(完整word版)全等三角形判定SAS专题练习

合集下载

专题06三角形全等的判定之SAS重难点专练(原卷版)

专题06三角形全等的判定之SAS重难点专练(原卷版)

学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·浙江九年级专题练习)如图,在△ABC 中,AB =AC ,BD =CF ,BE =CD ,若∠A =40°,则∠EDF 的度数为()A .75°B .70°C .65°D .60°2.(2021·浙江八年级期末)如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是()A .SASB .AASC .SSSD .ASA3.(2021·浙江宁波市·八年级期末)如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是()A .(B .0,2x ⎛⎫⎪⎝⎭C .()0,3D .x ⎛⎫ ⎪ ⎪⎝⎭四边形EFGH 的面积最大值为()A .4a b +B .2()4a b +C .2()8a b +D .2ab b -5.(2021·浙江九年级二模)如图,PA 和PB 是O 的两条切线,A ,B 为切点,点D 在AB 上,点E ,F 分别在线段PA 和PB 上,且AD BF =,BD AE =.若P α∠=,则EDF ∠的度数为()A .90α︒-B .32αC .1902α︒-D .2α6.(2021·浙江九年级一模)如图,四边形ABCD 和DEFG 均为正方形,点E 在对角线AC 上,点F 在边BC 上,连结CG 和EG .若知道正方形ABCD 和DEFG 的面积,则一定能求出()A .四边形ABFE 的周长B .四边形ECGD 的周长C .四边形AEGD 的周长D .四边形ACGD 的周长7.(2021·浙江八年级期末)如图,在ABCD 中,E F 、分别是AD BC 、边的中点,G H 、是对角线BD 上的两点,且BG DH =.有下列结论:①GF BD ⊥;②GF EH =;③四边形EGFH 是平行四边形;④EG FH =.则正确的个数为()A .1个B .2个C .3个D .4个8.(2021·浙江八年级期末)如图,四边形ABCD 是菱形,点E 、F 分别在边BC 、CD 上,且BE =DF ,AB =AE ,若∠EAF =75°,则∠C 的度数为()A .85°B .90°C .95°D .105°9.(2021·浙江湖州市·八年级期末)如图,已知ABCD ,以点A 为圆心,AD 长为半径画弧,交AB 于点E ;再分别以点D 、E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,画射线AF ,与DC 交于点G .若90AGB ∠=︒,10CG =,则AB 的长为()A .2532B .123C .20D .1510.(【新东方】初中数学1228初二上)如图,在ABC 中,AB AC =,54BAC ∠=︒,BAC ∠平分线与AB 的垂直平分线交于点O ,将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,有如下五个结论:①AO BC ⊥;②OD OE =;③OEF 是等边三角形;④OEF CEF ≌;⑤54OEF ∠=︒.则上列说法中正确的个数是()11.(【新东方】初中数学1242初二上)如图,等腰Rt ABC 中,90BAC AD BC ∠=︒⊥,于D ,ABC ∠的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM MC 、下列结论:①DF DN =;②ABE MBN ≌;③ CMN 是等腰三角形;④AE CN =,其中正确的是()A .①②B .①④C .①③D .②③12.(【新东方】初中数学1223初三上)如图,在菱形ABCD 中,6,60,AB DAB AE =∠=︒分别交于BC 、BD 于点,2E F CE =、,连接CF ,以下结论:①ABF CBF ≌;②点E到AB 的距离是an t DCF ∠=;④ABF 的有几个()A .①B .①②C .①②③D .①②③④13.(2021·浙江八年级期末)如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,AE 与BF 相交于点G ,连接AC 交BF 于点H .若CE =DF ,BG =GH ,AB =2,则△CFH 的面积为()A .4B .3﹣C .53D .6二、填空题15.(2021·浙江八年级期中)如图,在正方形ABCD 中,4AB =,点E ,F 分别在CD ,AD 上,CE DF =,BE ,CF 相交于点G ,若图中阴影部分的面积与正方形ABCD 的面积之比为3:4,则BCG 的周长为________.16.(2021·浙江杭州市·八年级期中)如图,在正方形ABCD 中,3AB =,点E ,F 分别在,CD AD 上,CE DF =,BE ,CE 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则四边形GEDF 的面积为_______;BCG 的周长为______.17.(【新东方】初中数学20210625-006【初二上】)如图,在ABC 中,,100AB AC BAC =∠=︒,点D 在BC 边上,ABD AFD 、关于直线,AD 对称,FAC ∠的角平分线交BC 边于点G 、连接FG BAD θ∠=、,当θ的值等于_______时,DFG 为等腰三角形.点D ,E 为BC 边上的两点,且45DAE ∠=︒,连接EF ,BF ,则下列结论正确的是________.①AED AEF ≌△△;②AED 为等腰三角形;③BE DC DE +>;④222BE DC DE +=.19.(【新东方】初中数学1234初二上)如图,在等边ABC 中,点D ,E 分别在边BC ,AB 上,且BD AE =,AD 与CE 交于点F ,作CM AD ⊥,垂足为M ,下列结论正确的有________.①AD CE =;②BEC CDA ∠=∠;③120AFC ∠=︒;④12MF CF =;⑤AM CM =.20.(2021·台州市书生中学八年级月考)如图,正方形ABCD 的边长为2,M 是BC 的中点,N 是AM 上的动点,过点N 作EF ⊥AM 分别交AB ,CD 于点E ,F .(1)AM 的长为_____;(2)EM +AF 的最小值为_____.21.(【新东方】【2021.5.19】【JH 】【初二下】【数学】【JH0027】)如图,四边形ABCD 是M 为对角线BD (不含B 点)上任意一点.(1)AM CM +的最小值是______.(2)AM BM CM ++的最小值是________.三、解答题22.(2021·杭州市采荷中学九年级三模)如图,已知:在ABC ∆中,90BAC ︒∠=,延长BA 到点D ,使12AD AB =,点E ,F 分别是边BC ,AC 的中点.求证:DF BE =.23.(2020·重庆八年级月考)如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.24.(2021·浙江九年级月考)图1,图2都是由边长为1的小等边三角形构成的网格,△ABC 为格点三角形.请仅用无刻度直尺在网格中完成下列画图.(1)在图1中,画出△ABC 中AB 边上的中线CM ;(2)在图2中,画出∠APC ,使∠APC =∠ABC ,且点P 是格点(画出一个即可).25.(2021·浙江)已知:如图,E F 、是平行四边形ABCD 的对角线AC 上的两点,AE CF =.求证:(1)ADF CBE △≌△;(2)//EB DF .26.(2021·浙江九年级期中)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=︒,把ADN △绕点A 顺时针旋转90︒得到ABE △.(1)求证:AEM △≌ANM .(2)若3BM =,2DN =,求正方形ABCD 的边长.27.(2021·浙江九年级期末)[教材呈现]如图是华师版八年级上册数学教材第69页的部分内容.[方法运用]在 ABC 中,AB =4,AC =2,点D 在边AC 上.(1)如图①,当点D 是边BC 中点时,AD 的取值范围是.(2)如图②,若BD :DC =1:2,求AD 的取值范围.[拓展提升](3)如图③,在 ABC 中,点D 、F 分别在边BC 、AB 上,线段AD 、CF 相交于点E ,且BD :DC =1:2,AE :ED =3:5.若 ACF 的面积为2,则 ABC 的面积为.28.(2021·浙江杭州市·八年级期末)如图,在△ABC 中,AB=AC ,∠BAC=90°,BC=12厘米.过点C 作直线l BC ⊥,动点P 从点C 开始沿射线CB 方向以2厘米/秒的速度运动,动点Q 也同时从点C 出发在直线l 上以1厘米/秒的速度向上或向下运动.连接AP 、AQ ,设运动时间为t 秒.(1)请写出CP 、CQ 的长度(用含t 的代数式表示):CP=厘米,CQ=厘米;(2)当点P 在边BC 上时,若△ABP 的面积为24厘米2,求t 的值;(3)当t 为多少时,△ABP 与△ACQ 全等?29.(2021·浙江杭州市·九年级二模)如图,AB 是O 的直径,C 是O 上的一点,过点B 作O 的切线BF ,过圆心O 作AC 的平行线交直线BF 于点F ,交O 于点E ,交BC 于点D ,连接CF .(1)判断CF 与O 的位置关系,并证明结论;(2)若四边形ACFO 是平行四边形,求DEOD 的值;(3)若ACB △运动后能与OFB △重合,则DEOD=______,请说明图形的运动过程.30.(2021·浙江湖州市·八年级期末)如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.31.(2021·浙江杭州市·八年级期中)如图,点A ,D ,B ,E 依次在同一条直线上,BC DF =,AD BE =,ABC EDF ∠=∠,求证:A E ∠=∠.32.(2021·浙江杭州市·八年级期末)如图,在AOB 和COD △中,OA OB =,OC OD =,若60AOB COD ∠=∠=︒,(1)求证:AC BD =.(2)求APB ∠的度数.33.(2021·浙江宁波市·八年级期末)如图1,ABC 是等边三角形,,D E 为AC 上两点,且AD CE =,延长BC 至点F ,使CF CD =,连结BD EF ,.(1)如图2,当,D E 两点重合时,求证:BD DF =.(2)如图3,延长FE 交线段BD 于点G .①求证:BD EF =.②求DGE ∠的度数.34.(2021·浙江八年级期末)如图,在ABC 中,AB AC =,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,BD CE =.(1)求证:DEF 是等腰三角形;(2)当40A ∠=︒时,求DEF ∠的度数.35.(2021·浙江八年级期末)如图,AB AC =,AD AE =,BAD CAE ∠=∠,求证:D E ∠=∠.36.(2021·杭州育才中学九年级二模)如图,点O 为正方形ABCD 的中心.DE =AG ,连结EG ,过点O 作OF 丄EG 交AD 于点F .(1)连结E F ,△EDF '的周长与AD 的长有怎样的数量关系,并证明;(2)连结OE ,求∠EOF 的度数;(3)若AF :CE =m ,OF :OE =n ,求证:m =n 2.(1)判断BD 与CE 的数量关系,并证明你的结论;(2)若AB =AD =4,∠BAC =120°,∠CAD =30°.求BD 的长.38.(【新东方】【2021.4.21】【绍兴】【初二下】【数学】【00026】)平面上有ACD △与,BCE AD 与BE 相交于点,P AC 与BE 相交于点,M AD 与CE 相交于点N ,若,,AC BC CD CE ECD ACB ==∠=∠.(1)求证:≌ACD BCE V V ;(2)55,145ACE BCD ∠=︒∠=︒,求BPD ∠的度数.39.(2021·浙江九年级其他模拟)如图,在ABC 中,AB AC =,点D ,E 在BC 上()BD BE <,BD CE =.(1)求证:ABD △≌ACE .(2)若2ADE B ∠=∠,2BD =,求AE 的长.40.(【新东方】【2021.5.19】【JH 】【初二下】【数学】【JH0026】)如图,在一正方形ABCD 中,E 为对角线AC 上一点,连接EB 、ED .△≌△.(1)求证:BEC DEC(2)延长BE交AD于点F,若FD FE∠的度数.=.求AFE41.(2021·浙江温州市·九年级三模)如图,在五边形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线.(1)求证:△ABE≌△DCE;(2)当∠A=80°,∠ABC=140°时,求∠AED的度数.42.(2021·浙江八年级期末)如图,在▱ABCD中,点E、F为对角线BD的三等分点,连结AE,CF,AF,CE.(1)求证:四边形AECF为平行四边形;(2)若四边形AECF为菱形,且AE=BE,求∠BAD的度数.43.(2021·浙江八年级期末)如图1,在正方形ABCD中,点P是对角线BD上的一点,连结CP.△≌△;(1)求证:ADP CDP(2)如图2,延长AP交线段DC于点Q,交BC的延长线于点G,点M是GQ的中点,⊥;连结CM.求证:PC MC(3)如图3,延长AP交射线DC于点Q,交BC于点G,点M是GQ的中点,连结CM.若PM=,302∠=︒.求AB的长.BAP44.(【新东方】初中数学1234初二上)如图,在ABC 中,5cm AB AC ==,6cm BC =,BD AC ⊥交AC 于点D .动点P 从点C 出发,按C A B C →→→的路径运动,且速度为2cm/s ,设出发时间为t 秒.(1)求BD 和AD 的长;(2)当 3.2t =秒时,求证:CP AB ⊥;(3)当点P 在BC 边上运动时,若CDP 是以CP 为腰的等腰三角形,请你求出所有满足条件的t 的值.45.(【新东方】初中数学1305【初二上】)如图1,ACB △和ECD 都是等腰直角三角形,,,CA CB CE CD ACB == 的顶点A 在ECD 的斜边DE 上.(1)证明ECA DAB ∠=∠;(2)猜想,,AE AB AD 之间的数量关系,并证明;(3)如图2,若4,80AE AC ==,点F 是AD 的中点,求CF 的长.46.(2021·浙江九年级专题练习)如图1,等边△ABC 边长为8,AD 是△ABC 的中线,P 为线段AD (不包括端点A 、D )上一动点,以CP 为一边且在CP 下方作如图所示的等边△CPE ,连结BE .(1)点P 在运动过程中,线段BE 与AP 始终相等吗?说说你的理由(2)若延长BE 至F ,使得CF=CE=5,如图2,①求出此时AP 的长;②当点P 在线段AD 的延长线上,点F 在射线BE 上时,判断EF 的长是否为定值,若是请直接写出EF 的长;若不是请简单说明理由.47.(【新东方】【2021.5.19】【JH 】【初二下】【数学】【JH0029】)如图1,在ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,以EC ,CF 为邻边作ECFG .(1)求证:ECFG 是菱形.(2)如图2,若90ABC ∠=︒,8AB =,12AD =,M 是EF 的中点,求DM 的长.(3)如图3,若120ABC ∠=︒,连接BD ,BG ,CG ,DG ,求BDG ∠的度数.48.(2021·浙江九年级一模)如图,在四边形ABCD 中,//AD BC ,2BA AD DC ===,45ABC ∠=︒,E 是BC 边上一动点,连结AE ,将AE 绕点A 逆时针旋转135°到AF ,连结EF 与AD 交于点G ,连结DE ,DF ,设BE 的长为x .(1)求证:ABE ADF ≌.(2)若DEF 的面积为y ,求y 关于x 的函数表达式,并求y 的最大值.(3)当FGD 是等腰三角形时,求x 的值.49.(【新东方】初中数学20210625-002【初二上】)如图,ACB △和DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接,BE CM 为DCE 中DE 边上的高,BN 为ABE △中AE 边上的高,若120ACB DCE ∠=∠=︒,且1CM =,2BN =.(1)求证:≌ACD BCE V V .(2)求AEB ∠的度数.(3)求AE 的长.50.(2020·浙江绍兴市·八年级其他模拟)如图1,ABC 是边长为4cm 的等边三角形,边AB 在射线OM 上,6cm OA =,另一个等边CDE △的顶点D 从O 点出发,沿OM 的方向以1cm/s 的速度运动,在运动过程中CDE △的形状始终保持不变,且点D 不与点A 重合.设运动时间为()s t .(1)求证:CDA CEB ≌;(2)如图2,当610t <<时,BDE 的周长是否存在最小值?若存在,求出BDE 的最小周长:若不存在,请说明理由;(3)如图3,当点D 在射线OM 上运动时,是否存在以D 、E 、B 为顶点的三角形是直角三角形?若存在,求出此时t 的值:若不存在,请说明理由.51.(2021·浙江八年级期末)在正方形ABCD 中,点E 、F 分别是边AD 和DC 上一点,且DE =DF ,连结CE 和AF ,点G 是射线CB 上一点,连结EG ,满足EG =EC ,AF 交EG 于点M ,交EC 于点N .(3)是否存在实数m,当AM=mAF时,BC=3BG?若存在,请求出m的值;若不存在,请说明理由.。

