LC与步进电机的运动控制(2)
基于S7—200LC实现步进电机的驱动控制
![基于S7—200LC实现步进电机的驱动控制](https://img.taocdn.com/s3/m/ffa0cbe8910ef12d2af9e73c.png)
基于S7—200LC实现步进电机的驱动控制【摘要】步进电机是一种将电脉冲信号转变为角位移或线位移的的执行元件。
驱动步进电机的方法较多,本文旨在用S7-200PLC通过发送脉冲信号给步进电机的驱动器,由驱动器来驱动步进电机进行工作。
本设计采用S7-200PLC 和大功率晶体管实现对步进电机的驱动控制,硬件结构简单可靠,成本较低,实用性较强,具有良好的通用性和应用推广价值。
【关键词】步进电机;S7-200PLC;驱动器;晶体管1.引言步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种家电产品中,例如打印机、磁盘驱动器、玩具、雨刷、机械手臂和录像机等。
此外也广泛应用于各种工业自动化系统中。
因此实现对步进电机良好的驱动控制显得十分必要。
驱动步进电机的方法较多,目前流行的是采用S7-200PLC驱动控制步进电机。
步进电机驱动器可以通过接收S7-200PLC发送的脉冲个数来控制步进电机的位移量,从而达到准确定位的目的;同时可以通过接收S7-200PLC发送的脉冲频率来控制步进电机的速度和加速度,从而达到调速的目的。
许多S7-200PLC都内置了脉冲输出功能,并设置了相应的控制指令,可以很好的对步进电机进行驱动控制。
本文采用西门子公司的CPU226晶体管输出型PLC对步进电机进行驱动控制。
2.样例系统本文的驱动控制过程为:某运货小车在甲、乙两地之间运行(如图1所示),装货及卸货,在此过程中要求小车准确定位和平稳运行。
要想实现上述控制过程,只需对小车的动力装置(步进电机)进行合理的驱动控制即可。
步进电机的驱动控制方法如图2所示。
驱动控制方法是通过上位机设定参数,利用S7-200PLC输出高速脉冲信号,送给大功率管组成的驱动电路,经过步进电机驱动器去控制步进电机的准确定位和平稳运行。
本文采用的PLC 为西门子公司的CPU226DC/DC/DC、驱动器为SH-20403两相混合式步进电机细分驱动器、步进电机型号为42BYG250B,其步距角为1.8°;相电流为1.5A;保持转矩为0.43(N·m)。
用PLC控制步进电机的原理和方法及控制编辑器
![用PLC控制步进电机的原理和方法及控制编辑器](https://img.taocdn.com/s3/m/3387f77e168884868762d6a3.png)
用PLC控制步进电机的原理和方法1、概述在组合机床自动线中,一般根据不同的加工精度要求设置三种滑台(1)液压滑台,用于切削量大,加工精度要求较低的粗加工工序中;(2)机械滑台,用于切削量中等,具有一定加工精度要求的半精加工工序中;(3)数控滑台,用于切削量小,加工精度要求很高的精加工工序中。
可编程控制器(简称PLC)以其通用性强、可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点,被广泛应用于工业自动控制中。
特别是在组合机床自动生产线的控制及CNC机床的S、T、M功能控制更显示出其卓越的性能。
PLC控制的步进电机开环伺服机构应用于组合机床自动生产线上的数控滑台控制,可省去该单元的数控系统使该单元的控制系统成本降低70~90%,甚至只占用自动线控制单元PLC的3~5个I/O接口及<1KB的内存。
特别是大型自动线中可以使控制系统的成本显著下降。
2、PLC控制的数控滑台结构一般组合机床自动线中的数控滑台采用步进电机驱动的开环伺服机构。
采用PLC控制的数控滑台由可编程控制器、环行脉冲分配器、步进电机驱动器、步进电机和伺服传动机构等部分组成,伺服传动机构中的齿轮Z1、Z2应该采取消隙措施,避免产生反向死区或使加工精度下降;而丝杠传动副则应该根据该单元的加工精度要求,确定是否选用滚珠丝杠副。
采用滚珠丝杠副,具有传动效率高、系统刚度好、传动精度高、使用寿命长的优点,但成本较高且不能自锁。
3、数控滑台的PLC控制方法数控滑台的控制因素主要有三个:3.1行程控制一般液压滑台和机械滑台的行程控制是利用位置或压力传感器(行程开关/死挡铁)来实现;而数控滑台的行程则采用数字控制来实现。
由数控滑台的结构可知,滑台的行程正比于步进电机的总转角,因此只要控制步进电机的总转角即可。
