八年级数学思维导图

合集下载

八年级数学上册第七章思维导图

八年级数学上册第七章思维导图

如果一个句子没有对某一件事情做出任何判断,那么它就不是命题 由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论
平行线的证明
定义与命题 定义证明时,为了交流的方便必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给出他们的定义.
命题
判断一件事情的句子叫做命题 每个命题都由条件和结论两部分组成 正确的命题称为真命题
不正确的命题称为假命题
要说明一个命题是假命题,常常可以举出一个例子使它具备命题的条件,而不具有命题
的结论,这种例子称为,反例 其他
公认的真命题称为公理八大基本事实 1.两点确定一条直线
2.两点之间线段最短
3.同一平面内,过一点,有且只有一条直线与已知直线垂直
4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(同位角相等,两直线平行)
5.过直线外一点有且只有一条直线与这条直线平行
6.两边及其夹角分别相等的两个三角形全等
7.两角及其夹边分别相等的两个三角形全等
8.三边分别相等的两个三角形全等演绎推理的过程称为证明
经过证明的真命题称为定理 同角的补角相等
同角的余角相等
三角形的任意两边之和大于第三边
对顶角相等 平行线的性质与判定 定理 判定同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
性质 两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
平行与同一条直线的两条直线平行
三角形内角和定理 三角形的内角和等于180度
定理三角形的一个外角等于和它不相邻的两个内角的和
三角形的一个外角大于任何一个和它不相邻的内角。

八年级数学思维导图

八年级数学思维导图

八年级数学思维导图第十一章三角形本章介绍了三角形的概念及其相关性质。

三角形由三条边和三个顶点组成,可以用边、顶点或内角表示。

三角形的三边满足两边之和大于第三边的条件,同时有高、中线、角平分线等与三角形相关的线段。

三角形的内角和定理表明,三角形三个内角的和等于180°。

外角是指三角形内角的补角,三角形外角的性质也在本章中介绍。

此外,本章还涉及到多边形的相关概念及其内角和外角和的计算公式。

第十二章全等三角形本章介绍了全等三角形的概念及其相关性质。

全等三角形的对应边和对应角分别相等,有SSS、SAS、ASA、AAS等多种全等三角形的判定方法。

此外,本章还介绍了利用全等三角形解决实际问题的方法。

第十三章轴对称本章介绍了轴对称的概念及其性质。

轴对称是指平面上的一条直线,将图形沿着这条直线对称后,两边完全重合。

轴对称具有对称性和可逆性,轴对称的图形可以分为对称图形和非对称图形。

第十四章整式的乘法与因式分解本章介绍了整式的乘法与因式分解的方法。

整式是指只包含有理数、变量和加减乘幂运算的代数式,整式的乘法可以利用分配律和结合律进行展开。

因式分解是将一个整式分解为多个整式的乘积的过程,可以使用提公因式法、配方法、分组分解法等多种方法。

第十五章分式本章介绍了分式的概念及其相关性质。

分式是指形如a/b的表达式,其中a和b都是整式,b不为0.分式的化简、约分、通分、加减乘除等运算方法都在本章中介绍。

第十六章二次根式本章介绍了二次根式的概念及其相关性质。

二次根式是指形如√a的表达式,其中a是非负实数。

最简二次根式是指被开方数不含分母,分母中不含二次根式,并且被开方数中不含开得尽方的因数或因式的二次根式。

本章介绍了二次根式的乘法、除法、加减和混合运算的方法,以及二次根式的性质。

八年级数学思维导图

八年级数学思维导图

第十一章三角形
有关概念三角形的定义
三角形三边的关系两边之和大于第三边(指任意两边)
三条重要线段三角形的高三角形的中线
三角形内角和定理三角形的角平分线
三角形三个内角的和等于180°
三角形的外角及其性质三角形的外角
多边形的有关概念三角形外角的性质多边形内角、外角、对角线
多边形的内角和
凸多边形
正多边形
n 边形的内角和等于(n-2)x 180°
顶点、边、内角及其表示方法
多边形的外角和n 边形的外角和等于360°
第十二章全等三角形
全等三角形的对应边相等
第十三章轴对称
第十四章整式的乘法与因式分解
第十五章分式
第十六章二次根式
满足下列两个特点的二次根式,叫最简二次
根式.
1)被开方数不含分母,分母中不含二次
根式;
2)被开方数中不含开得尽方的因数或因
式. 定义:式子(a≥0)叫做二次根式
(a≥0)是一个非负数
最简二次根式(a≥0)
二次根式
二次根式性质
a≥0,b>0)
二次根式的
除法
(a≥0,b≥0)
二次根式
的混合运算运算
(a≥0,b>0)
二次根式的
加减
二次根式加减是,可以先将二次根式化成
最简二次根式,再合并同类二次根式
第十七章勾股定理
第十八章平行四边形
第十九章一次函数
第二十章数据的分析。