三角形全等的判定二SAS(分层作业)(解析版)docx

 三角形全等的判定二SAS(分层作业)(解析版)docx

12.2.2三角形全等的判定㈡SAS夯实基础篇一、单选题:1.如图,AC与BD相交于点P,AP=DP,则需要“SAS”证明△APB≌△DPC,还需添加的条件是()A.BA=CD B.PB=PC C.∠A=∠D D.∠APB=∠DPC【答案】B【知识点】三角形全等的判定(SAS)【解析】【解答】在△APB和△DP C中,当AP DPAPB DPCPB PC时,△APB≌△DPC,∴则需要“SAS”证明△APB≌△DPC,还需添加的条件是PB=PC,故答案为:B【分析】根据有两边及夹角对应相等的两个三角形全等可得还需添加的条件是PB=PC。

2.如图,下列三角形中全等的是()A.①②B.②③C.③④D.①④【答案】A【知识点】三角形全等的判定(SAS )【解析】【解答】解:根据“SAS ”可判断图①的三角形与图②的三角形全等.②③,③④,①④均不符合题意,故答案为:A.【分析】观察各选项图形中已知的边长和角度,用“两边及夹角对应相等的两个三角形全等”可判断求解.3.如图,将两根钢条AA ,BB 的中点O 连在一起,使AA ,BB 可绕点O 自由转动,就做成了一个测量工件,则A B 的长等于内槽宽AB ,那么判定OAB OA B ≌的理由是()A .边角边B .角边角C .边边边D .角角边【答案】A 【知识点】三角形全等的判定(SAS )【解析】【解答】由已知OA OA OB OB,∵AOB A OB∴OAB OA B ≌(SAS )故答案为:A .【分析】根据题意可得:OA OA OB OB ,,结合对顶角相等,可利用“SAS ”证明OAB OA B ≌。

4.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为()A .50°B .65°C .70°D .80°【答案】A 【知识点】三角形的外角性质;三角形全等的判定(SAS )【解析】【解答】根据题意ABE ACD (SAS ),∴30B C∵DME B BDC ,BDC C A∴307030130DME B A C∴180********BMD DME故答案为:A .【分析】利用“SAS ”证出三角形全等,得到30B C ,再利用三角形的外角得到∠BDM =∠A +∠C ,再利用三角形的内角和求解即可。

全等三角形SAS练习题(基础).docx

全等三角形SAS练习题(基础).docx

1、已知: 如图 , B A AB, C A AC, A B = AB, A C = AC.
求证:△ ABC≌△ AB’C‘
4、已知:如图 , AB=DC ,AD=BC ,∠DAB=∠BCD,求证:△ ABD≌△ CDB
第1 题
第 4 题
2、已知 : 如图 , △ABC中 , 点 E、 F分别在 AB、 AC边上 , 点 D是 BC边中点 , 且
DF∥AB,BE=DF.求证 :△BED≌△ DFC
5、已知 : 如图 ,AB=AC,AE平分∠ BAC.求证 : ∠ DBE=∠ DCE.
第2 题
第 5 题
3、已知 : 如图 ,AC=AB,AE=AD,∠1=∠2. 求证 : ∠ 3=∠4
6、已知:如图,AB=CD , AE=DF , AB∥CD.D、E、F、A在同一条直线上。

第 3 题求证:△ ABE≌△ DCF
9、已知 : 如图 , AC=DF,AC∥ FD,AB=DE,求证 : △ABC≌△ DEF
7、已知 : 如图 , ∠1=∠2,BD=CD,求证 :AD是∠ BAC的平分线.第9题
10、已知 : 如图 , 点B,E,C,F 在同一直线上 ,AB∥DE,且AB=DE,BE=CF.
求证 :AC∥DF
第7 题
第 10 题8、已知 : 如图 ,AD是 BC上的中线 , 且DF=DE.求证 :BE∥ CF.
11、已知:如图,四边形ABCD中, AB∥ CD , AD∥ BC.求证:△ ABD≌△ CDB
第8 题
第11 题
12、如图,点C是 AB中点, CD∥BE,且 CD=BE,试探究A D与 CE的关系。

A
C D
E
B
第 12 题。

(完整word版)全等三角形判定SAS专题练习

(完整word版)全等三角形判定SAS专题练习

全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD第1题2.能判定△ABC≌△A′B′C ′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠CB.B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.第4题第3题4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。

5.如图,AD=BC ,要根据“SAS”判定△ABD ≌△BAC ,则还需添加的条件是6.如图,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解:∵AD 平分∠BAC ,∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵∴△ABD ≌△ACD ( )7.如图,AC 与BD 相交于点O ,已知OA=OC ,OB=OD , 求证:△AOB ≌△COD证明:在△AOB 和△COD 中∵∴△AOB ≌△COD( )第6题 第7题 第5题8.已知:如图,AB=CB,∠1=∠2 △ABD 和△CBD 全等吗?9.已知:如图,AB=AC,AD=AE ,∠1 =∠2 。

试说明:△ABD ≌△ACE 。

10.已知:如图,△ABC中, AD⊥BC 于D,AD=BD, DC=DE,∠C=50°。

求∠ EBD的度数。

11.2 全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.4、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD 上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.12.2 全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDA4、如图4,AB与CD交于点O,OA=OC,OD=OB,∠AOD=________,•根据_________可得到△AOD ≌△COB,从而可以得到AD=_________.C B A5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC ,∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________,∴△ABD ≌△ACD ( )6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC和△DEF中,B、E、F、C,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.9、如图⑴,AB⊥BD,DE⊥BD,点C是BD上一点,且BC=DE,CD=AB.⑴试判断AC与CE的位置关系,并说明理由.⑵如图⑵,若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第⑴问中AC与BE 的位置关系还成立吗?(注意字母的变化)。