由步进电机的工作原理和特性可知步进电机的总转角正比于所输入的控制脉冲个数;因此可以根据伺服机构的位移量确定PLC输出的脉冲个数:n=DL/d(1)式中DL——伺服机构的位移量(mm)d——伺服机构的脉冲当量(mm/脉冲)3.2进给速度控制伺服机构的进给速度取决于步进电机的转速,而步进电机的转速取决于输入的脉冲频率;因此可以根据该工序要求的进给速度,确定其PLC输出的脉冲频率:f=Vf/60d(Hz)(2)式中Vf——伺服机构的进给速度(mm/min)可编程逻辑控制器(Programmable Logic Controller,简称PLC),一种具有微处理机的数字电子设备,用于自动化控制的数字逻辑控制器,可以将控制指令随时加载内存内储存与执行。
步进电机运动规律及速度控制方法
![步进电机运动规律及速度控制方法](https://img.taocdn.com/s3/m/3b1137260812a21614791711cc7931b765ce7bdc.png)
步进电机运动规律及速度控制方法该设计的关键是确定脉冲定时tn,脉冲时间间隔即脉冲周期Tn和脉冲频率fn。
假设从启动瞬时开始计算脉冲数,加速阶段的脉冲数为n,并设启动瞬时为计时起点,定时器初值为D1,定时器初值的减量为△。
从加速阶段的物理过程可知,第一个脉冲周期,即启动时的脉冲周期T1=D1/f0,t1=0。
由于定时器初值的修改,第2个脉冲周期T2=(D1-△)/f0=T1-△/f0,脉冲定时t2=T1,则第n个脉冲的周期为:Tn=T1-(n-1)△/f0(1)脉冲定时为:(2)脉冲频率为:1/fn=Tn=T1-(n-1)△/f0(3)上式分别显示了脉冲数n与脉冲频率fn和时间tn的关系。
令△/f0=δ,即加速阶段相邻两脉冲周期的减量,则上述公式简化为:tn=(n-1)T1-(n-2)(n-1)δ/2(4)1/fn=T1-(n-1)δ(5)联立(4)、(5),并简化fn与tn的关系,得出加速阶段的数学模型为:(6)其中,是常数,其值与定时器初值及定时器变化量有关,A=-δ,B=(2T1+δ)2,C=8δ。
加速阶段脉冲频率的变化为:(7)从(6)、(7)式可以看出,在加速阶段,脉冲频率不断升高,且加速度以二次函数增加。
这种加速方法对步进电机运行十分有利,因为启动时,加速度平缓,一旦步进电机具有一定的速度,加速度增加很快。
这样一方面使加速度平稳过渡,有利于提高机器的定位精度,另一方面可以缩短加速过程,提高快速性能。
PWM的主要目的是让电流是正弦波,也就是细分。
他的目的是减小步进电机的震动。
简单地说如果你是用哪种恒定的高电平来驱动步进电机,那么低速情况下,因为步进电机每次都是全速从前一个位置到达下一个位置,因此,实际上步进电机所花费的时间会明显小于你的换相的周期,因此电机会出现震动。
而PWM的目的就是让步进电机加速度别那么快,保证转子从老位置到新位置所花费的时间正好等于换相周期。
并且在这个期间转子的转动速度是基本上恒定的。
步进电机控制方法plc
![步进电机控制方法plc](https://img.taocdn.com/s3/m/789e262f0a1c59eef8c75fbfc77da26924c59651.png)
步进电机控制方法plc随着现代制造业的飞速发展,步进电机作为一种精密控制技术在自动化设备中得到广泛应用,而PLC(可编程逻辑控制器)则是控制步进电机的常见方案之一。
在工业生产中,步进电机的控制方法多种多样,其中结合PLC技术进行控制是一种高效可靠的方式。
本文将介绍一些常见的步进电机控制方法,并分析PLC在这些控制方法中的应用。
正转和反转控制正转和反转控制是步进电机最基本的控制方法之一。
通过控制电机输入的脉冲信号的频率和方向,可以实现步进电机的正转和反转。
在PLC中通常会使用计数器来记录脉冲信号的数量,从而控制电机的转动角度和方向。
通过设定计数器的值和控制脉冲信号的输出频率,可以精确控制步进电机的转动。
速度控制除了控制电机的方向外,控制步进电机的速度也是至关重要的。
在工业自动化系统中,需要根据不同的生产需求来调整步进电机的转速。
PLC可以通过调节输出脉冲信号的频率来实现步进电机的精确速度控制。
通过监控电机的转速并根据实际情况进行调整,可以保证生产过程的稳定性和效率。
位置控制在很多自动化系统中,需要步进电机按照预先设置的位置进行精确定位。
PLC在位置控制中发挥了关键作用。
通过监测电机的位置信息以及输入的控制指令,PLC可以精确地控制步进电机的位置。