人教版 八年级上册数学 章节思维导图集 图片版

人教版 八年级上册数学 章节思维导图集 图片版

你现在的努力要对得起别人对你的好!
Math 实验室-1-人教版八年级数学上册章节思维导图
共5章
人教版八年级数学上册教材目录
第11章三角形的思维导图
11.1与三角形有关的线段
11.2与三角形有关的角
11.3多边形及其内角和
第12章全等三角形的思维导图
12.1全等三角形
12.2三角形全等的判定
12.3角的平分线的性质
第13章轴对称的思维导图
13.1轴对称
13.2画轴对称图形
13.3等腰三角形
13.4课题学习最短路径问题
第14章整式的乘法与因式分解的思维导图
14.1整式的乘法
14.2乘法公式
14.3因式分解
第15章分式的思维导图
15.1分式
15.2分式的运算
15.3
分式方程。

八年级上册数学第十一章思维导图河南版

八年级上册数学第十一章思维导图河南版
三角形
八年级上册数学第十一章思维导图河南版
有关概念
三角形的定义
顶点、边、内角及其表示方法
三角形三边的关系 两边之和大于第三边(指任意两边)
与三角形有关的线段

三角形的高
三条重要线段
三角形的中线
三角形的角平分线
三角形内角和定理 三角形三个内角的和等于 180°
与三角形有关的角
三角形的外角及其性质 三角形的外角
三角形外角的性质
多边形
多边形的有关概念 内角、外角、对角线
凸多边形
多边形及其内角和
正多边形
多边形的内角和
n 边形的内角和等于(n-2)x 180°
多边形的外角和
n 边形的外角和等于 360°