八年级数学9-全等三角形的判定(二)SAS(含答案)070633

八年级数学9-全等三角形的判定(二)SAS(含答案)070633

八年级数学9-全等三角形的判定(二)SAS 试卷考试总分:21 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )1. 下列句子中,不能判定两个三角形全等的是( )A.两条直角边对应相等的两个直角三角形B.一顶角和一底角对应相等的两个等腰三角形C.斜边和一条直角边对应相等的两个直角三角形D.一腰和底边对应相等的两个等腰三角形2. 如图,若,则添加下列一个条件后,仍无法判定的是( )A.B.C.D.二、 填空题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )3. 如图所示,,,,,,则________.4. 如图,在正方形中,,为上一动点,交于,过作于,过作于,下列有四个结论:①,②,③,④的周长为定值,其中正确的结论有________(填序号)三、 解答题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )5. 如图,已知:中,,,,分别是,,的中点.AB =AD △ABC ≅△ADC CB =CD∠BCA =∠DCA∠BAC =∠DAC∠B =∠D =90∘AB =AC AD =AE ∠BAC =∠DAE ∠1=20∘∠2=35∘∠3=ABCD AB =4E CD AE BD F F FH ⊥AE F H GH ⊥BD G AF =FH FG =HG+FD ∠HEA =67.5∘△CEH △ABC AB =AC M D E BC AB AC求证:;若,求的长.6. 在如图所示的三角形纸片中,,把沿折叠,当点落在四边形内部的点处时,求的度数.7. 已知,如图,,,垂足分别是点,,且,.求证:,.(1)MD =ME (2)MD =4AC ABC ∠A =40∘△ABC DE A BCDE A ′∠1+∠2BE ⊥AC DF ⊥AC E F AF =CE BE =DF AB =CD AB//CD参考答案与试题解析八年级数学9-全等三角形的判定(二)SAS 试卷一、 选择题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )1.【答案】B【考点】全等三角形的判定【解析】此题暂无解析【解答】解:符合判定定理,故错误;无法判定两个三角形全等,故正确;符合判定定理,故错误;符合判定定理,故错误.故选.2.【答案】B【考点】全等三角形的判定【解析】本题要判定,已知,是公共边,具备了两组边对应相等,故添加、、后可分别根据、、能判定,而添加后则不能.【解答】解:、添加,根据,能判定,故选项不符合题意;、添加时,不能判定,故选项符合题意;、添加,根据,能判定,故选项不符合题意;、添加,根据,能判定,故选项不符合题意.故选.二、 填空题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )3.【答案】【考点】全等三角形的性质【解析】A SASBC HLD SSS B △ABC ≅△ADC AB =AD AC CB =CD ∠BAC =∠DAC ∠B =∠D =90∘SSS SAS HL △ABC ≅△ADC ∠BCA =∠DCA A CB =CD SSS △ABC ≅△ADC A B ∠BCA =∠DCA △ABC ≅△ADC B C ∠BAC =∠DAC SAS △ABC ≅△ADC C D ∠B =∠D =90∘HL △ABC ≅△ADC D B 55∘根据等式的性质得出,再利用全等三角形的判定和性质解答即可.【解答】解:∵,∴,即,在与中,,∴,∴,∴.故答案为:.4.【答案】①②④【考点】正方形的性质全等三角形的性质与判定轴对称的性质【解析】①作辅助线,延长HF 交AD 于点L ,连接CF ,通过证明△ADF ≌△CDF ,可得:AF =CF ,故需证明FC =FH ,可证:AF =FH ;②由FH ⊥AE ,AF =FH ,可得:∠HAE =45°;③作辅助线,连接AC 交BD 于点O ,证BD =2FG ,只需证OA =GF 即可,根据△AOF ≌△FGH ,可证OA =GF ,故可证BD =2FG ;④作辅助线,延长AD 至点M ,使AD =DM ,过点C 作CI ∥HL ,则IL =HC ,可证AL =HE ,再根据△MEC ≌△MIC ,可证:CE =IM ,故△CEH 的周长为边AM 的长,为定值.【解答】解:①连接,延长交于点,∵为正方形的对角线,∴.∵,,∴.∴,.∵,∴.∵,∴,∴.∴.故①正确;②连接交于点,可知:,∠BAD =∠CAE ∠BAC =∠DAE ∠BAC −∠DAC =∠DAE−∠DAC ∠BAD =∠CAE △BAD △CAE AB =AC∠BAD =∠CAE AD =AE△BAD ≅△CAE(SAS)∠ABD =∠2=35∘∠3=∠1+∠ABD =+=35∘20∘55∘55∘FC HF AD L BD ABCD ∠ADB =∠CDF =45∘AD =CD DF =DF △ADF ≅△CDF FC =AF ∠ECF =∠DAF ∠ALH+∠LAF =90∘∠LHC +∠DAF =90∘∠ECF =∠DAF ∠FHC =∠FCH FH =FC FH =AF AC BD O BD =2OA∵,∴,∴.∵,,∴.∴.∵,∴,∴,易知为等腰直角三角形,,∴,故②正确;③当点为中点时,,故③错误;④延长至点,使,过点作,则:,根据,可得:,同理,可得:,∴.∴的周长为,为定值.故④正确;故①②④结论都正确.故答案为:①②④.三、 解答题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )5.【答案】证明:∵,,分别是,的中点,∴,,∵是的中点,∴,在和中,∴,∴.解:由题意得,为的中位线,∴=4,∴.【考点】全等三角形的性质【解析】(1)根据等腰三角形的性质得到,,由是的中点,得到,推出,根据全等三角形的性质即可的结论;FH ⊥AE ∠AFO +∠GFH =∠GHF +∠GFH ∠AFO =∠GHF AF =HF ∠AOF =∠FGH =90∘△AOF ≅△FGH OA =GF BD =2OA BD =2FG FG =BG+FD △BGH BG =GH FG =HG+FD E CD ∠HEA =67.5∘AD M AD =DM C CI //HL LI =HC △MEC ≅△CIM CE =IM AL =HE HE+HC +EC =AL+LI +IM =AM =8△CEH 8(1)AB =AC D E AB AC BD =CE ∠B =∠C M BC BM =CM △BMD △CME BD =CE ,∠B =∠C ,BM =CM ,△BMD ≅△CME(SAS)MD =ME (2)MD △ABC MD =AC 12AC =8BD =CE ∠B =∠C M BC BM =CM △BMD ≅△CME D =AC 1(2)根据三角形的中位线的性质得到,即可得到结论.【解答】证明:∵,,分别是,的中点,∴,,∵是的中点,∴,在和中,∴,∴.解:由题意得,为的中位线,∴=4,∴.6.【答案】解:由题意,得∴在四边形中,,又,,∴【考点】全等三角形的判定【解析】此题暂无解析【解答】解:由题意,得∴在四边形中,,又,,∴7.【答案】证明:∵, ,∴,∵,∴,即.在和中,∴,∴,,∴.【考点】MD =AC 12(1)AB =AC D E AB AC BD =CE ∠B =∠C M BC BM =CM △BMD △CME BD =CE ,∠B =∠C ,BM =CM ,△BMD ≅△CME(SAS)MD =ME (2)MD △ABC MD =AC 12AC =8∠=∠A =A ′40∘EAD A ′∠EA+∠DA =−=A ′A ′360∘80∘280∘∠1+∠EA =A ′180∘∠2+∠DA =A ′180∘∠1+∠2=−(∠EA+∠DA)360∘A ′A ′=80∘∠=∠A =A ′40∘EAD A ′∠EA+∠DA =−=A ′A ′360∘80∘280∘∠1+∠EA =A ′180∘∠2+∠DA =A ′180∘∠1+∠2=−(∠EA+∠DA)360∘A ′A ′=80∘BE ⊥AC DF ⊥AC ∠AEB =∠CFD =90∘AF =CE AF −EF =CE−EF AE =CF △BEA △DFC BE =DF ,∠AEB =∠CFD ,AE =CF ,△BEA ≅△DFC(SAS)AB =CD ∠BAE =∠DCF AB//CD全等三角形的性质与判定平行线的判定【解析】证明:∵ , ∴,∴在和中,∴ () ∴ ∴.【解答】证明:∵, , ∴,∵,∴,即.在和中,∴,∴,,∴.BE ⊥AC DF ⊥AC ∠BEA =∠DFC =90∘∵AF =CE EA =FC △BEA △DFC BE =DF∠AEB =∠CFD AE =CF△BEA ≅△DFC SAS ∠BEA =∠DFC ,AB =CD AB//CD BE ⊥AC DF ⊥AC ∠AEB =∠CFD =90∘AF =CE AF −EF =CE−EF AE =CF △BEA △DFC BE =DF ,∠AEB =∠CFD ,AE =CF ,△BEA ≅△DFC(SAS)AB =CD ∠BAE =∠DCF AB//CD。

人教初中数学八上《三角形全等的判定SAS》 同步练习

人教初中数学八上《三角形全等的判定SAS》 同步练习

三角形全等的判定(二)SAS要点感知1 两边和它们的夹角分别相等的两个三角形______(可以简写成“______〞或“______〞). 预习练习1-1 以下图中全等的三角形有( )3 C.图2和图4要点感知2 有两边和其中一边的对角分别相等的两个三角形______全等.预习练习2-1 下面各条件中,能使△ABC≌△DEF的条件的是( )A.AB=DE,∠A=∠D,BC=EFB.AB=BC,∠B=∠E,DE=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AC=DF知识点1 用“SAS〞判定两个三角形全等1.:如图,OA=OB,OC=OD,求证:△AOD≌△BOC.2.:如图,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.3.∥ED,AB=CE,BC=ED.求证:△ABC≌△CED.知识点2 利用“SAS〞判定三角形全等来证明线段或角相等4.(武汉中考)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.5.(云南中考)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.知识点3 利用“SAS〞判定三角形全等来解决实际问题6.如下图,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一块.为了方便起见,需带上______块,其理由是______.7.如图,AB=AC,AD=AE,假设要得到“△ABD≌△ACE〞,必须添加一个条件,那么以下所添条件不成立的是( )A.BD=CEB.∠ABD=∠ACEC.∠BAD=∠CAED.∠BAC=∠DAE8.(陕西中考)如图,在四边形ABCD中,AB=AD,CB=CD,假设连接AC、BD相交于点O,那么图中全等三角形共有( )9.如图,点A在BE上,AD=AE,AB=AC,∠1=∠2=30°,那么∠3的度数为______ .10.如下图,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄AC,AD间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相拉桥,测得AE=1.2 km,BF=0.7 km.试求建造的斜拉桥长至少有______km.11.如下图,AD是△ABC的高线,AD=BD,DE=DC,∠C=75°,求∠AEB的度数.12.如图,点A,E,B,D在同一条直线上,AE=DB,AC=DF,AC∥DF.请探索BC与EF有怎样的位置关系?并说明理由.13.如下图,A,F,C,D四点同在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.挑战自我14.如图,D,E分别是△ABC的边AB,AC的中点,点F在DE的延长线上,且EF=DE,求证:(1)BD=FC;(2)AB∥CF.参考答案课前预习要点感知1 全等边角边 SAS预习练习1-1 D要点感知2 不一定预习练习2-1 D当堂训练1.证明:在△AOD和△BOC中,OA=OB,∠O=∠O(公共角),OD=OC,∴△AOD≌△BOC(SAS).2.证明:∵OC平分∠AOB,∴∠1=∠△AOC和△BOC中,OA=OB,∠1=∠2(已证),OC=OC(公共边),∴△AOC≌△BOC(SAS).3.证明:∵AB∥ED,∴∠B=∠△ABC和△CED中,AB=CE,∠B=∠E,BC=ED,∴△ABC≌△CED(SAS).4.证明:∵在△ODC和△OBA中,OD=OB,∠DOC=∠BOA,OC=OA,∴△ODC≌△OBA(SAS).∴∠C=∠A(或∠D=∠B).∴DC∥AB.5.证明:在△ADB和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ADB≌△BCA(SAS).∴AC=BD.6.1 有两边及其夹角分别相等的两个三角形全等 课后作业7.B 8.C 9.30° 10.1.1 11.在△BDE 和△ADC 中,BD=AD,∠ADB=∠ADC ,DE =DC ,∴△BDE ≌△ADC(SAS).∴∠BED=∠C=75°.∴∠AEB=105°.12.BC ∥EF.理由:∵AE=DB,∴AE+BE=DB+BE.∴AB=DE.∵AC ∥DF,∴∠A=∠D.∵AC=DF,∴△ACB ≌△DFE.∴∠FED=∠CBA.∴BC ∥EF.13.(1)证明:∵AB ∥DE,∴∠A=∠∵AF =CD,∴AF+FC=CD+FC.∴AC=DF.∵AB =DE,∴△ABC ≌△DEF(SAS).(2)证明:∵△ABC ≌△DEF,∴BC =EF,∠ACB =∠DFE.∵FC=CF,∴△FBC ≌△CEF(SAS).∴∠CBF =∠FEC. 14.(1)证明:∵E 是AC 的中点,∴△ADE 和△CFE 中,AE=CE,∠AED=∠CEF,DE=FE,∴△ADE ≌△CFE(SAS).∴AD=CF.∵D 是AB 的中点,∴AD=BD.∴BD=FC.(2)证明:由(1)知△ADE ≌△CFE,∴∠A=∠ECF.∴AB ∥CF. 【知识稳固】1、 分解因式:7a 2b 2-14ab 3c= 2、 假设xy=6,x-y=5,那么x 2y-xy 2= 3、 在以下四个式子中:①6a 2b=2a 2 .3b ;②x 2-4-3x=(x+2)(x-2)-3x ; ③ab 2-2ab=a b(b-2); ④-a 2+4=(2-a)(2+a)。