在工业生产中,位置控制常常用于需要高精度定位的场景,如自动装配线和自动化仓储系统等。
脉冲控制步进电机的运动是通过输入一定数量的脉冲信号来实现的。
因此,脉冲控制是控制步进电机最基本的方法之一。
PLC通过输出一定频率和数量的脉冲信号,可以精确控制步进电机的运动。
在工业生产中,通常会根据实际需求设定脉冲信号的参数,如脉冲频率、脉冲数量和脉冲方向等,从而实现对步进电机的精确控制。
总结步进电机作为一种精密控制技术,在工业自动化领域具有重要的应用意义。
结合PLC技术可以实现对步进电机的高效控制,包括正转和反转控制、速度控制、位置控制和脉冲控制等。
通过合理设计控制方案并结合PLC的灵活性和可编程特性,可以实现对步进电机运动的精确控制,从而提高生产效率和产品质量。
项目六步进电机运动控制
![项目六步进电机运动控制](https://img.taocdn.com/s3/m/be82b09a90c69ec3d5bb75db.png)
按下开启按纽SB10,步进电机正转,带动机械手或气动手指前行, 按下方向控制按纽SB11,步进电机反转,带动机械手或气动手指 后退,按下停止按钮步进电机停止运行,前进或者后退的过程中行 走的距离只由启停按纽或者单元的机械结构决定。 以同样的方法将程序2下载到PLC中,运行后,不论是正转或者反 转都会行走固定距离后停止。
(2)I/O分配
表6-8 存储单元步进电机I/O分配表
输入 代号 启动按钮SB1 上限位 前限位 后限位
输入点编号 X0 X1 X2 X3
输出 代号 Z轴步进电机脉冲信号 Z轴步进电机方向信号 推进气缸 机械手
输出点编号 Y0 Y1 Y2 Y3
(3)接线图
四、实施步骤
1、步进电机正反转控制一 (1)关闭电源,按照图6-2接线; (2)选择三菱控制系统,打开电源; (3)双击GX-Developer快捷方式,新建工程,FLC系列FXCPU,PLC
(2)I/O分配
表6-3 清洗单元步进电机I/O分配表
代号 滑台汽缸左限位 滑台汽缸右限位
前限位 清洗检测传感器
输入
输入点编号 X0 X1 X2 X3
输出 代号 步进电机脉冲信号 步进电机方向信号 清洗控制 烘干控制 传动机械手 传动升降汽缸 滑台汽缸
输出点编号 Y0 Y1 Y2 Y3 Y4 Y5 Y6
3、脉冲当量计算
(1)关闭电源,按照图6-2接线; (2)选择三菱控制系统,打开电源; (3)双击GX-Developer快捷方式,新建工程,FLC系列FXCPU,PLC
类型FX2N(C),输入参考程序并将其下载到PLC中; (4)调试:打开启动按钮SB10,步进电机行走一段距离后,关闭启动
PLC如何控制步进电机
![PLC如何控制步进电机](https://img.taocdn.com/s3/m/4e0c0f4d4b7302768e9951e79b89680202d86b6a.png)
PLC如何控制步进电机PLC(可编程逻辑控制器)是一种广泛应用于工业自动化领域的控制设备,通过输入/输出模块对各种机电设备进行控制。
在PLC系统中,步进电机是常见的执行元件之一,它具有准确的位置控制和高的加减速性能。
本文将介绍PLC如何控制步进电机,包括步进电机的驱动方式、PLC的控制原理及步进电机控制的程序设计。
一、步进电机的驱动方式1.串行通信驱动方式:步进电机通过串行通信驱动方式与PLC进行通信和控制。
首先,将PLC与串行通信模块相连,通过串行通信模块与步进电机控制器进行通信。
PLC通过串行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。
2.并行通信驱动方式:步进电机通过并行通信驱动方式与PLC进行通信和控制。
与串行通信驱动方式类似,首先将PLC与并行通信模块相连,通过并行通信模块与步进电机控制器进行通信。
PLC通过并行通信模块发送指令,步进电机控制器接收指令后控制步进电机运动。
3.脉冲驱动方式:步进电机通过脉冲驱动方式与PLC进行通信和控制。
在脉冲驱动方式中,需要PLC输出脉冲信号控制步进电机。
通常情况下,PLC将脉冲信号传递给步进电机驱动器,在驱动器中产生相应的控制信号,实现对步进电机的控制。
二、PLC的控制原理PLC作为控制器,一般采用扫描运行方式。
其运行原理如下:1.输入信号读取:PLC将外部输入信号输入到输入模块中,采集输入信号,并将其从输入模块传递给中央处理器(CPU)进行处理。
2. 程序执行:CPU根据事先编写好的程序进行处理,包括数据处理、逻辑运算和控制计算等。
