侧旁; 2) 冒口尽量设在铸件最高、最厚的部位,对低处的热节增设补 贴或使用冷铁。 3)冒口不应设在铸件重要的、受力大的部位,以防晶粒粗大降 低力学性能。 4)冒口位置不要选在铸造应力集中处,应注意减轻对铸件的收 缩阻碍,以免引起裂纹。 5)尽量用一个冒口同时补缩几个热节或铸件 6)冒口布置在加工面上,可借加工精整铸件表面,零件外观质 量好。 7)对不同高度上的多个冒口,应用冷铁使各个冒口的补缩范围 相隔开
起模斜度的大小根据立壁的高度、造型方法和模样材料来 确定:立壁愈高,斜度愈小;外壁斜度比内壁小;机器造型 的一般比手工造型的小;金属模斜度比木模小。具体数据可 查有关手册。一般外壁为3º ~ 15°,内壁为3°~10°。

铸造工艺基础知识及理论

铸造工艺基础知识及理论
金属液态成形(铸造)工艺
4
铸造材料
1
工艺基础 工艺性能
2
铸件生产
铸造工艺
3 工艺方法
1. 金属液态成形(铸造)工艺基础
什么是金属的液态成形:
将熔炼好的液态金属浇入与零件形 状相适应的铸型空腔中,待其冷却凝固, 以获得毛坯或零件的工艺方法,亦称铸造.
金属的液态成形的方法:
金属的液态成形是制造毛坯、零件的重要方法之一。按铸型材 料的不同,金属液态成形可分为砂型铸造和特种铸造(包括压力铸 造、金属型铸造等).其中砂型铸造是最基本的液态成形方法,所生 产的铸件要占铸件总量的80%以上.特种铸造较适用于大批量生产, 应用范围逐渐增加。

的 方
方法
合理布置内浇道及确定浇铸工艺。

合理应用冒口、冷铁和补贴等工艺措施。
3. 铸件的生产工艺
整模造型
分模造型
手工造型
砂型铸造
活块造型 三箱造型

挖砂造型

机器造型
刮板造型

铸造工艺图的绘制

砂型铸造的工艺设计
分型面的选择

工艺参数的确定 浇注位置的确定

金属型铸造
熔模铸造
压力铸造
特种铸造
低压铸造 陶瓷型铸造
内是由表及里的逐层凝固。在凝固过程中,如得不到合金液的 补充,在铸件最后凝固的地方就会产生缩孔.
2. 铸件的生产—缩松的形成 缩松的形成原因:
铸件最后凝固的收缩未能得到补充,或者结晶温度范围宽的 合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发 达,枝晶骨架将合金液分割开的小液体区难以得到补缩所致。
合金的收缩的过程:
合金从液态冷却至室温的过程中,其体积或尺寸缩减的 现象。合金的收缩给液态成形工艺带来许多困难,会造成许 多铸造缺陷。(如:缩孔、缩松、裂纹、变形等)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
二、基本工艺过程及其控制
2、凝固过程及其控制
凝固过程是铸件组织形成的核心阶段,是铸件获得机械 性能的必由之路。
疏松、缩孔、析出气孔、晶粒粗大等缺陷,都是在凝固 条件不利的情况下产生的。
冒口、冷铁是控制金属凝固的重要手段。
正确设计并使用冒口和冷铁,形成冶金质量良好、晶粒 组织合理的铸件,是凝固过程控制的目的。
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制 3). 冒口的应用 冒口应用情况的分析:
使用多个冒口的情况:
应用冷铁对冒口补缩范围进行 分区,各个冒口分别对铸件的 局部厚大位置进行补缩,避免 了冒口的互相补缩。
1、明冒口,2、暗冒口,3、冷铁
33
第一章 液态金属铸造成形工艺基础
3
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
二、基本工艺过程及其控制
★铸造的基本工艺过程:
熔化金属液