13.2三角形全等的判定(SAS)练习

13.2三角形全等的判定(SAS)练习

例1
已知:如图, AB=CB ,∠ ABD= ∠ CBD △ ABD 和△ CBD 全等吗?
A
分析: △ ABD ≌△ CBD
边: AB=CB(已知) (SAS)
B
D
角: ∠ABD= ∠CBD(已知) 边:
C

现在例1的已知条件不改变,而问题改 变成:
问AD=CD,BD平分∠ADC吗?
例题 推广
C
D
BC=EF
E
F
如图AC与BD相交于点O,已知 OA=OC,OB=OD,说明 △AOB≌△COD的理由。
A
B
O
D C
解:在△AOB和△COD中 ∵ OA=OC(已知) ∠AOB=∠COD(对顶角) OB=OD(已知) ∴ △AOB≌△COD(SAS)
例1
已知:如图,AB=CB,∠1=∠2 ,
△ABD 和△CBD 全等吗?为什么? A

2.如图,已知AB=AC,AD=AE。
求证:△ABD≌△ACE 证明:在△ABD和△ACE中 E AB=AC(已知) B A=A(公共角) AD=AE(已知) A ∴△ABD≌△ACE(SAS)
DE B A
D
C A
C
已知:如图,AB=AC,AD=AE. 求证: △ABE≌△ACD 证明:在△ABE和△ACD中∵ AB=AC(已知)
证明的书写步骤:
1.准备条件:证全等时要用的条件 要先证好; 2.三角形全等书写三步骤: ①写出在哪两个三角形中 ②摆出三个条件(注意:按定理 名称的顺序书写) ③写出全等结论
巩 固 练 习
若∠BAD= ∠CAD,则添加什么条件 可使ΔABD≌ΔACD?
A
ΔABD≌ΔACD S A S

数学人教版八年级上册12.2.2 三角形全等判定二 (SAS)练习.2.2 三角形全等判定二 (SAS)练习

数学人教版八年级上册12.2.2 三角形全等判定二 (SAS)练习.2.2 三角形全等判定二 (SAS)练习

12.2.2 三角形全等判定二 (SAS )练习瑞金六中 杨小建 第1课时 边角边一、选择题1. 如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD2. 能判定△ABC ≌△A ′B ′C ′的条件是( ) A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′ B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′ C. AC=A ′C ′, ∠A=∠A ′,BC=B ′C D. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3. 如图,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A. AB ∥CD B. AD ∥BC C. ∠A=∠C D. ∠ABC=∠CDA4.如图,在△ABC和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .AC=DC ,∠A=∠D5.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对6.在△ABC 和C B A '''∆中,∠C =C '∠,b-a=a b '-',b+a=a b '+',则这两个三角形( )A. 不一定全等B.不全等第3题图第4题图第5题图C. 全等,根据“ASA ”D. 全等,根据“SAS ”7.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD ≌△ACD 的条件是( )A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )A .22B .24C .26D .28 二、填空题9. 如图,已知BD=CD ,要根据“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是 .10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°, 则∠CBO= 度.11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: ,第7题图第8题图使得AC =DF .12.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).13.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.14. 如图,若AO=DO ,只需补充 就可以根据SAS 判定△AOB ≌△DOC.15. 如图,已知△ABC ,BA=BC ,BD 平分∠ABC ,若∠C=40°,则∠ABE 为度.16.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则 AE= cm .40︒D CBA17. 已知:如图,DC=EA ,EC=BA ,DC ⊥AC , BA ⊥AC ,垂足分别是C 、A ,则BE 与DE 的位置关系是 .AB 018. △ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是 .三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。

三角形全等的判定(SSS、SAS) 习题

三角形全等的判定(SSS、SAS) 习题

齐等三角形(SSS 、SAS)之阳早格格创做例1:如图, CE=DE ,EA=EB ,CA=DB ,供证:∠CAB=∠DBA 道明∵CE=DE , EA=EB ( )∴________=________即:_______=________正在△ABC 战△BAD .中,∵()()()⎪⎩⎪⎨⎧===___________________________________________已证已知∴△ABC ≌△BAD .( )∴∠CAB=∠DBA ( )练一练:1、如图,AC =BD ,BC =AD ,道明.∠C=∠D道明:正在△ABC 取△BAD 中,∴△ABC ≌△BAD ( )∴∠C=∠___ ( )2、如图,AB=DF ,AC=DE ,BE=FC ,问:(1)ΔABC 取ΔDFE 齐等吗? (2)AB 取DF 仄止吗?请道明您的缘由.3、如图1所示,面C 、F 正在曲线AD 上,且AF=DC ,AB=DE ,BC=EF.(1)试道明AB ∥DE;(2)瞅察图2,图3,指出它们是何如由图1变更得到的?(3)正在谦脚已知条件的情况下根据图2,试道明BC ∥EF . A FB A FC B A C F A BF C4、已知AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE ,面B 、C 、D 正在一条曲线上,供证:AC ⊥CE.5、(多变题)已知AB=CD ,AD=CB ,供证:∠A=∠C一变:已知AD ∥BC ,AD=CB ,试道明:△ADC ≌△CBA 二变:已知AD ∥BC ,AD=CB ,AE=CF.试证:△AFD ≌△CEB 6、(本质使用)有一湖的湖岸正在A 、B 之间呈没有准则形状,A 、B 之间的距离没有克没有及间接丈量,您能用已教过的知识或者要领安排丈量规划并供出A 、B 之间的距离吗?干一干:7、如图所示,有一齐三角形的镜子,小明没有留神弄破裂成1、2二块,现需配成共样大小的一齐.为了便当起睹,需戴上________块,其缘由是__________.8、如图所示,AB ,CD 相接于O ,且AO =OB ,瞅察图形,图中已具备的另一相等的条件是________,偶像到SAS ,只需补充条件________,则有△AOC ≌△_______9、如图,已知CA=CB ,AD=BD ,E ,F 分别为CB ,CA 的中面,供证:DE=DF10、如图,已知AB =AE ,∠B =∠E ,BC =ED ,面F 是CD 的中面.供证:AF ⊥CD.11、已知△ABE 战三角形DEC 均为等边三角形,对接BD ,AC ,供证:AC =BD D E B A C F E C B D A。

全等三角形的判定证明题sss、sas[1]

全等三角形的判定证明题sss、sas[1]
3、点B、E、C、F在同一条有怎样的位置关系?请证明。
4、已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?
5、如图,AC=DF,BC=EF,AD=BE,∠BAC=80o,∠F=60o,求∠ABC
6、如图,AC=AD,BC=BD,∠1=35o,∠2=65o,求∠C
14、如图:已知AC,BD相交于O,OA=OB,OC=OD.证明:△ABC≌△BAD
9.如图,AE是 AB=AC.证明△ABD≌△ACD
10、已知:如图,AB=AC,AD=AE,求证:BE=CD.
11、如图,已知:点D、E在BC上,且BD=CE,AD=AE,∠1=∠2,求证:△ADB≌△AEC
12、如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,求证: BE=DC
13、如图,点C是AB中点,CD∥BE,且CD=BE,试探究AD与CE的关系。
全等三角形的判定训练题(SSS、SAS)
判定定理1:简单的表示为:SSS
数学语言:在△ABC和△A'B'C'中
AC=A'C'(已知)
BC=B'C'(已知)
AB=A'B'(已知)
∴△ABC≌△A'B'C'(SSS)
1、若AB=CD,AC=DB,可以判定哪两个三角形全等?请证明。
2、△ABC中,AB=AC,AD是BC边上的中线,∠B与∠C有什么关系?请证明。
7、如图,△ABC中,AD=AE,BE=CD,AB=AC,说明△ABD≌△ACE
判定定理2:简单的表示为:SAS
数学语言:在△ABC和△A'B'C'中
AB=A'B'(已知)

(完整word版)全等三角形证明经典及答案

(完整word版)全等三角形证明经典及答案

中考数学专练三角形的专题1.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD7. 已知:D 是AB 中点,∠ACB=90°,求证:12CD ABADB CBA CDF2 1 ECDB A8. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠29. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC10. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C11. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEBA CDF2 1 ECDB A12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. 已知:AB=CD ,∠A=∠D ,求证:∠B=∠CDCBA FEAB C D15. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB16. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE17. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.(5分)如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBAP D ACBFA ED C B20.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.PEDCBA D CBA23.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .25、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。

1.5.1 全等三角形的判定:SSS和SAS(原卷版)

1.5.1 全等三角形的判定:SSS和SAS(原卷版)