PLC程序一般采用ladder diagram(梯形图)进行编写。
3.输出信号控制:根据程序的执行结果,CPU将处理好的数据通过输出模块发送给外部设备,用于控制和操作外部设备。
三、步进电机控制的程序设计步进电机的控制程序主要包括参数设定、模式选择、起停控制、运动控制等部分。
下面以一个简单的例子来说明步进电机控制的程序设计过程:1.参数设定:首先需要设定步进电机的一些参数,如电机型号、步距角度、运动速度等。
PLC控制步进电机的应用案例
![PLC控制步进电机的应用案例](https://img.taocdn.com/s3/m/41b2e102cfc789eb172dc8de.png)
P L C控制步进电机的应用案例1(利用P L S Y指令)任务:利用PLC作为上位机,控制步进电动机按一定的角度旋转。
控制要求:利用PLC 控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止(电机的轴锁住)。
1、系统接线PLC控制旋转步进驱动器,系统选择/转,设置成N细分后,则1000脉冲/转。
Y1输出,Y3[S1.]用来指定脉冲频率(2~20000Hz),[S2.]指定脉冲的个数(16位指令的范围为1~32767,32位指令则为1~2147483647)。
如果指定脉冲数为0,则产生无穷多个脉冲。
指定脉冲输出完成后,完成标志M8029置1。
如上图所示,当X10由ON变为OFF时,M8029复位,停止输出脉冲。
若X10再次变为ON则脉冲从头开始输出。
注意:PLSY指令在程序中只能使用一次,适用于晶体管输出类型的PLC。
6、控制流程图7、梯形图程序(参考)8、制作触摸屏画面PLC控制步进电机的应用案例2(利用定时器T246产生脉冲)任务:利用步进电机驱动器可以通过PLC端的On和Off就能决定电机的正传或者反转;步进驱动器的其中一个。
Y2;PLC的COM1——GND;B绕组X0X4—频率增加,X5—频率4、制作触摸屏画面PLC控制步进电机的应用案例3(利用FX2N-1PG产生脉冲)任务:应用定位脉冲输出模块FX2N-1PG,通过步进驱动系统对机器人左右、旋转、上下运动进行定位控制。
控制要求:正向运行速度为1000Hz,连续输出正向脉冲,加减速时间为100ms,1、系统接线系统选择外部连接方式。
PLC通过FX2N-1PG控制左右、旋转、上下步进驱动器的其中一个。
VIN端、CP+端、U/D+端——+24VDC; CP-——FP;U/D-——Y4;PLC的COM1端、FX2N-1PG的COM0端——GNDA、A-——电机A绕组;B、B-2、I/O分配。
LC控制步进电机实例图与程序
![LC控制步进电机实例图与程序](https://img.taocdn.com/s3/m/894ee792eff9aef8951e0608.png)
P L C控制步进电机的实例(图与程序)·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。
由于水平有限,本实例采用非专业述语论述,请勿引用。
·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。
·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。
当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。
·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。
·程序如下图:(此程序只为说明用,实用需改善。
)·说明:·在原点时将D8140的值清零(本程序中没有做此功能)·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。
当正转动作到A点时,D8140的值是3000。
此时闭合X1,机械反转动作到B点,也就是-3000的位置。
D8140的值就是-3000。
·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。
·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。
D8140的值为0·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。
《lc步进指令学习》课件