八年级上册数学人教版思维导图

八年级上册数学人教版思维导图

第十一章 三角形与三角形有关的线段与三角形有关的角多边形及其内角和相关概念三角形的定义三角形的分类三角形的三边关系①三条线段②不在同一直线上③首位顺次相接按角分类锐角三角形直角三角形钝角三角形按边分类三边都不相等的三角形等腰三角形底和腰不相等的等腰三角形等边三角形(特殊的等腰三角形)三角形两边的和大于第三边三角形两边的差小于第三边三角形的三条重要线段(高,中线,角平分线)相同点都是线段都有三条,且交于一点交点位置高线锐角三角形→三角形内部直角三角形→直角顶点钝角三角形→三角形外部 中线(交点叫做三角形的重心)角平分线位于三角形内部性质三角形的高线→直角三角形或90°的角 三角形的中线→所分的两个三角形面积相等(所分两个三角形等底同高)三角形的角平分线→相等的角或成2倍关系的角三角形的稳定性 三角形具有稳定性,而其他多边形都不具有稳定性 三角形内角和定理:三角形三个内角的和等于180° 三角形的外角:三角形的外角等于与它不相邻的两个内角的和直角三角形性质:直角三角形的两个锐角互余判定有一个角是直角的三角形是直角三角形有两个角互余的三角形是直角三角形 概念:在平面内,由一些线段首位顺次相接组成的封闭图形叫做多边形多边形的内角和多边形的外角和各条边都相等的多边形叫做正多边形边形的内角和等于正边形的每一个内角为多边形的外角和等于360°(与边数无关)正边形的每一个外角为多边形的对角线边形的对角线的条数为第十三章轴对称轴对称用坐标表示轴对称有关概念线段的垂直平分线轴对称图形的有关性质轴对称图形:把一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形成轴对称:把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称定义:经过线段中点并且垂直于这条线段的直线性质判定:与线段两个端点距离相等的点在这条线段的垂直平分线上对应线段相等,对应角相等对称轴垂直平分连接对应点的线段关于x轴对称的两个点的坐标特征:横坐标相等,纵坐标互为相反数关于y轴对称的两个点的坐标特征:横坐标互为相反数,纵坐标相等等腰三角形等腰三角形性质轴对称图形→有一条对称轴等边对等角→在同一个三角形中证明角相等三线合一顶角平分线底边上的高底边上的中线相互重合判定定义:两边相等等角对等边→也是证明线段相等的方法等边三角形性质轴对称图形→三条对称轴三线合一→三条三线合一的线三条边都相等三个内角都相等,并且每一个角都等于60°判定三条边相等的三角形→已知三边关系用此方法三个角都相等的三角形→已知三个内角的关系用此方法有一个角是60°的等腰三角形→已知两边相等时可找一个60°的角用此方法含30°角的直角三角形的性质:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半应用“已知一条直线及其同侧的两点,在直线上确定一点,使它到这两个已知点的距离之和最小”的问题,这类问题一般都是首先作出其中一个点关于直线的对称点,然后连接另一点和对称点,借助两点之间线段最短解决问题线段垂直平分线垂直且平分该线段线段垂直平分线上任意一点到该线段两端点的距离相等三角形三条边的垂直平分线相交于一点,这一点到三个顶点的距离相等与线段两个端点距离相等的点在这条线段的垂直平分线上第十四章整式的乘法与因式分解幂的运算法则同底数幂的乘法法则:都是正整数推广:均为正整数逆用:都是正整数幂的乘方法则:都是正整数推广:都是正整数逆用:都是正整数积的乘方法则:都是正整数推广:都是正整数)逆用:都是正整数同底数幂的除法法则:都是正整数并且推广:都是正整数并且逆用:都是正整数并且零指数幂整式的乘、除法法则单项式乘单项式单项式乘多项式多项式乘多项式单项式除以单项式多项式除以单项式乘法公式平方差公式完全平方公式添括号因式分解提取公因式公式法系数×系数→积的系数同底数幂×同底数幂→积的幂只在一个单项式里含有的字母→连同指数作为积的一个因式法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加公式表示:m(a+b-c)=ma+mb+m(-c)=ma+mb-m c法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加公式表示:(a+b)(m-n)=am+a(-n)+bm+b(-n)=a m-an+bm-bn被除式系数÷除式系数→商的系数被除式同底数幂÷除式同底数幂→商中的幂只在被除式里含有的字母→连同指数作为商的一个因式法则:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加公式表示:(am+bm-cm)÷m=am÷m+bm÷m+(-c m)÷m=a+b+(-c)=a+b-c括号前“+”→括到括号里的各项都不变符号括号前“-”→括到括号里的各项都改变符号m a+mb+mc→m(a+b+c)公因式的确定方法系数→多项式中各项系数的最大公因数字母→多项式中各项中都含有的相同字母相同字母的次数→多项式中各项中相同字母的最低次幂第十五章分式分式的有关概念分式的基本性质分式方程分式的运算分式的定义分式有意义的条件分式值为零的条件基本性质约分和通分分式的乘法分式的除法分式的乘方分式的加减分式的混合运算分式方程的定义分式方程的解法分式方程的应用一般地如果表示两个整式并且中含有字母那么式子叫做分式分式无意义→B=0分式有意义→B≠0A=0B≠0缺一不可分式的式子与分母乘(或除以)同一个不等于0的整式,分式的值不变式子表示其中是整式分式的通分→确定最简公分母分式的约分→确定分子和分母的公因式最简公分母的确定方法系数→各分母系数的最小公倍数字母→各分母中含有的所有字母相同字母的次数→各分母中相同字母的最高次幂不等于不等于法则:是正整数逆用是正整数)同分母相加减:异分母相加减:无括号:乘方→乘除→加减有括号:小括号→中括号→大括号结果为最简形式负整数指数幂科学记数法绝对值小于1的数→为原数第个不为零的数字前面所有零的个数包括小数点前面的零分母中含有未知数的方程是分式方程,判断一个方程是否为分式方程关键看分母中是否含有未知数去分母→方程两边同乘最简公分母,把分式方程化为整式方程解整式方程检验→将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解使原分式方程的解;否则,就是原分式方程的增根,原分式方程无解审→审清题意,弄清已知量和未知量找→找出等量关系设→设未知数列→列分式方程解→解这个方程验→既要检验所求的解使分式方程的解,又要检验求得的解是否符合实际意义答→写出答案。