1.5.1 全等三角形的判定:SSS和SAS考查题型一三角形的稳定性1.“停课不停学,学习不延期”、居家网课期问,元元将一平板保护套展开放置在水平桌面上,如图所示,平板能保持平稳,这是运用了()A.三角形内角和等于180°B.两点之间,线段最短C.三角形具有稳定性D.三角形的一个外角等于与它不相邻的两个内角之和2.如图,空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用了三角形的()A.全等性B.灵活性C.稳定性D.对称性考查题型二用“SSS”判定三角形全等3.如图,已知AB=DC,若用定理SSS证明△ABC≌△DCB,则需要添加的条件是()A.OA=OD B.AC=DB C.OB=OC D.BC=CB4.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.SAS5.如图,已知AB=CD,AD=BC,O为AC上任意一点,过O点作一条直线分别交BA,DC的延长线于点F,E.求证:∠E=∠F.6.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.考查题型三用“SAS”判定三角形全等7.如图,在3×3的方格图中,每个小方格的边长都为1,则∠ACB的度数为()A.89°B.90°C.91°D.92°8.如图,点B在CD上,OB=OD,AB=CD,∠OBA=∠D;(1)求证:△ABO≌△CDO;(2)当AO∥CD,∠BOD=30°,求∠A的度数.考查题型四线段垂直平分线的性质9.如图,△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=50°,∠ABD=26°,则∠ACF的度数为( )A.66°B.52°C.46°D.42°10.如图,在ΔABC中,AD⊥BC垂足为点D,EF垂直平分AC,交BC于点E,交AC于点F,连接AE,若BD= DE,ΔABC的周长为16,AF=3,则DC的长为()A.4B.5C.6D.711.如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=5,则△CMN的周长为______;(2)若∠MFN=70°,求∠MCN的度数.A.4B.3 14.如图,点E、F在BD上,且()A.BE=DF B.△AEB≌15.如图,已知AB=AC,ADA.50°B16.如图,在四边形ABCD17.如图,在△ABC中,AB>PB―PC(填“>”、“<”或“=18.如图,在△ABC中,一点G,使GC=AB,连结19.如图,在△ABC中,AB=AC ACE,∠AEC=110°,则∠BDC的度数为20.如图,在ΔABC连接BD交AC于点(1)求证:ΔBAD≌ΔCAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.21.如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE 并延长,分别交AC,AB于点F,G.(1)求证:△ABC≅△DCE;(2)若BD=12,AB=2CE,求BC的长度.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,点C在DE上.(1)求证:△ABD≌△ACE.(2)若∠BDA=35°,则∠BDE=______°.。

《全等三角形的判定SAS》精选测试题及参考答案

《全等三角形的判定SAS》精选测试题及参考答案

《全等三角形的判定SAS》精选测试题及参考答案一、选择题1.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<52.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1) D.(﹣,﹣1)4.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③ B.②③④ C.①③⑤ D.①③④5.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或76.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4二、填空题7.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .8.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有.(第7题)(第8题)(第9题)10.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.三、解答题11.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF (2)EC⊥BF.12.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG 交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.参考答案一、选择题1-6 BCADDD二、填空题7.(-2,0)(-2,4)(2,4)8.相等或互补9.①②③10.1<AD<9三、解答题11.证明:(1)∵AE⊥AB,AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∴△ABF≌△AEC(SAS)∴EC=BF(2)根据(1)△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB ∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM∴∠ABF+∠BDM=90°在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°∴EC⊥BF 12(1)证明:∵在△CBF和△DBG中,∴△CBF≌△DBG(SAS)∴CF=DG(2)解:∵△CBF≌△DBG∴∠BCF=∠BDG又∵∠CFB=∠DFH又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB △DHF中,∠DHF=180°﹣∠BDG﹣∠DFH∴∠DHF=∠CBF=60°∴∠FHG=180°﹣∠DHF=180°﹣60°=120°。

12.2三角形全等的判定SAS

12.2三角形全等的判定SAS

B
【证明】∵在△BAD和△BAC中,
D
A
BA=BA ∠BAD=∠BAC AD=AC
C
则△BAD≌△BAC (SAS). 即BD=BC
2、如图,点E、F在BC上,BE=CF, AB=DC, ∠B=∠C,求证: ∠A=∠D
【证明】∵BF=BE+EF
A
D
CE=CF+FE 而BE=CF
∴BF=CE
在△ABF和△DCE中,
2. 用尺规作图:已知两边及其夹角的三角形
布置作业: 课本104页3、4题 同步练习
BE
F C BF=CE
∠B=∠C
AB=DC
则△BAD≌△BAC (SAS).
即∠A=∠D
已知:如图,AD∥BC,AD=CB. 求证:AB=CD.
A
【提示】连结AC, 由 △ABC≌△CDA 故 AB=CD.
B
D C
课堂小结:
1. 三角形全等的条件,两边和它们的夹角对应相等 的两个三角形全等 (边角边或SAS)
B
A
A∠BA=BCDB=∠CBD
D BD=BD
C ∴△ABD≌△CBD(SAS)
∴AD=CD
∠ADB=∠CDB
即BD平分∠ADC
由前边两个题目可以看出:
因为全等三角形的对应角相等, 对应边相等,所以,证明分别属于两 个三角形的线段相等或角相等的问题, 常常通过证明两个三角形全等来解决。
探究
全等三角形的判定 (SAS)
复习练习:全等三角形的性质
若△AOC≌△BOD, 对应边: AC= BD ,
AO= BO , CO= DO ,
A
D
O
C
B
对应角有: ∠A= ∠B , ∠C= ∠D , ∠AOC= ∠BOD ;

全等三角形 用 SSS、SAS判断三角形全等练习题

全等三角形  用 SSS、SAS判断三角形全等练习题

全等三角形:1、能够‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗的两个图形叫全等形。

2、能够‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗的两个三角形叫全等三角形,重合的‗‗‗叫对应顶点,重合的边叫‗‗‗‗‗‗‗‗,重合的角叫‗‗‗‗‗‗‗‗。

3、全等三角形的‗‗‗‗‗‗‗‗相等,对应角‗‗‗‗‗‗‗‗。

4、经过平移、翻折、旋转后的图形与原图形‗‗‗‗‗‗‗。

5、如图所示,△ABC与△DEF全等,可记作△ABC‗‗‗‗‗△DEF,其中点A与点‗‗‗‗‗是对应顶点,∠B与‗‗‗‗‗是对应角,AC与‗‗‗‗‗是对应边。

6、如图,已知△ABD≌△ECF,则相等的边有‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗;相等的角有‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

7、已知△ABC≌△EDF,则对应边为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗,对应角为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

8、已知:如图,△ABD与△CDB全等,∠ABD=∠CDB,写出其对应边和对应角。

9、如图所示,△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,∠E=50°,AC=2cm,求∠D的度数及DF的长。

10、如图,△AEC≌△ADB,点E和点D是对应顶点。

(1)写出它们的对应边和对应角;(2)若∠A=50°,∠ABD=39°,且∠1=∠2,求∠1的度数。

11、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DF相交于点F,求∠DFB的度数。

12、如图所示,A,D,E三点在同一直线上,且△BAD≌△ACE。

试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?1、三边分别‗‗‗‗的两个三角形全等,可以简写成‗‗‗‗‗‗‗或‗‗‗‗‗‗‗。

七年级数学上册分层练习:《用“SAS”判定三角形全等》(含答案)

七年级数学上册分层练习:《用“SAS”判定三角形全等》(含答案)

第2课时用“ SAS判定三角形全等01 基础题知识点1用“ SAS判定三角形全等1. 下图中全等的三角形有(D图1 图2 图3 图4A.图1和图2B.图2和图3C.图2和图4D.图1和图32. 如图所示,在△ ABD^H^ ACE中,AB= AC AD= AE 要证△ ABD^A ACE 需补充的条件是(C)A. Z B=Z CB. Z D=Z EC. / DAE=Z BACD. / CAD=Z DAC3. 已知:如图,0A= OB OC平分/ AOB 求证:△ AOC^A BOC.证明:T OC平分/ AOB•••/ AOC=Z BOC.在厶 AOC^n ^ BOC 中,OA= OBZ AOC=Z BOCOC = OC•••△ AOC^ BOC SAS .4. 如图,已知B , E , F , C 四个点在同一条直线上,AB=CD BE =CF, Z B 证明:T BE ^ CF,• BE ^ EF = CF + EF , 即卩 BF = CE.在△ABF 和△ DCE 中,AB= DCZ B =Z C,BF = CE• △ ABF^A DCE 6AS .知识点2全等三角形的判定与性质的综合5. (泸州中考)如图,C 是线段AB 的中点,CD= BE CD// BE.求证:/D-Z E.证明:T C 是线段AB 的中点,• AC= CB.T CD// BE •••/ AC=Z CBE. =Z C,求证:在厶ACD^A CBE中,AC= CB/ ACD^Z CBEC[> BE•••△ACD^^ CBE.:丄 D=Z E.6. 如图,已知△ ABC^A DAE D是AC上一点,AAAB, DE// AB, DE= AC. 求证:AE= BC.证明:T DE// AB,•/ ADE=Z BAC.AD= BA在厶ADE ffiA BAC中, / ADE=Z BACDE= AC•△ADE^A BAC SAS.•AE= BC.知识点3利用“SAS判定三角形全等解决实际问题7. 如图,将两根钢条AA , BB的中点0连在一起,使AA , BB可以绕着点0自由转动,就做成了一个测量工件,则AB的长等于内槽宽A B', 那么判定厶A0B2A A OB的理由是(A)A.边角边B.角边角C.边边边D.角角边8如图所示,有一块三角形镜子,小明不小心将它打破成1、2两块,现需配成同样大小的一面镜子.为了方便起见,需带上1块,其理由是两边及其夹角分别相等的两个三角形全等.02 中档题9. 如图,已知AB= AC A[> AE若要得到“△ AB dA ACE,必须添加一个条件,则下列所添条件不成立的是(B)A. BD= CE B . Z ABD=Z ACEC.Z BAD=Z CAE D . Z BA&Z DAE10. (陕西中考)如图,在四边形ABCD K AB= AD, CB= CD若连接AC BD 相交于点Q则图中全等三角形共有(C)A. 1对B. 2对C. 3对D. 4对11. 如图,点A在BE上,AD= AE AB= AC Z 1 = Z 2= 30°,则Z 3 的度数为30°it 4 ~E12. 如图所示,A, B, C, D是四个村庄,B, D, C在一条东西走向公路的沿线上,BD= 1 km DC= 1 km村庄AC AD间也有公路相连,且公路AD 是南北走向,AC= 3 km只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE^ 1.2 km BF= 0.7 km则建造的斜拉桥长至少有1.1 km13. (曲靖中考)如图,已知点B, E , C, F在一条直线上,AB= DF, AC= DE / A=Z D.(1) 求证:AC// DE(2) 若BF= 13, EC= 5 ,求BC的长.解:(1)证明:在厶ABC^n^ DFE中,AB= DF,/ A=Z D,AC= DE,•••△ ABC^A DFE SA$.•••/ ACE=Z DEF.• AC// DE.(2) •••△ ABC^A DFE••• BC= EF.••• CB- EC= EF— EC,即EB= CF.13- 5v BF= 13, EC= 5,二EB=—= 4.• CB= 4+ 5 = 9.14. 如图所示,A, F, C, D四点同在一直线上,AF= CD AB// DE且AB= DE求证:(1) △ABC^A DEF⑵/ CBF=Z FEC.证明:(1) v AB// DE•/ A=Z D.又v AF= CD•AF+ FC= CD^ FC.•AC= DF.v AB= DE•△ABC^A DEF SA$.(2) •••△ABC^A DEF•BC= EF, / ACB=Z DFE.v FC= CF,•△FBC^A CEF SA$.•••/ CBF^Z FEC.03 综合题15. 如图,在四边形ABC[中, / A=Z BCD= 90°使DE= AB .求证:(1) / ABC=Z EDC(2) △ABC^A EDC.证明:(1)在四边形ABCD K vZ BAD-/ BCD-90°,:丄 B+Z ADC= 180° .又vZ CD+Z ADC= 180° .• Z ABC=Z EDC.⑵连接AC.在厶ABCm EDC中,AB= ED,Z ABC=Z EDCCB= CD• △ABC^A EDC SAS.BC= DC延长AD到E 点,。