![《lc步进指令学习》课件](https://img.taocdn.com/s3/m/0fa2591c3a3567ec102de2bd960590c69fc3d878.png)
液晶电视定位装置
步进电机应用在液晶电视定位装置中,可 以控制横向、竖向位置。
汽车喷涂机
步进电机在汽车喷涂机中,可以精确控制 油漆气体、喷涂位置,提高汽车喷漆效率。
电流控制和电压控制
1 步进电机的电流控制
2 步进电机的电压控制
可以通过调整电压的大小及单个脉冲的 持续时间来改变电流。通常需要与控制 器进行配合使用。
预波形和加速度
预波形
1. 开环控制,根据电机行走滑动的轨迹 进行预测;
2. 尽可能减少跳步和振动; 3. 提高编码器计数时的准确性。
加速度
步进电机在加速过程中容易出现极性不正导 致的跑错,所以加速度要适中,避免出现问 题。
结语
课程受益
希望大家通过这节课的学习,对步进电机以及 LC步进指令有更加深入的认识,了解其应用领 域,为今后的学习、工作奠定坚实的基础。
《lc步进指令学习》PPT 课件
随着数字化时代的到来,步进电机在工业自动化领域得到越来越广泛的应用。 本课程全方位深入讲解步进电机的工作原理、LC步进指令的优缺点和应用, 帮助学生掌握电路原理和指令编写方法,同时结合实例应用解析,让学习进 程更加生动易懂。
步进电机分类
混合式步进电机
性价比高,操作精度高,适合多用途应用。
通过改变步进电机的绕组电压大小来改 变电机的转速。
LC步进指令优缺点
1
优点
操作相对简单,指令编写容易,适用于低端应用场合。
2
缺点
难以实现高速、准确度要求较高的应用,容易出现抖动。
什么是LC步进指令
LC步进指令是一种常用于步进电机控制的基本控制方式。它将一个完整的步进电机控制周期分为 若干个小步骤进行控制,使用单脉冲控制方式驱动电机。
plc控制步进电机工作原理
![plc控制步进电机工作原理](https://img.taocdn.com/s3/m/72131259f4335a8102d276a20029bd64783e622a.png)
plc控制步进电机工作原理PLC(Programmable Logic Controller)是一种特殊的计算机控制设备,用于自动化系统中对机械或生产设备进行控制。
步进电机是一种常用的电动执行器,其工作取决于外部控制信号和内部的步进电机驱动器。
PLC控制步进电机的工作原理可以分为以下几个步骤:1.PLC输入信号:PLC通过输入模块接收来自传感器或开关的信号,如按钮的状态、光电传感器的输出等。
这些输入信号将被用作步进电机的控制信号。
2.PLC程序:PLC程序是预先编写的软件代码,用于处理输入信号并生成相应的输出信号。
在PLC程序中,可以使用逻辑运算、计数器、定时器等功能块来处理输入信号和生成输出信号。
3.步进电机驱动器:PLC输出信号将通过步进电机驱动器来控制步进电机的运动。
步进电机驱动器是一种专门设计用于驱动步进电机的电子设备,它接收PLC输出信号并将其转换为适合步进电机的控制信号。
4.步进电机运动控制:步进电机驱动器将PLC输出信号转换为适合步进电机的控制信号后,将其发送给步进电机。
步进电机根据接收到的控制信号执行相应的步进运动。
5.输出信号反馈:在步进电机运动期间,PLC可以通过输出模块接收来自步进电机的反馈信号,如位置信息、传感器状态等。
这些反馈信号可以用于进一步的控制决策或监测步进电机运动的状态。
总体而言,PLC控制步进电机的工作原理是将输入信号经过PLC程序处理后生成输出信号,输出信号经过步进电机驱动器转换为步进电机的控制信号,步进电机根据接收到的控制信号执行相应的步进运动,从而实现对步进电机的精确控制。
PLC控制步进电机的工作原理可以更加具体地描述如下:1.从PLC输入模块接收信号:PLC通过输入模块接收来自传感器或开关的信号,如按钮的状态、光电传感器的输出等。
这些输入信号将作为步进电机的控制信号。
2.PLC程序处理输入信号:PLC程序中的逻辑运算、计数器、定时器等功能块将处理输入信号,并根据处理结果生成相应的输出信号,用于步进电机的控制。
PLC控制步进电动机运行案例
![PLC控制步进电动机运行案例](https://img.taocdn.com/s3/m/6a75eb4377c66137ee06eff9aef8941ea76e4b83.png)
PLC控制步进电动机运行案例PLC(可编程逻辑控制器)是一种用于自动化控制系统的工业电子设备,通过程序控制各种工业设备的运行和逻辑控制。