预先制备的铸型


铸件
4
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
二、基本工艺过程及其控制
充型过程的主要目的:使金属液充满铸型,从而实现对型腔形 状、尺寸以及表面的复制。
28
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
3). 冒口的应用
冒口的有效补缩距离:
冒口作用区与末端区长 度之和;
与合金种类、铸件结构、 几何形状以及温度梯度 相关,同时也与凝固时 气体的反压力和冒口的 补缩压力相关。
29
第一章 液态金属铸造成形工艺基础
2.1、金属凝固的工艺特点 5). 铸件中的偏析现象
由于凝固顺序的不同以 及固有的溶质排出效应, 将会在凝固组织中导致 成分差异;
成分差异与温度场条件 的耦合又将进一步影响 凝固组织。
枝晶间微观偏析
18
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.1、金属凝固的工艺特点
35
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
4). 冷铁的应用 冷铁:为增加铸件局部冷却速度,在型腔内部及工作表 面安放的激冷物。
冷铁
内冷铁 —— 置于型腔内,铸造完成后与铸件熔合为一体,多 用于黑色金属铸造。
外冷铁
直接外冷铁 ——直接暴露于型腔内壁并与铸件表面 接触,多见于有色合金铸造。
铸造的基本工艺过程是:充型过程 凝固过程
铸造的基本考核指标是:形状精确性
性能及其稳定性
2
液态金属铸造成形工艺
概述
第一章 液态金属铸造成形工艺基础
• 本章的重点内容
1、哪些基本工艺要素会对铸造考核指标产生影响? 2、哪些基本工艺过程会对铸造考核指标产生影响? 3、如何控制铸造成形的基本工艺要素? 4、如何控制铸造成形的基本工艺过程?
糊状凝固与体积收缩的 综合作用结果是产生分 散缩松。
根据缩松尺度的不同, 可将缩松分为宏观缩松 与微观缩松两种类别。
宏观缩松
14
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.1、金属凝固的工艺特点
3). 缩孔与缩松的形成
糊状凝固与体积收缩的 综合作用结果是产生分 散缩松。
冷铁、工艺补贴等配合使用,以形成更大的温度梯度和更
通畅的补缩通道。
27
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
3). 冒口的应用
冒口的有效补缩距离:
冒口作用区与末端区长 度之和;
与合金种类、铸件结构、 几何形状以及温度梯度 相关,同时也与凝固时 气体的反压力和冒口的 补缩压力相关。
间接外冷铁 ——表面覆盖10~15mm厚的砂层,不 直接与铸件表面接触,铸钢件时使 用,又称隔砂冷铁、暗冷铁。 36
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
4). 冷铁的应用
冷铁:
为增加铸件局部 冷却速度,在型 腔内部及工作表 面安放的激冷物。
7
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
8
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
9
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
10
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.1、金属凝固的工艺特点
1).合金的凝固方式:凝固区宽度受合金结晶温度间隔和 温度梯度的影响。
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
3). 冒口的应用
冒口应用情况的分析: 冒口与浇注系统的配合:
1、冷铁,2、出气孔,3、冒口, 4、横浇道,5、内浇道
冒口位置应与合金液引入位置 相配合,一种方案是安置在内 浇道上,使金属液通过冒口进 入型腔,这样流入型腔的金属 液对冒口有预热作用,同时冒 口在充型过程中还起一定的挡 渣作用。
根据缩松尺度的不同, 可将缩松分为宏观缩松 与微观缩松两种类别。
微观缩松
15
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.1、金属凝固的工艺特点 4). 凝固条件与凝固组织
不同凝固条件下将形成 不同的凝固组织。 基本控制参数:
•温度梯度 •凝固速度
16
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
凝固过程的主要目的:使不具备机械性能的液相转变为具备特 定机械性能的固相。
凝固的速度: 影响铸件内部的晶粒大小及形态,从而改变铸件的性能。
凝固的顺序: 凝固过程中通常伴随着体积的变化,适当的凝固顺序有助于 实现补缩。
凝固末期的温度场: 影响铸件内应力大小及分布,控制变形、裂纹的产生。
34
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制 3). 冒口的应用 冒口应用情况的分析:
不便清理的冒口设计
冒口与铸件清理:
冒口的安放应便于铸件 的清理、切割、打磨等 操作,冒口最好安置在 铸件的加工面上,冒口 切割后的残痕可在机械 加工时去掉。
37
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
4). 冷铁的应用 冷铁的材料:冷铁不一定是铁,甚至不一定是金属。
38
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
4). 冷铁的应用 冷铁的作用:
二、基本工艺过程及其控制
2、凝固过程及其控制
2.1、金属凝固的工艺特点
4). 凝固条件与凝固组织
由于铸件不同位置散 热条件的差异,往往 也形成不同的凝固组 织。
凝固组织的差异,也 必然导致不同的性能, 因而对铸件的质量产 生不同的影响。
17
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
对于易产生分散缩松的 合金,可形成体积凝固 条件。
21
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制
1). 凝固顺序的控制
可使用冒口及浇 注系统进一步强 化凝固顺序,将 集中缩孔外移到 铸件以外。
22
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
冒口与冷铁配合使 用,可延长冒口的 末端作用区长度, 强化冒口的补缩效 果。
31
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.2、金属凝固的工艺控制 3). 冒口的应用 强化冒口补缩效果的措施: 可以增加工艺余量以扩张补缩通道,强化冒口的补缩效果。
32
第一章 液态金属铸造成形工艺基础
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.1、金属凝固的工艺特点 3). 缩松与缩孔的形成 逐层凝固与体积收缩的综合作用结果是产生集中缩孔。
13
第一章 液态金属铸造成形工艺基础
二、基本工艺过程及其控制
2、凝固过程及其控制
2.1、金属凝固的工艺特点
3). 缩孔与缩松的形成
材料成形工艺
第一部分 液态金属铸造成形工艺
第一部分 液态金属铸造成形工艺
第一章 液态金属铸造成形工艺基础
1
液态金属铸造成形工艺
概述
第一章 液态金属铸造成形工艺基础
☺ 铸造:使熔融的金属液流入并凝固在预先制备的铸型中, 获得特定形状和性能的毛坯或零件(铸件)的方法或技术。
铸造的基本工艺要素是:熔融金属液 预先制备的铸型
(1)与浇注系统和冒口配合控制铸件凝固顺序 ➢ 铸件不具备顺序凝固条件时,形成特定凝固顺序; ➢ 铸件不具备适当的凝固顺序时,改变其凝固顺序; ➢ 增大凝固过程的温度梯度,强化凝固顺序; ➢ 加速局部厚大部位的凝固,使之与周围部分同时凝 固。
(2)加速铸件凝固,细化晶粒组织,提高力学性能。
39
第一章 液态金属铸造成形工艺基础
相关文档
最新文档