全等三角形的判定(SSS与SAS)(精选精练)(专项练习)(教师版)24-2025学年八年级数学上册

全等三角形的判定(SSS与SAS)(精选精练)(专项练习)(教师版)24-2025学年八年级数学上册

专题12.4全等三角形的判定(SSS 与SAS)(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(23-24八年级上·河南信阳·期末)如图,AB AC =,BD CD =,35BAD ∠=︒,120ADB ∠=︒,则C ∠的度数为()A .25︒B .30︒C .35︒D .55︒2.(23-24八年级上·广西百色·期末)如图,O 为AC 的中点,若要利用“SAS ”来判定△≌△AOB COD ,则应补充的一个条件是()A .A C ∠=∠B .AB CD =C .B C ∠=∠D .OB OD=3.(22-23九年级上·重庆大渡口·期末)如图,在正方形ABCD 中,点E F ,分别在边CD BC ,上,且DE CF =,连接AE DF ,,DG 平分ADF ∠交AB 于点G .若70AED ∠=︒,则AGD ∠的度数为()A .50︒B .55︒C .60︒D .65︒4.(2024·陕西咸阳·三模)如图,在ABC 中,D 为边BC 的中点,1AB =,2AD =,延长AD 至点E ,使得DE AD =,则AC 长度可以是()A .4B .5C .6D .75.(17-18八年级上·辽宁营口·阶段练习)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF CE ,.则下列说法:①CE BF =;②ABD △和ACD 面积相等;③BF CE ∥;④BDF CDE △△≌.其中正确的有()A .4个B .3个C .2个D .1个6.(23-24八年级上·安徽安庆·期末)如图,已知方格纸中是4个相同的正方形,则1∠与2∠的和为()A .80︒B .90︒C .100︒D .110︒7.(23-24八年级上·湖北孝感·期中)如图,已知48AOB ∠=︒,点C 为射线OB 上一点,用尺规按如下步骤作图:①以点O 为圆心,以任意长为半径作弧,交OA 于点D ,交OB 于点E ;②以点C 为圆心,以OD 长为半径作弧,交OC 于点F ;③以点F 为圆心,以DE 长为半径作弧,交前面的弧于点G ;④连接CG 并延长交OA 于点H .则AHC ∠的度数为()A .24︒B .42︒C .48︒D .96︒8.(23-24八年级上·山东德州·阶段练习)如图,平面上有ACD 与BCE ,其中AD 与BE 相交于P 点,如图,若AC BC AD BECD CE ===,,,55ACE ∠=︒,155BCD ∠=︒,则BPD ∠的度数为()A .110︒B .125︒C .130︒D .155︒9.(23-24七年级下·山西太原·阶段练习)如图1,两个大小不同的三角板叠放在一起,图2是由它得到的抽象几何图形,已知AB AC =,AE AD =,90CAB DAE ∠=∠=︒,且点B ,C ,E 在同一条直线上,10cm BC =,4cm CE =,连接DC .现有一只壁虎以2cm/s 的速度沿B C D --的路线爬行,则壁虎爬到点D 所用的时间为()A .10sB .11sC .12sD .13s10.(21-22八年级上·云南昭通·期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法:①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=.其中正确的有()A .1个B .5个C .3个D .4个二、填空题(本大题共8小题,每小题4分,共32分)11.(23-24八年级上·江苏南京·期末)如图,已知12∠=∠,要用“SAS ”判定ABD ACD △≌△,则需要补充的一个条件为.12.(23-24八年级上·河北保定·期末)如图,在ABC 与ADE V 中,E 在BC 边上,AD AB =,AE AC =,DE BC =,若125∠=︒,则DAB ∠=.13.(23-24八年级上·吉林松原·期中)如图,为了测量A 、B 两点之间的距离,在地面上找到一点C ,使90ACB ∠=︒,然后在BC 的延长线上确定点D ,使BC CD =,那么只要测量出AD 的长度就得到A 、B 两点之间的距离,其中ABC ADC △△≌的依据是.14.(23-24八年级上·重庆江津·期中)如图,BE BA =,DE AB ∥,DE BC =,若3825BAC E ∠=︒∠=︒,,则BDE ∠=.15.(23-24八年级上·江苏泰州·期中)如图,在ABC 中,点D 、E 分别在AC 、BC 上,AD DE =,AB BE =,80A ∠=︒,则DEC ∠=︒.16.(23-24八年级上·河南洛阳·期中)如图,在长方形ABCD 中,20cm AB =,点E 在边AD 上,且12cm AE =.动点P 在边AB 上,从点A 出发以4cm/s 的速度向点B 运动,同时,点Q 在边BC 上,以cm/s v 的速度由点B 向点C 运动,若在运动过程中存在EAP 与PBQ 全等的时刻,则v 的值为.17.(23-24八年级上·山东菏泽·阶段练习)已知,如图,在ABC 中,点D 是AB 上一点,CD 平分ACB ∠,2A ADC ∠=∠,6BD =,4AC =,则BC 的长为.18.(23-24九年级下·江苏泰州·阶段练习)如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若BAE x ∠=︒,则EAC ∠的度数为.(用含x 的代数式表示).三、解答题(本大题共6小题,共58分)19.(8分)(23-24八年级上·陕西商洛·阶段练习)如图,在ABF △和DCE △中,,,AB DC AF DE BE CF ===,且点,,,B E F C 在同一条直线上.求证:B C ∠=∠.20.(8分)(23-24八年级上·江苏泰州·期中)如图,点B F C E 、、、在一条直线上,AB DE =,,,AC DF BF CE AD ==交BE 于点O .(1)求证:B E ∠=∠;(2)求证:,AD BE 互相平分.21.(10分)(23-24八年级上·天津宁河·期中)如图,已知AD AB AC AE DAB CAE ==∠=∠,,,连接DC BE ,.(1)求证:BAE DAC ≌;(2)若13520CAD D ∠=︒∠=︒,,求E ∠的度数.22.(10分)(23-24七年级下·陕西西安·阶段练习)如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F 使得EF ED =,连CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接BE ,CA 平分BCF ∠,求A ∠的度数.23.(10分)(23-24七年级下·陕西西安·阶段练习)已知等腰三角形ABC ,AB AC =,D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 的右侧作等腰三角形ADE ,DAE BAC ∠=∠,AD AE =,连接CE .(1)如图1,当点D 在边BC 上时,请探究BC ,CD ,CE 之间的数量关系.(2)如图2,当点D 在BC 的延长线上时,(1)中BC ,CD ,CE 之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请你写出新的结论,并说明理由.24.(12分)(23-24七年级下·陕西咸阳·阶段练习)如图,在ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边作直角ABE 和ACF △,其中AB AE =,90BAE ∠=︒,AC AF =,90CAF =︒∠,连接EF ,延长AD 至点G ,使DG AD =,连接BG .【初步探索】(1)试说明:AC BG ∥;【衍生拓展】(2)探究EF 和AD 之间的数量关系,并说明理由.参考答案:1.A【分析】本题主要考查了全等三角形的性质,正确判断对应角,对应边是解决本题的关键.在ABD △中,根据三角形内角和定理求得B ∠,根据全等三角形的对应角相等即可解决.【详解】解:在ABD △中,18025B BAD ADB ∠=︒-∠-∠=︒,∵AB AC =,BD CD =,AD AD =,∴()SSS ABD ACD ≌,∴25C B ∠=∠=︒.故选:A .2.D【分析】本题主要考查了添加一个条件,使得用“SAS ”来判定△≌△AOB COD ,根据已知条件得出OA OC =,AOB COD ∠=∠,故只需要OB OD =即可使用SAS 证明△≌△AOB COD .【详解】解:∵O 为AC 的中点,∴OA OC =,∵AOB COD ∠=∠,∴当添加OB OD =时,()SAS AOB COD ≌△△.故选:D .3.B【分析】可以先证明ADE DCF ≌,则70ADF ∠=︒,利用角平分线可得35ADG ∠=︒,再利用直角三角形的两锐角互余解题即可.【详解】解:∵正方形ABCD∴90AD DC ADC C DAG AD BC ∠∠∠====︒ ,,,在ADE 和DCF 中,AD DC ADE C DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF≌∴70AED DFC ADF ∠∠∠===︒∵DG 平分ADF∠∴1352ADG ADF ∠∠==︒∴9055ADG ADG ∠∠=︒-=︒故选B .【点睛】本题考查正方形的性质,全等三角形的性质和判定,掌握全等三角形的判定方法是解题的关键.4.A【分析】本题考查了全等三角形的判定与性质,三角形三边关系;证明ABD ECD ≌,得1CE AB ==,在AEC △中由三边不等关系确定AC 的取值范围,根据范围即可完成求解.【详解】解:D 为边BC 的中点,BD CD ∴=;在ABD △与BCD △中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,ABD ECD ∴ ≌,1CE AB ∴==;AE CE AC AE CE -<<+ ,4AE AD DE =+=,35AC ∴<<,故AC 可以为4,故选:A .5.D【分析】本题主要考查了全等三角形的判定与性质、等底等高的三角形的面积相等、平行线的判定等知识点,熟练掌握三角形全等的判定方法并准确识图是解题的关键.根据三角形中线的定义可得BD CD =,然后利用“SAS ”证明BDF V 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠=∠,再根据内错角相等,两直线平行可得BF CE ∥,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF V 和CDE 中,BD CD BDF CDE DE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌ ,故④正确;∴CE BF F CED =∠=∠,,故①正确,∴BF CE ∥,故③正确;∵BD CD =,点A 到BD CD 、的距离相等,∴ABD △和ACD 面积相等,故②正确,综上所述,正确的是①②③④,共4个.故选:D .6.B【分析】本题考查了全等三角形的判定与性质,互余.解题的关键在于对知识的熟练掌握与灵活运用.如图,证明()SAS ABC DFE ≌,则1BAC ∠=∠,由290BAC ∠+∠=︒,可得1290∠+∠=︒,然后作答即可.【详解】解:如图,∵BC ED =,90BCA DEF ∠=∠=︒,AC FE =,∴()SAS ABC DFE ≌,∴1BAC ∠=∠,∵290BAC ∠+∠=︒,∴1290∠+∠=︒,故选:B .7.D【分析】本题考查尺规基本作图-作一角等于已知角,三角形全等的判定和性质,三角形外角的性质,根据作图,由全等三角形的判定定理SSS 可以推知DOE GCF ≌,得到GCF DOE ∠=∠,即48ACO AOB ∠=∠=︒,再利用三角形外角性质求解即可.【详解】解:由作图可知,在DOE 与GCF 中,OD CG DE GF OE CF =⎧⎪=⎨⎪=⎩,则()SSS DOE GCF ≌.∴GCF DOE ∠=∠,即48ACO AOB ∠=∠=︒,∴484896AHC AOB ACO ∠=∠+∠=︒+︒=︒.故选:D .8.C【分析】易证≌ACD BCE V V ,由全等三角形的性质可知:A B ∠=∠,再根据已知条件和四边形的内角和为360︒,即可求出BPD ∠的度数.