步进电动机是一种精密控制的电动机,可以根据脉冲信号的输入旋转指定的角度。
本文将介绍如何使用PLC控制步进电动机的运行,并给出一个实际的案例。
1.系统设计:要实现PLC控制步进电动机运行,首先需要设计一个系统,包括PLC 控制器、步进电动机、电源和传感器等。
PLC将通过编程控制步进电动机的旋转方向、速度和位置,从而实现精确的运动控制。
2.PLC编程:在PLC编程软件中,我们首先需要设置输入和输出点,用于连接步进电动机和传感器。
然后编写程序,通过控制输出点发送脉冲信号控制步进电动机的旋转。
例如,我们可以设计一个简单的程序,使步进电动机按照固定的角度旋转,然后停止。
步骤如下:1)设置输入点:连接PLC与步进电动机的控制信号线,用于接收启动和停止信号。
2)设置输出点:连接PLC与步进电动机的脉冲信号线,用于控制步进电动机的旋转方向和速度。
3)编写程序:在PLC编程软件中编写程序,设置脉冲信号的频率和方向,控制步进电动机按照指定的角度旋转。
4)调试程序:在调试模式下测试程序,验证步进电动机是否按照设计的参数正确运行。
3.实际案例:假设我们要控制一个步进电动机旋转180度,然后停止。
以下是一个简单的PLC程序示例:1)设置输入点I0为启动信号,输入点I1为停止信号;2)设置输出点Y0为脉冲信号控制步进电动机的旋转;3)编写程序如下:```LDI0OUTY0DELAY1000OUTY0NOP```4)启动程序后,PLC将检测I0信号,如果为高电平(启动信号),则输出Y0脉冲信号控制步进电动机旋转180度;然后延迟1秒后,停止输出脉冲信号,步进电动机停止旋转。
通过以上案例,我们可以看到如何使用PLC控制步进电动机的运行。
PLC具有灵活的编程功能和稳定的性能,可以实现精确的运动控制和自动化生产。
PLC实现步进电机的正反转和调整控制
![PLC实现步进电机的正反转和调整控制](https://img.taocdn.com/s3/m/30fa490fff4733687e21af45b307e87100f6f877.png)
PLC实现步进电机的正反转和调整控制PLC(可编程逻辑控制器)是一种电子设备,用于控制工业自动化系统中的运动和操作。
步进电机是一种常用的驱动器,它的旋转运动是通过一步一步地前进来实现的。
本文将探讨如何使用PLC来实现步进电机的正反转和调整控制。
步进电机的正反转控制是通过改变电机绕组的相序来实现的。
在PLC 中,我们可以使用输出模块来控制电机的相序。
以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。
确保正确连接。
2.编程PLC:使用PLC编程软件,编写一个控制程序来实现电机的正反转。
首先,定义输出模块的输出信号来控制电机。
然后使用程序语言来编写逻辑控制指令,根据需要来改变输出信号的状态。
为了实现正反转,需要改变输出信号的相序。
3.实现正反转控制:在编程中,定义一个变量来控制步进电机的运动方向。
当变量为正值时,电机正转;当变量为负值时,电机反转。
根据变量的值来改变输出模块的输出信号,以改变电机的相序。
4.运行程序:将PLC连接到电源,并加载程序到PLC中。
启动PLC,程序将开始运行。
通过改变变量的值,我们可以控制电机的正反转。
除了控制步进电机的正反转,PLC还可以实现步进电机的调整控制。
调整控制是通过改变电机的步距和速度来实现的。
以下是步骤:1.配置PLC硬件:在PLC中插入输出模块,并与电机的各个相连接。
与正反转控制相同,确保正确连接。
2.编程PLC:使用PLC编程软件编写控制程序。
首先,定义输出模块的输出信号来控制电机的相序。
然后,使用程序语言来编写逻辑控制指令,根据需要改变输出信号的状态。
为了实现调整控制,需要改变输出信号的频率和占空比。
3.实现调整控制:在编程中,定义两个变量来控制电机的步距和速度。
步距变量控制电机每一步的距离,速度变量控制电机的旋转速度。
根据变量的值来改变输出模块的输出信号,以改变电机的相序,并控制步距和速度。
4.运行程序:将PLC连接到电源,并加载程序到PLC中。
PLC与步进电机的运动控制
![PLC与步进电机的运动控制](https://img.taocdn.com/s3/m/db423145df80d4d8d15abe23482fb4daa58d1d08.png)
04
运动控制算法介绍
运动控制算法的定义与分类
定义
运动控制算法是指用于控制机械设备按照预设轨迹或模式进 行运动的算法。
分类