八年级上册数学第十三章 轴对称思维导图 脑图

八年级上册数学第十三章 轴对称思维导图 脑图

第十三章轴对称轴对称定义如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形相关概念对称轴把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴对称点折叠后重合的点是对应点,叫做对称点正n边形有n条对称轴性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连连线段的垂直平分线轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线垂直平分线定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线性质线段垂直平分线上的点与这条线段两个端点的距离相等判定与线段两个端点距离相等的点在这条线段的垂直平分线上画轴对称图形轴对称图形特点轴对称得到图形与原图形的形状、大小完全相同新图形上的每一点,都是原图形上的某一点关于对称轴直线的对称点连接任意一对对应点所连线段被对称轴垂直平分做轴对称图形方法几何图形都可以看作由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形在平面直角坐标系中找对应的轴对称点关于x轴对称:横不变,纵相反(x轴x不变)关于y轴对称:横相反,纵不变(y轴y不变)关于原点对称:横纵坐标都互为相反数等腰三角形等腰三角形定义有两边相等的三角形是等腰三角形等腰三角形性质等边对等角:等腰三角形的两个底角相等三线合一:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合判定方法等角对等边如果一个三角形有两个角相等,那么这两个角所对的边也相等等边三角形定义三条边都相等的三角形叫做等边三角形性质等边三角形的三个内角都相等,并且每一个角都等于60°判定三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形轴对称图形,每条边都有三线合一含30°锐角的直角三角形性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半常见辅助线添法构造全等三角形(中线倍长,一线三等角,垂直)构造等腰三角形(三线中一线,平行线,截长补短,截边等构造60°)最短路径问题通过利用轴对称、平移等变化把已知问题转化为容易解决的问题从而作出最短路径的选择(异侧共线和最小,同侧共线差最大)★尺规作图过一点做已知直线的垂线作已知线段的垂直平分线作已知线段的中点作一种图形的轴对称图形作等腰三角形作最短路径。

2020人教版八上数学思维导图(史上最新最全)

2020人教版八上数学思维导图(史上最新最全)
人教版 8 年级上册思维导图(全)
整章内容预览,梳理知识脉络,学习记忆好帮手,复习补漏好工具 目录
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十一章 三角形
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十二章 全等三角形
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十三章 轴对称
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
第十四章 整式的公众号“数学资料库”,更多优质内容免费领。
第十五章 分式
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。
精心原创,谢绝盗图 关注公众号“数学资料库”,更多优质内容免费领。

初中数学八年级上册思维导图

初中数学八年级上册思维导图

初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。

正数a的平方根有两个,它们互为相反数,分别记作+√a 和√a。

0的平方根是0,负数没有平方根。

2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。

每个实数都有唯一的立方根。

3. 开方运算:开方运算是求一个数的平方根或立方根的运算。

对于正数a,开方运算可以表示为√a或³√a。

二、实数1. 实数的概念:实数包括有理数和无理数。

有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。

2. 实数的分类:实数可以分为正实数、负实数和0。

正实数是大于0的实数,负实数是小于0的实数,0既不是正实数也不是负实数。

3. 实数的运算:实数可以进行加法、减法、乘法和除法运算。

在运算过程中,需要遵循实数的运算规律,如交换律、结合律和分配律。

三、勾股定理1. 勾股定理的内容:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。

即a²+b²=c²,其中a、b是直角边,c是斜边。

2. 勾股定理的应用:勾股定理可以用来解决直角三角形中的边长问题,也可以用来解决一些与直角三角形相关的实际问题。

3. 勾股定理的证明:勾股定理的证明有多种方法,其中一种常见的证明方法是使用几何图形的面积关系。

四、一次函数1. 一次函数的概念:一次函数是指函数的图像是一条直线,其一般形式为y=kx+b,其中k是斜率,b是截距。

2. 一次函数的性质:一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。

3. 一次函数的应用:一次函数可以用来描述一些线性关系,如物体的速度与时间的关系、正比例关系等。

五、不等式1. 不等式的概念:不等式是表示两个数之间大小关系的数学表达式,如a>b、a<b、a≥b、a≤b等。

2. 不等式的性质:不等式可以进行加减、乘除运算,但在乘除运算中需要注意符号的变化。

八年级上册数学思维导图第一至五章

八年级上册数学思维导图第一至五章

八年级上册数学思维导图第一至五章
八年级上册数学思维导图第一至五章:
第一章《三角形》
三角形这章的主要考点有5个:(1)三角形三边的关系,主要能判断三条线段能否构成三角形,能求线段的取值范围或证明线段的不等关系;(2)三角形的高、角平分线和中线的应用;(3)有关三角形内角与外角的计算;(4)多边形的内角和与外角和;(5)数学思想的应用,这章主要有方程思想、分类讨论思想和化归思想的应用。

难点是数学思想的应用。

第二章《三角形全等》
全等三角形的主要考点主要有2个:(1)全等三角形的判定和性质;(2)角平分线的性质。

难点是三角形种常需要添加辅助线构造全等三角形。

第三章《轴对称》
本章考点有6个:(1)判断轴对称图形;(2)画轴对称图形;(3)坐标系内点的对称问题;(4)等腰三角形“三线合一”定理;(5)利用轴对称解决最短距离问题;(6)直角三角形中30度角性质。

这章的难点是解决最短距离问题,我们数学称为将军饮马数学模型,也就是建模思想的应用。

第四章《整式乘除与因式分解》
这章考点有5个:(1)幂的运算法则与逆运用;(2)整式乘除法运算;(3)乘法公式的应用;(4)0指数和负整指数幂;(5)因式分解。

本章难点是幂运算法则的逆运用和整体代换思想的运用。

第五章《分式及分式方程》
分式这章的考点有4个:(1)分式的化简求值;(2)解分式方程;(3)分式应用题。

这章的难点是分式应用题,在解题应用题我们要注意应用题的基本等量关系及每份量×份数=总量,若每份量和份数都未知,可以确定为分数应用题;易错点是分式化简求值时,代入的值要保证原分式的分母和除数都不为零,解分式方程要记得验根。

初中数学八年级上册思维导图

初中数学八年级上册思维导图

初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。

正数a的平方根有两个,它们互为相反数,分别记作√a和√a。

0的平方根是0。

2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。

立方根只有一个。

3. 算术平方根:正数a的正的平方根,记作√a,称为a的算术平方根。

4. 立方根的性质:①正数的立方根是正数;②负数的立方根是负数;③0的立方根是0。

二、实数1. 实数的概念:实数包括有理数和无理数。

有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。

2. 实数的分类:①正实数;②负实数;③零。

3. 实数的运算:实数的加减乘除运算与有理数的运算类似,但需要注意无理数的运算。

三、二次根式1. 二次根式的概念:形如√a的式子,其中a≥0,称为二次根式。

2. 二次根式的性质:①√a²=a(a≥0);②(√a)²=a(a≥0);③√ab=√a√b(a≥0,b≥0);④√a²+b²=√a²+√b²(a≥0,b≥0)。

3. 二次根式的运算:二次根式的加减乘除运算与有理数的运算类似,但需要注意无理数的运算。

四、一元二次方程1. 一元二次方程的概念:形如ax²+bx+c=0(a≠0)的方程,称为一元二次方程。

2. 一元二次方程的解法:①配方法;②求根公式法;③因式分解法。

3. 一元二次方程的根的判别式:判别式△=b²4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。

五、不等式1. 不等式的概念:表示不相等关系的式子称为不等式。

2. 不等式的性质:①两边同时加上或减去同一个数,不等号方向不变;②两边同时乘以或除以同一个正数,不等号方向不变;③两边同时乘以或除以同一个负数,不等号方向改变。

数学八年级上册第一章思维导图

数学八年级上册第一章思维导图

数学八年级上册第一章思维导图
勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

同时勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中相似比为1:1的特殊情况)。

当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此:全等三角形的对应边相等,对应角相等。

以下是思维导图:
全等三角形的判定定理:
⑴边边边:三边对应相等的两个三角形全等。

⑵边角边:两边和它们的夹角对应相等的两个三角形全等。

⑶角边角:两角和它们的夹边对应相等的两个三角形全等。

⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等
1、其中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测相等的距离。

以及相等的角,可以用于工业和军事。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关概念三角形的定义
第十二章全等三角形
全等三角形的对应边相等
第十三章轴对称
第十四章整式的乘法与因式分解第十五章分式
第十六章二次根式
二次根式
定义:式子(a ≥0)叫做二次根式
(a ≥0)是一个非负数
(a ≥0)
运算二次根式的乘法二次根式的除法
二次根式的混合运算二次根式的加减
二次根式加减是,可以先将二次根式化成最简二次根式,再合并同类二次根式
满足下列两个特点的二次根式,叫最简二次根式.
(1)被开方数不含分母,分母
中不含二次根式;
(2)被开方数中不含开得尽方
的因数或因式.
最简二次根式
性质
(a ≥0,b ≥0)(a ≥0,b >0)
(a ≥0,b >0)
第十七章 勾股定理
第十八章平行四边形第十九章一次函数
第二十章数据的分析。

相关文档
最新文档