【详解】解:在ACD 和BCE 中,AC BC CD CE AD BE =⎧⎪=⎨⎪=⎩,∴()SSS ACD BCE ≌,∴BCE ACD ∠=∠,∴BCA ECD ∠=∠,∵55ACE ∠=︒,155BCD ∠=︒,∴100BCA ECD ︒∠+∠=,∴50BCA ECD ︒∠=∠=,∵55ACE ∠=︒,∴105ACD ∠=︒∴75A D ︒∠+∠=,∴75B D ∠+∠=︒,∵155BCD ∠=︒,∴36075155130BPD ︒︒︒︒∠=--=,故选:C .【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出75B D ∠+∠=︒.9.C【分析】先根据等腰直角三角形的性质可以得出ABE ACD ≌,属于手拉手型全等,所以()10414cm CD BE ==+=,最后根据时间=路程÷速度即可解答.本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【详解】解:BAC EAD ∠=∠ ,BAC CAE EAD CAE ∴∠+∠=∠+∠,BAE CAD ∴∠=∠,在ABE 与ACD 中,AB AC BAE CAD AD AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABE ACD ∴ ≌,10414(cm)CD BE BC CE ∴==+=+=,则()101424cm BC CD +=+= 壁虎以2cm/s 的速度B 处往D 处爬,24212()t s ∴=÷=.故选:C .10.B【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.11.BD CD=【分析】本题主要考查对全等三角形的判定的理解和掌握,根据用“SAS ”判定ABD ACD △≌△,已知12∠=∠及公共边AD ,添加的条件是BD CD =.【详解】解:添加的条件是BD CD =,理由是:在ABD △与ACD 中,11AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ACD ≌,故答案为:BD CD =.12.25︒/25度【分析】本题主要考查了全等三角形的性质与判定,三角形内角和定理,证明()SSS ABC ADE ≌得到AED C ∠=∠,再根据三角形内角和定理和平角的定义可得2125∠=∠=︒.【详解】解:∵AD AB =,AE AC =,DE BC =,∴()SSS ABC ADE ≌,∴AED C ∠=∠,∵11802C AEC AEC AED ∠++=︒=++∠∠∠∠∠,∴2125∠=∠=︒,故答案为:25︒.13.SAS /边角边【分析】本题考查了全等三角形的判定,根据SAS 即可证明ACB ACD ≌ 是解题的关键.【详解】解:AC BD ^ ,90ACB ACD ∴∠=∠=︒,在ACB △和ACD 中,AC AC ACB ACD BC CD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACB ACD \≌ ,故答案为:SAS .14.117︒/117度【分析】本题考查了全等三角形的判定及其性质等知识,根据平行线的性质得出∠=∠ABC BED ,进而利用SAS 证明ABC 和EBD △全等,利用全等三角形的性质解答即可.【详解】解:∵DE AB ∥,ABC BED ∴∠=∠,在ABC 和EBD △中,BA BE ABC BED BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC EBD ∴ ≌,38BAC EBD ∴∠=∠=︒,1801803825117BDE EBD E ∴∠=︒-∠-∠=︒-︒-︒=︒,故答案为:117︒.15.100【分析】本题考查了三角形全等的判定与性质,熟练掌握三角形全等的判定方法是解题关键.先证出EBD ABD △≌△,再根据全等三角形的性质可得80BED A ∠=∠=︒,由此即可得.【详解】解:在EBD △和ABD △中,ED AD BE BA BD BD =⎧⎪=⎨⎪=⎩,()SSS EBD ABD ∴ ≌,80BED A ∴∠=∠=︒,180100DEC BED ∴∠=︒-∠=︒,故答案为:100.16.4或245【分析】本题主要考查三角形全等的判定.设运动s t ,则4 cm AP t =,()204cm BP AB AP t =-=-, cm BQ vt =,由于在长方形ABCD 中,90A B ∠=∠=︒,因此①当AE BP =,AP BQ =时,()SAS AEP BPQ ≌,②当AE BQ =,AP BP =时,()SAS AEP BQP ≌,代入即可求解v 的值.【详解】设运动s t ,则4 cm AP t =,()204cm BP AB AP t =-=-, cm BQ vt =,∵在长方形ABCD 中,90A B ∠=∠=︒,∴①当AE BP =,AP BQ =,即12204t =-,4t vt =时,()SAS AEP BPQ ≌,解得:2t =,4v =或当AE BQ =,AP BP =,即12vt =,4204t t =-时,()SAS AEP BQP ≌,解得:52t =,245v =.综上所述,v 的值为4或245.故答案为:4或24517.10【分析】本题考查了全等三角形的判定与性质,解决本题的关键是证明ACD ECD ≌△△,在BC 边上取点E ,使EC AC =,连接DE ,证明ACD ECD ≌△△,再根据已知条件证得6BD BE ==,即可得解.【详解】解:如图,在BC 边上取点E ,使EC AC =,连接DE ,∵CD 平分ACB ∠,∴ACD ECD ∠=∠,∵CD CD =,∴()SAS ACD ECD ≌,∴4AC CE ==,ADC EDC ∠=∠,∵22A ADC ADE ADC EDC ADC ∠=∠∠=∠+∠=∠,,∴A ADE DEC ∠=∠=∠,∴BDE BED ∠=∠,∴6BD BE ==,∴6410BC BE CE =+=+=.故答案为:10.18.1802x-【分析】本题主要考查了全等三角形的判定与性质,角平分线的性质,利用SAS 证明ABC ADC △△≌得D DCA B BCA ∠+∠=∠+∠,根据三角形的外角定理推出B BCA CAE ∠+∠=∠,进而根据三角形内角和定理即可求解,解题的关键是利用SAS 证明ABC ADC △△≌.【详解】解:∵AC 平分DCB ∠,∴BCA DCA ∠=∠,在ABC 和ADC △中,CB CD BCA DCA CA CA =⎧⎪∠=∠⎨⎪=⎩∴ABC ADC △△≌,∴B D ∠=∠,∴B BCA D DCA ∠+∠=∠+∠,∵EAC D DCA ∠=∠+∠,∴B BCA EAC ∠+∠=∠,∵180180B BCA BAC BAE EAC ∠+∠=︒-∠=︒-∠-∠,∴180CAE BAE EAC ∠=︒-∠-∠,∵BAE x ∠=︒,∴1802x EAC -⎛⎫∠=︒ ⎪⎝⎭,故答案为:1802x -.19.见解析【分析】由BE CF =可得BF CE =,然后利用SSS 证明ABF DCE ≌即可证明结论.【详解】解:∵BE CF =,∴BE EF EF FC +=+,即BF CE =,在ABF 和DCE 中AB CD AF DE BF CE =⎧⎪=⎨⎪=⎩,∴ABF DCE ≌,∴B C ∠=∠.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.20.(1)见解析(2)见解析【分析】本题考查了全等三角形的判定与性质,解题的关键是:(1)利用SSS 证明ABC DEF ≌△△,然后根据全等三角形的性质即可得证;(2)利用AAS 证明ABO DEO △△≌,然后根据全等三角形的性质即可得证.【详解】(1)证明:∵BF CE =,∴BC EF =,在ABC 和DEF 中AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴()SSS ABC DEF ≌,∴B E ∠=∠;(2)证明:在ABO 和DEO 中B E AOB DOE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABO DEO ≌,∴AO DO =,=BO EO ,即AD ,BE 互相平分.21.(1)见解析(2)25E ∠=︒【分析】本题主要考查了全等三角形的判定与性质;(1)根据题意由DAB BAC CAE BAC ∠+∠=∠+∠,可得DAC BAE ∠=∠,即可求证;(2)由()SAS BAE DAC ≌,可得E C ∠=∠,再由内角和为180︒即可求解.【详解】(1)证明:∵DAB CAE ∠=∠,∴DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,又∵AD AB AC AE ==,,∴()SAS BAE DAC ≌;(2)∵()SAS BAE DAC ≌,∴E C ∠=∠,∵13520CAD D ∠=︒∠=︒,,∴1801801352025C CAD D ∠=︒-∠-∠=︒-︒-︒=︒,∴25E C ∠=∠=︒.22.(1)见详解(2)65︒【分析】本题考查了全等三角形的性质和判定、平行线的性质和判定、三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.(1)求出AED CEF ≌,根据全等三角形的性质得出A ACF ∠=∠,根据平行线的判定得出即可;(2)根据(1)求出A ACB ∠=∠,根据三角形内角和定理求出即可.【详解】(1)证明:∵E 为AC 中点,AE CE ∴=,在AED △和CEF △中AE CE AED CEF DE EF =⎧⎪∠=∠⎨⎪=⎩,()AED CEF SAS ∴ ≌,A ACF ∴∠=∠,∴CF AB ∥;(2)解:∵AC 平分BCF ∠,ACB ACF ∴∠=∠,A ACF ∠=∠ ,A ACB ∴∠=∠,180,50A ABC ACB ABC ∠+∠+∠=︒∠=︒ ,18050652A ︒-︒∴∠==︒,65A ∴∠=︒.23.(1)CE CD BC+=(2)不成立.CE CD BC-=【分析】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定方法是解本题的关键.(1)证明BAD CAE ∠=∠.再证明()SAS BAD CAE ≌△△,可得CE BD =,再进一步可得结论;(2)证明BAD CAE ∠=∠.再证明()SAS BAD CAE ≌△△,可得CE BD =,再进一步可得结论;【详解】(1)解:∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在BAD 与CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BAD CAE ≌△△,∴CE BD =,∴CE CD BD CD BC +=+=.(2)不成立.CE CD BC -=.理由:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠.在BAD 与CAE V 中,,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴△≌△,∴CE BD =,∴CE CD BD CD BC -=-=.24.(1)见解析(2)2EF AD =,理由见解析【分析】本题考查了全等三角形的判定和性质、平行线的判定和性质,熟练掌握知识点、推理证明是解题的关键.(1)根据AD 是边BC 的中线,得出BD CD =,利用SAS 证明GDB ADC ≌,得出DBG ACD Ð=Ð,根据“内错角相等,两直线平行”,即可证明AC BG ∥;(2)由(1)得AC BG ∥,GDB ADC ≌,得出180BAC ABG ∠+∠=︒,BG AC =,推出BG AF =,ABG EAF ∠=∠,利用SAS 证明ABG EAF ≌,得出AG EF =,根据DG AD =,AG DG AD =+,得出2AG AD =,即可证明2EF AD =.【详解】解:(1)∵AD 是边BC 的中线,∴BD CD =,在GDB △和ADC △中,DG AD GDB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS GDB ADC ≌,∴DBG ACD Ð=Ð,∴AC BG ∥;(2)2EF AD =,理由如下,∵由(1)得AC BG ∥,GDB ADC ≌,∴180BAC ABG ∠+∠=︒,BG AC =,∵AC AF =,∴BG AF =,∵3603609090180BAC EAF BAE CAF Ð+Ð=°-Ð-Ð=°-°-°=°,∴ABG EAF ∠=∠,在ABG 和EAF △中,AB AE ABG EAF BG AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABG EAF ≌,∴AG EF =,∵DG AD =,AG DG AD =+,∴2AG AD =,∴2EF AD =.。

12.2三角形全等的判定(二)(“SAS”)练习题人教版八年级数学上册

12.2三角形全等的判定(二)(“SAS”)练习题人教版八年级数学上册

第2课时三角形全等的判定(二)(“SAS”)【基础练习】知识点 1 判定两个三角形全等的基本事实——“边角边”1.如图1所示,点D在AB上,点E在AC上,AB=AC,AD=AE,则≌△AEB,理由是.图12.图2中全等的三角形是 ()图2A.①和②B.②和③C.②和④D.①和③3.如图3,AB平分∠DAC,要用“SAS”判定△ABC≌△ABD,还需添加条件 ( )图3A.CB=DBB.AB=ABC.AC=ADD.∠C=∠D4.已知:如图4,AC与BD相交于点O,且OA=OC,OB=OD.求证:△AOB≌△COD.图45.如图5所示,CD=CA,∠1=∠2,EC=BC.求证:△ABC≌△DEC.图56.如图6所示,AD=BE,AC=DF,AC∥DF.求证:△ABC≌△DEF.图6知识点 2 全等三角形的判定(SAS)的简单应用7.如图7所示,AA',BB'表示两根长度相同的木条.若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为 ( )图7A.8 cmB.9 cmC.10 cmD.11 cm8.[2020·镇江]如图8,AC是四边形ABCD的对角线,∠1=∠B,点E,F分别在AB,BC 上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.图8【能力提升】9.如图9所示,在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将其中的两个论断作为条件,另一个论断作为结论写出一个真命题为.(写成“如果 ,那么 ”的形式,写一个即可)图910.[2020·江西]如图10,CA平分∠DCB,CB=CD,DA的延长线交BC于点E.若∠EAC=49°,则∠BAE的度数为.图1011.如图11,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.有下列说法:①CE=BF;②△ABD≌△ACD;③BF∥CE;④△BDF和△CDE的面积相等.其中正确的是.(填序号)图1112.:[2020·宜宾]如图12,在△ABC中,D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.图12 变式:在△ABC中,AB=7,AC=3,AD是中线,求AD的取值范围.第2课时 三角形全等的判定(二)(“SAS ”)1.△ADC SAS2.D [解析] 从图中可以看到①和③符合“SAS ”.3.C [解析] 由题意可得,在△ABC 和△ABD 中,{AC =AD,∠CAB =∠DAB,AB =AB,∴△ABC ≌△ABD (SAS).选项C 正确,其余选项都不正确. 4.证明:在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD (SAS).5.证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA ,即∠ACB=∠DCE.在△ABC 和△DEC 中,{CA =CD,∠ACB =∠DCE,BC =EC,∴△ABC ≌△DEC (SAS).6.证明:∵AD=BE ,∴AB+BD=DE+BD ,即AB=DE.∵AC ∥DF ,∴∠A=∠FDE.在△ABC 和△DEF 中,{AB =DE,∠A =∠FDE,AC =DF,∴△ABC ≌△DEF (SAS).7.B8.解:(1)证明:在△BEF 和△CDA 中,{BE =CD,∠B =∠1,BF =CA,∴△BEF ≌△CDA (SAS).∴∠D=∠2.(2)∵∠D=∠2,∴∠2=78°.∵EF∥AC,∴∠BAC=∠2=78°.9.答案不唯一,如:如果①②,那么③(或如果①③,那么②)[解析] (1)已知AB=AD,∠BAC=∠DAC,AC=AC,可得△ABC≌△ADC(SAS),所以BC=DC;(2)已知AB=AD,BC=DC,AC=AC,可得△ABC≌△ADC(SSS),所以∠BAC=∠DAC.10.82°[解析] ∵CA平分∠DCB,∴∠BCA=∠DCA.又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS).∴∠B=∠D.∴∠B+∠ACB=∠D+∠ACD.∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°.∴∠BAE=180°-∠B-∠ACB-∠CAE=82°.故答案为82°.11.①③④[解析] ∵AD是△ABC的中线,∴BD=CD.又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底同高,∴△ABD和△ACD的面积相等,但不一定全等,故②错误;由△BDF≌△CDE,可知∠FBD=∠ECD,∴BF∥CE,故③正确.故答案为①③④.12.解:(1)证明:∵D是边BC的中点,∴BD=CD.在△ABD 和△ECD 中,{BD =CD,∠ADB =∠EDC,AD =ED,∴△ABD ≌△ECD (SAS).(2)∵在△ABC 中,D 是边BC 的中点,∴S △ABD =S △ACD .∵△ABD ≌△ECD ,∴S △ABD =S △ECD . ∵S △ABD =5,∴S △ACE =S △ACD +S △ECD =5+5=10,即△ACE 的面积为10.变式:解:如图,延长AD 到点E ,使ED=AD ,连接BE.∵AD 是△ABC 的中线,∴BD=CD.又ED=AD ,∠ADC=∠EDB ,∴△BED ≌△CAD (SAS). ∴BE=AC=3. ∵DE=AD ,∴AE=2AD.在△ABE 中,AB-BE<AE<AB+BE , 即AB-BE<2AD<AB+BE ,∴7-3<2AD<7+3. ∴2<AD<5.。

人教版初二数学上册11.2三角形全等的判定配套练习(SAS).2三角形全等的判定(SAS)

人教版初二数学上册11.2三角形全等的判定配套练习(SAS).2三角形全等的判定(SAS)

11.2三角形全等的判定配套练习(SAS♦随堂检测1. 如图OA 平分/ BOC 并且 OB=OC 青指出AB=AC 的理由.2. 如图,已知△ ABC 中,AB=AC,D 、E 分别是 AB AC 的中点,且CD=BE △人。

与厶AEB 全等吗?3. 如图,OA=OB OC=OD / AOB=/ COD 请说明 AC=BD 的理由.4.如图为某市人民公园中的荷花池 ,现要测量此荷花池两旁 A 、B 两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案要求:(1)画出你设计的测量平面图; (2)简述测量方法,并写出测量的数据(长度用a,b,c,…表示;角度用 ,,…表示);(3)根据你测量的数据,计算A 、B 两棵树间的距离小明是这样分析的:因为 AB=AC,BE=CD, BAE K CAD 所以△ ADC^^ AEB( 确吗?请说明理由CSSA ),他的思路正D?A?B♦典例分析例:如图所示,铁路上A, B两站(视为线上两点)相距25km, C, D为铁路同旁的两个村庄(视为两点),DAL AB于A点,CB丄AB于B点,DA=15km, BC=10km,现在要在铁路AB 上建一个土特产品收购站E,使C, D两村到E站的距离相等,则E站应建在距A站多少千米处?解析:若C, D两村到E站的距离相等,则有DE=EC,又因为ADbBC=AEbEB=25km,由此想到收购站应建在距A点10km处,此时则有EB=15km,又DAI AB CB1AB则厶DAE^^ EBC根据全等三角形的质知DE=EC这样通过构造全等三角形就找到了收购站地址.♦课下作业•拓展提高1. 如图,AC与BD交于0点,若OA=OD用“ SAS证明△ AOB^A DOC还需()A、AB=DC;B、OB=OC;C、/ A=Z D;D、/ AOB=/ DOC2. 如图,AB平分/ CAD E为AB上一点,若AC=AD则下列结论错误的是()A、BC=BD; B 、CE=DE;BC、BA平分/ CBD;D、图中有两对全等三角形3. 如图,点B、E、C F在同一直线上,AC=DF BE=CF只要再找出边=边,或/ = / ,或 // , 就可以证得△ DEF^A ABC.4 .如图,AE=AF / AEF=Z AFE BE=CF 说明AB=AC5. 如图,A、D、F、B 在同一直线上,AD=BF,AE=BC, 且AE // BC.说明:(1 )△ AEF^A BCD (2) EF // CD.•体验中考1. (2009年湖南省娄底市)如图,在△ ABC中,AB=AC D是BC的中点,连结AD在AD的延长线上取一点E,连结BE CE求证:△ ABE^A ACE2. (2008 年遵义市)如图,OA = OB , OC =OD , . 0=50;, .D = 35,则.AEC 等于()A. 60B. 50C. 45D. 30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定方法SAS专题练习
1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )
A.∠1=∠2
B.∠B=∠C
C.∠D=∠E
D.∠BAE=∠CAD
第1题
2.能判定△ABC≌△A′B′C ′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠CB.
B. AB=A′B′,∠A=∠A′,BC=B′C′
C. AC=A′C′,∠A=∠A′,BC=B′C
D. AC=A′C′,∠C=∠C′,BC=B′C
3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.
第4题
第3题
4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。

5.如图,AD=BC ,要根据“SAS”判定△ABD ≌△BAC ,
则还需添加的条件是
6.如图,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.
解:∵AD 平分∠BAC ,
∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,

∴△ABD ≌△ACD ( )
7.如图,AC 与BD 相交于点O ,已知OA=OC ,OB=OD , 求证:△AOB ≌△COD
证明:在△AOB 和△COD 中

∴△AOB ≌△COD( )
第6题 第7题 第5题
8.已知:如图,AB=CB,∠1=∠2 △ABD 和△CBD 全等吗?
9.已知:如图,AB=AC,AD=AE ,∠1 =∠2 。

试说明:△ABD ≌△ACE 。

10.已知:如图,△ABC中, AD⊥BC 于D,AD=BD, DC=DE,∠C=50°。

求∠ EBD的度数。

11.2 全等三角形的判定(SSS)
1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )
A.120°
B.125°
C.127°
D.104°
2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )
A.△ABC≌△BAD
B.∠CAB=∠DBA
C.OB=OC
D.∠C=∠D
3、如图3,AB=CD,BF=DE,E、F是AC上两点,
且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.
4、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,
则补充条件____________,可得到△ABC≌△A1B1C1.
5、如图,AB=AC,BD=CD,求证:∠1=∠2.
6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.
7、如图,AC与BD交于点O,AD=CB,E、F是BD 上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.
8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.
⑴请你添加一个条件,使△DEC≌△BFA;
⑵在⑴的基础上,求证:DE∥BF.
12.2 全等三角形的判定(SAS)
1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )
A.3
B.4
C.5
D.6
2、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )
A.∠1=∠2
B.∠B=∠C
C.∠D=∠E
D.∠BAE=∠CAD
3、如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )
A.AB∥CD
B.AD∥BC
C.∠A=∠C
D.∠ABC=∠CDA
4、如图4,AB与CD交于点O,OA=OC,OD=OB,
∠AOD=________,•根据_________可得到△AOD ≌△COB,从而可以得到AD=_________.
C B A
5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC ,
∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,
∵____________________________,
∴△ABD ≌△ACD ( )
6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.
7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?
8、如图,在△ABC和△DEF中,B、E、F、C,在同
一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.
①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.
9、如图⑴,AB⊥BD,DE⊥BD,点C是BD上一点,且BC=DE,CD=AB.
⑴试判断AC与CE的位置关系,并说明理由.
⑵如图⑵,若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第⑴问中AC与BE 的位置关系还成立吗?(注意字母的变化)。

相关文档
最新文档