根据不同的分类标准,运动控制算法可以分为多种类型,如 基于物理模型的算法、基于规则的算法、基于学习的算法等 。
常见的运动控制算法介绍
PID控制算法
PID控制算法是一种经典的控制算 法,通过比例、积分和微分三个 环节来调整输出,以达到对被控 对象的精确控制。
步进电机具有快速启动、停止和反转 的能力,且定位精度高,控制简单, 广泛应用于自动化设备和数控机床等 领域。
步进电机的工作原理
01
步进电机由定子和转子组成,定子上有多个励磁绕 组,转子由软磁材料制成。
02
当给定子绕组按一定顺序通电时,转子会按通电顺 序产生旋转力矩,从而实现步进运动。
03
步进电机的旋转方向和旋转角度取决于输入脉冲的 相序和数目。
PLC控制步进电机的基本原理是将 PLC输出的脉冲信号通过驱动器驱动 步进电机转动,同时通过编码器反 馈实现闭环控制。
PLC控制步进电机的实现方式
硬件连接
将PLC的输出端口与步进电机的驱动器连接,驱动器再与 步进电机连接,同时将编码器的反馈信号接入PLC的输入 端口。
编程实现
通过PLC编程软件,编写控制程序,实现对步进电机的精 确控制。程序中需要包括对步进电机的启动、停止、方向 控制、速度调节等操作的控制逻辑。
PLC的编程语言和开发环境
编程语言
PLC的编程语言主要有指令表(IL)、 梯形图(LD)、顺序功能图(SFC) 等。
开发环境
常见的PLC开发环境有西门子的STEP 7、三菱的GX Works、欧姆龙的CXProgrammer等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/5
16
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
2021/3/5
7
(2)步进电机驱动器 本系统中采用两相混合式步进电机驱动器 YKA2404MC 细分驱动器, 其外形如图所示。
2021/3/5
8
(3)步进电机驱动器的端子与接线
2021/3/5
9
2021/3/5
10
(4).步进电机驱动器的细分设定 YKA2404MC步进电机驱动器共有6个细分设定开关。
2021/3/5
4
(2)常用术语 步进角:每输入一个电脉冲信号时转子转过的角度称为步进角
。步进角的大小可直接影响电机的运行精度。 整步:最基本的驱动方式,这种驱动方式的每个脉冲使电机移
动一个基本步矩角。例如:标准两相电机的一圈共有200个步矩角, 则整步驱动方式下,每个脉冲使电机移动1.8°。
半步:在单相激磁时,电机转轴停至整步位置上,驱动器收到 下一个脉冲后,如给另一相激磁且保持原来相继续处在激磁状态, 则电机转轴将移动半个基本步矩角,停在相邻两个整步位置的中间 。如此循环地对两相线圈进行单相然后两相激磁,步进电机将以每 个脉冲半个基本步矩角的方式转动。
的技术,典型的运动控制系统由三部分组成:控制部分、驱动部分和 执行部分。
2021/3/5
3
步进电机的运行要有一电子装置进行驱动,这种装置就是步进电 机驱动器,它是把控制系统发出的脉冲信号,加以放大以驱动步进电 机。步进电机的转速与脉冲信号的频率成正比,控制步进电机脉冲信 号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机 精确定位。
2021/3/5
25
设A点位置通过元件VD0设定,数据范围为0~200mm。按下启动按 钮,比较小车当前所在位置和A点位置坐标,若小车当前所在位置大于 A点位置坐标,则控制小车向右运行,运行到两个位置值相等时产生一 个中断,使小车立即停止。若小车当前所在位置小于A点位置坐标,则 控制小车向左运行,运行到两个位置值相等时产生一个中断,使小车 立即停止。若小车当前位置与A点位置相同,则按下启动按钮后,小车 停止5s后返回到原点。
2021/3/5
6
2、步进电机
(1)步进电机的选型 a、驱动器的电流。电流是判断驱动器能力大小的依据,是选择驱 动器的重要指标之一,通常驱动器的最大额定电流要略大于电机的额定 电流,通常驱动器有2.0、35、6.0和8.0A。 b、驱动器的供电电压。供电电压是判断驱动器升速能力的标志, 常规电压供给有24V(DC)、40V(DC)、60V(DC)、80V(DC)、 110V(AC)、220V(AC)等。 c、驱动器的细分。细分是控制精度的标志,通过增大细分能改善 精度。步进电机都有低频振荡的特点,如果电机需要工作在低频共振区 工作,细分驱动器是很好的选择。此外,细分和不细分相比,输出转矩 对各种电机都有不同程度的提升。
(1)按下回原点按钮,小车运行至原点后停止,此时小车所处的位 置坐标为0。系统启动运行时,首先必须找一次原点位置。
(2)当小车碰到左限位或右限位开关动作时,小车应立即停止。
ห้องสมุดไป่ตู้
2021/3/5
22
(3)设定A位置对应坐标值。按下启动按钮,小车自动运行到A点 后停止5s,再自动返回到原点位置结束。运行过程中若按停止按钮则 小车立即停止,运行过程结束。
2021/3/5
5
细分:细分就是指电机运行时的实际步矩角是基本步矩角的几分 之一。如:驱动器工作在10细分状态时,其步矩角只为电机固有步矩 角的十分之一,也就是说:当驱动器工作在不细分的整步状态时,控 制系统每发一个步进脉冲,电机转动1.8°,而用细分驱动器工作在 10细分状态时,电机只转动了0.18°。细分功能完全是由驱动器靠精 度控制电机的相电流所产生的,与电机无关。
2021/3/5
19
项目二:运动小车自动往返控制。
按下启动按钮后,要求小车能自动往返运行。按下停止按钮或碰 到左右极限开关,小车自动停止。
I/O分配如表示。设Q0.1为OFF时小车往左运行,为ON时小车往右 运行。
2021/3/5
20
2021/3/5
21
五、基于PLC与步进电机的位置闭环控制
用PLC的Q0.0向步进电机发出高速脉冲串,步进电机驱动器驱动 步进电机带动小车运行。小车运行轨迹上安装有位移检测的DA-300光栅 尺,在轨道上安装有左、右限位开关和原点开关,从原点至右行程限位 开关距离小于光栅尺的测量距离。编程实现以下功能:
传统机械按键结构层图:
按键
PCBA
开关键
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公 差,以防按键手感不良。
2021/3/5
18
控制程序如图所示。
第5讲 PLC与步进电机的运动控制
一、运动小车装置介绍 二、运动控制与步进电机 三、光栅尺 四、基于PLC与步进电机的小车自动往返控制 五、基于PLC与步进电机的位置闭环控制
2021/3/5
1
一、运动小车装置介绍
2021/3/5
2
二、运动控制与步进电机
1、运动控制
(1)运动控制系统简介 运动控制系统是一门有关如何对物体位置和速度进行精密控制
2021/3/5
11
2021/3/5
12
三、光栅尺
光栅尺是用来检测位移的元件,下面以型号为KA-300为例介绍光栅 尺的使用。该光栅尺输出信号为脉冲信号,通过PLC对该高速脉冲进行 高速计数即可实现位移的检测。
2021/3/5
13
KA-300光栅尺的参数,该光栅尺在物理位置上有三个Z相脉冲输出点, 相临两点的距离为50mm,Z相每发出一个脉冲,A相或B相就发出2500 个脉冲。 可通过A相与B相的超前与滞后来分析物体运行的方向。通过 PLC对A相或B相的脉冲计数就可以计算出物体所在的位置。A相、B相正 交脉冲与Z相脉冲波形图如图所示,在该图中,A相脉冲超前于B相脉冲。
2021/3/5
26
2021/3/5
(a)主程序
27
2021/3/5
(a)主程序
28
2021/3/5
(a)主程序
29
2021/3/5
(a)主程序
30
2021/3/5
(b)运行子程序
31
2021/3/5
(c)停止子程序
32
2021/3/5
(d)中断停止程序
33
(4)用光栅尺来检测小车位移。 (5)设小车的有效运行轨道为200mm,原点位置坐标为0点。
2021/3/5
23
I/O分配及接线图如图所示。Q0.0输出高速脉冲控制小车运行速度, Q0.1控制小车的运行方向。Q0.1为OFF时小车往左运行,为ON时小车往 右运行。
2021/3/5
24
分析:用A、B相正交高速计数器对光栅尺的A、B相输出脉冲进行高 速计数。对高速计数器选择4X计数速率。则高速计数器从0计数到10 000个脉冲对应的位移变化为50mm,所以1mm对应的脉冲数为200个。 若设定A位置的坐标值为60mm,则对应的高速计数器的当前值为12 000。
2021/3/5
14
光栅尺与PLC按如图进行连接。
2021/3/5
15
四、基于PLC与步进电机的小车自动往返控制
项目一:步进电机正反转控制
用S7-200 PLC控制步进电机正转与反转。把步进电机驱动器的D2 设置为OFF,即PU为步进脉冲信号,DR为方向控制信号。PLC的Q0.0输 出高速脉冲至步进电机驱动器的PU端,Q0.1控制步进电机反转。对应 小车的运行各输出点分配如下: