减少焊接变形的焊接工艺方法
焊接结构件焊接变形的控制
焊接结构件焊接变形的控制摘要:焊接是通过加热或加压的方式,将两个工件的原子进行结合,使工件连接到一起的一种加工艺。
焊接在人们的生产生活中应用较为广泛,无论对于金属物质还是非金属物质都可应用。
内应力指的是物体在没有收到外力的情况下,自身存在的应力,它在物体内部自相平衡,也就是说,物体内部的应力相加为零;而焊接应力指的是在焊接过程中,焊件内存在的应力;焊接变形指的是在进行焊接时,由于焊件受热不均匀或温度场不均匀导致焊件发生形变。
基于此,本文将对焊接结构件焊接变形的控制对策进行分析。
关键词:焊接变形;机械制造;措施1焊接变形的机理在众多的焊接方法当中,电弧焊由于设备轻便,搬运灵活,适合于钢结构的施工作业等特点,成为主要的焊接方法。
电弧焊就是在钢构件连接处,借助电弧放电所产生的高温,将置于焊缝部位的焊条或焊丝金属熔化,同时将工件的表面熔化,形成焊接熔池,将两块分离的金属熔合在一起,从而获得牢固接头的焊接方法。
在施焊过程中,焊件会发生变形,这种变形是暂时性的。
当焊接完毕以后,构件完全冷却,会有一部分变形残留下来,形成焊接变形。
焊接变形的实质取决于两个方面,一是焊缝区的熔融焊缝金属在冷却凝固收缩时产生了变形,导致构件发生纵向、横向或者角变形;二是焊缝区以外的焊件区域。
由于熔融焊缝金属会将高温传递到焊件上,在焊件上形成热影响区,焊件在被加热和随后冷却的过程中产生变形,这种变形是一种单纯的热变形,如果焊件的热变形受到本身的刚度限制,就会引起焊件的变形。
2焊接变形产生的影响首先,对静载荷的影响。
在焊接构件中,当纵向拉伸的残余应力较高时,可以拉近某些材料的屈服强度。
当受到外在工作应力时,同方向的应力会进行相互叠加,就会使该区域发生变形,导致工件不能继续承载外力,使焊接构件的有效承载面积减少。
其次,对刚度的影响。
在焊接构件中,如果内应力方向与外载荷方向是一致的,当受到外载荷作用时,焊接工件的刚度就会下降。
并且焊接工件所发生的变形在卸载之后是无法进行恢复的。
如何控制钢板焊接角变形的方法
如何控制钢板焊接角变形的方法
1. 选择合适的焊接工艺:根据钢板的材质、厚度和设计要求,选择适当的焊接工艺,如TIG焊接、MIG焊接、电弧焊接等。
2. 使用预热和后热处理:在焊接前对钢板进行适当的预热可以减少焊接时的热应力,降低变形的概率。
焊接后进行后热处理,逐渐降低钢板温度,使其冷却均匀,有助于减少焊接后的变形。
3. 控制焊接顺序和焊接层数:合理控制焊接的顺序和层数,尽量使焊接残余应力均匀分布,减小钢板的变形。
4. 使用焊接夹具:焊接夹具可以固定和支撑钢板,在焊接过程中稳定工件的形状,减少变形的可能性。
5. 使用预拉力:通过在焊接之前施加适当的预拉力,可以在焊接过程中减小变形的程度。
6. 选择合适的焊接参数:根据钢板的材质和厚度,调整焊接电流、电压、速度等参数,以实现最佳焊接质量和减小变形。
需要注意的是,钢板焊接角的变形是正常的现象,完全消除变形是很困难的。
以上方法可以帮助减小变形的程度,但根据具体情况可能需要综合应用多种方法才能得到满意的效果。
消除焊接变形的方法
焊接变形是焊接过程中常见的问题,它可能对焊接结构的形状、尺寸、精度和稳定性产生不利影响。
为了消除焊接变形,可以采取以下几种方法:
反变形法:在焊接前或焊接过程中,人为地使焊件产生与焊接变形相反的变形,以抵消焊接变形。
这种方法需要在焊接前或焊接过程中精确计算和控制反变形量,才能达到预期的效果。
刚性固定法:将焊件固定在具有足够刚性的夹具或支撑物上,以防止焊接变形。
这种方法适用于小型、简单的焊件,但对于大型、复杂的焊件,由于刚性固定可能会产生较大的应力,因此需要采取其他措施来消除应力。
锤击法:在焊接过程中,使用锤击或振动焊件的方法来消除焊接变形。
这种方法需要在焊接过程中精确控制锤击或振动的力度和频率,以避免对焊件造成过大的损伤。
加热法:在焊接前或焊接过程中,对焊件进行局部或整体加热,以消除焊接变形。
这种方法需要在加热过程中精确控制加热的温度和范围,以避免对焊件造成过大的损伤。
机械校正法:在焊接后,使用机械工具对焊件进行校正,以消除焊接变形。
这种方法需要在机械校正过程中精确控制校正的力度和方向,以避免对焊件造成过大的损伤。
化学校正法:在焊接后,使用化学剂对焊件进行校正,以消除焊接变形。
这种方法需要在化学校正过程中精确控制化学剂的种类、浓度和作用时间,以避免对焊件造成过大的损伤。
以上是消除焊接变形的几种常见方法,可以根据不同的焊接情况选择合适的方法。
无论采用哪种方法,都需要在焊接过程中严格控制工艺参数,以避免产生过大的焊接变形。
降低焊接应力工艺措施口诀
降低焊接应力工艺措施口诀焊接应力是在焊接过程中产生的应力,它会对焊接部件造成变形和应力集中,进而影响焊接接头的质量和使用寿命。
为了降低焊接应力,提高焊接质量,需要采取一系列工艺措施。
本文将逐步介绍降低焊接应力的口诀和相应的工艺措施。
一、合理规划焊接顺序1. 确定焊接顺序时,应从内向外焊接,从中心向两侧进行,依次进行焊接。
从内向外焊接可以减少焊接应力在焊接过程中的积累,降低变形的程度。
2. 将大尺寸焊接件分成多个小尺寸的焊缝,分别进行焊接。
这样可以减少焊接应力的集中,降低焊接部件变形的可能。
二、控制预热温度和焊接速度1. 预热是降低焊接应力的重要手段之一。
在焊接前对焊接件进行预热,可以改善焊接材料的塑性和可变形性,从而降低焊接应力。
预热温度需要根据焊接材料的种类和厚度来确定。
2. 焊接速度过快会使焊接区域产生较大的温度梯度,增加焊接应力。
为了降低焊接应力,需要控制焊接速度,使其适中。
三、合理选择焊接参数1. 焊接电流和电压的选择应根据焊接材料和厚度进行合理调整。
通常情况下,较小的焊接电流和较低的电压可以减少焊接应力。
2. 控制焊接过程中的热输入量,避免过热和焊接过程中的温度梯度过大。
四、应用适当的焊接辅助材料1. 选用合适的焊接填充材料,如焊条或焊丝。
这些填充材料应具有良好的塑性和可变形性,能够有效缓冲焊接应力,减少变形。
2. 引入焊接辅助材料,如夹具、临时焊接支撑物等,来限制和平衡焊接变形。
五、采取后焊热处理措施1. 通过后焊热处理可以缓解焊接应力,改善焊接接头的组织结构和性能。
常用的后焊热处理方法包括回火、时效处理等,需根据具体情况选择合适的方法。
2. 后焊热处理一般需要在焊接完成后进行,但也可以在焊接过程中进行局部热处理,以降低焊接应力。
降低焊接应力是确保焊接接头质量和使用寿命的关键。
通过合理规划焊接顺序,控制预热温度和焊接速度,选择合适的焊接参数和辅助材料,以及采取后焊热处理措施,我们可以有效降低焊接应力,减少焊接变形,提高焊接质量。
H型钢焊接变形的控制与矫正
H型钢焊接变形的控制与矫正H型钢是一种常见的结构钢材,由于其截面形状复杂,易于变形,因而在焊接过程中容易产生焊接变形。
焊接变形对于结构的力学性能和外观质量都有较大的影响,因此控制和矫正焊接变形是重要的工作。
焊接变形的控制主要从以下几个方面进行:1.焊接参数的控制:合理选择焊接电流、电压、焊接速度等焊接参数,以控制焊接热输入,减少焊接变形的产生。
尤其要注意控制加热输入不过高,避免产生过大的热应力引起变形。
2.焊接顺序的控制:根据焊接工艺要求,合理安排焊接顺序,采用交替焊接、分段焊接等方法,以减少焊接热量集中在局部产生变形。
3.夹具和辅助设备的设计:对于大型、厚板的焊接,可以采用夹具或辅助设备来固定工件,减少变形的产生。
4.预热和后热处理的控制:对于材料容易变形的焊接接头,可以在焊接前进行适当的预热,以减少焊接热应力的产生。
焊接后,可以进行适当的后热处理,消除残余应力,进一步减少变形。
焊接变形的矫正主要通过以下几种方法实现:1.冷作矫正:利用机械力对焊接件进行冷加工,通过对拉伸或压缩变形的过程,使焊接件恢复原来的形状。
这种方法适用于小变形的焊接件。
2.局部加热矫正:对于焊接变形较大的焊接件,可以采用局部加热的方法进行矫正。
通过加热焊接变形处,使其温度升高,然后通过施加力进行矫正,使焊接件回复原来的形状。
3.整体加热矫正:对于较大的焊接件,可以采用整体加热的方法进行矫正。
通过对焊接件整体加热,使其温度升高,然后通过施加力进行矫正,使焊接件回复原来的形状。
控制焊接变形和矫正焊接变形是确保焊接质量的重要步骤。
通过合理选择焊接参数、控制焊接顺序、设计夹具和辅助设备、进行预热和后热处理等措施,可以有效地控制焊接变形的产生。
而通过冷作矫正、局部加热矫正和整体加热矫正等方法,可以对焊接变形进行矫正,保证焊接件的力学性能和外观质量,提高产品的可靠性和安全性。
焊接变形原因及控制方法
焊接变形原因及控制方法焊接是一种常见的金属连接方法,但在实际应用中,我们常常会遇到焊接件变形的问题。
本文将探讨焊接变形的原因以及控制方法,帮助读者更好地理解和解决这一问题。
一、焊接变形的原因1. 焊接过程中的温度梯度:焊接时,焊缝区域受到高温的加热,而其它部位则保持较低的温度。
这种温度梯度会导致焊接件产生热应力,从而引起变形。
2. 残余应力的存在:焊接后,冷却过程中会产生残余应力。
这些应力会引起焊接件的变形,尤其是在焊接接头附近。
3. 材料的物理性质:不同材料在焊接过程中会由于热影响区域的不同导致不同的变形情况。
例如,具有较高热膨胀系数的材料在焊接后更容易发生变形。
二、焊接变形的控制方法1. 优化焊接工艺:通过合理安排焊接顺序、增加焊缝长度等方式来减小温度梯度,从而降低焊接变形的发生。
2. 使用预应力技术:在焊接过程中引入预应力,可以通过反向应力来抵消残余应力,从而减小焊接件的变形。
3. 控制焊接变形方向:合理预测焊接变形的方向,并采取相应的措施来控制变形。
例如,在设计中合理选择焊接结构和间隙,减小焊接残余应力对结构的影响。
4. 应用补偿技术:通过在焊接过程中进行额外的加工,例如机械加工或热处理等,来消除或减小焊接变形。
5. 使用支撑和夹具:通过设置支撑物或夹具来限制焊接件的变形,保持其形状和位置。
6. 使用适合的焊接方法:不同的焊接方法具有不同的变形控制效果。
在实际应用中,应根据具体情况选择适当的焊接方法,以减小焊接变形。
三、小结焊接变形是焊接过程中常见的问题,其产生原因主要包括温度梯度、残余应力和材料的物理性质。
为了控制焊接变形,我们可以通过优化焊接工艺、使用预应力技术、控制变形方向、应用补偿技术、使用支撑和夹具以及选择适合的焊接方法等方式进行控制。
只有在理解了焊接变形的原因并采取相应的措施后,我们才能更好地解决这一问题,并获得满意的焊接结果。
通过本文的探讨,相信读者对焊接变形的原因及其控制方法有了更深入的了解,这将有助于在实践中更好地应对焊接变形问题。
防止和减少焊接残余变形与应力的措施
防止和减少焊接残余变形与应力的措施随着现代制造业的发展,焊接在各行各业中扮演着至关重要的角色。
无论是航空航天、汽车制造还是建筑工程,在这些领域中,焊接都是不可或缺的连接工艺。
然而,随之而来的焊接残余变形与应力问题也愈加引起人们的关注。
焊接过程中产生的残余变形与应力,不仅会影响工件的外观质量,还可能引发裂纹和变形等问题,严重影响其使用性能和寿命。
如何有效地预防和减少焊接残余变形与应力,成为了焊接工艺中的重要课题。
1.选材:材料的选择对于焊接残余变形和应力的控制至关重要。
在焊接过程中,通常会选择具有较高熔点和较小线膨胀系数的材料,以减少焊接时热影响区的热变形;还应根据实际情况选择合适的填充材料。
2.焊接方式:合理选择焊接方式是减少焊接残余变形和应力的关键。
一般来说,采用低热输入、低变形的焊接方式,例如脉冲焊、激光焊等,能够有效降低焊接工件的残余变形和应力。
3.焊接顺序:合理规划焊接顺序也是减少残余变形和应力的重要手段。
通常情况下,应该首先焊接边缘,然后逐渐向内焊接,以减少焊接区域的热输入,降低残余变形和应力。
4.预热和后热处理:在一些情况下,通过预热和后热处理也能有效减少焊接残余变形和应力。
预热能够降低材料的硬度,减少焊接残余应力;后热处理则能够通过回火或退火处理,消除残余应力,提高焊接接头的韧性和稳定性。
5.夹具和辅助装置:采用合理的夹具和辅助装置也能有效减少焊接残余变形和应力。
夹具的设计应在尽量避免约束工件的能够保证焊接接头的稳固性;而辅助装置则可以提供额外的支撑,减少工件在焊接过程中的变形。
总结回顾:在焊接工艺中,预防和减少焊接残余变形与应力是至关重要的。
通过合理选材、焊接方式、焊接顺序、预热和后热处理、夹具和辅助装置等措施,可以有效控制焊接过程中的残余变形和应力,保证焊接接头的质量和稳定性。
个人观点:作为焊接工艺的重要环节,防止和减少焊接残余变形与应力对于提高焊接接头的质量和稳定性至关重要。
控制变形及减小消除焊接应力的方法
控制变形及减小消除焊接应力的方法一、控制焊接变形的方法1、设计措施(1)选择合理的焊缝尺寸:焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。
(2)尽量减少焊缝数量;适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。
(3)合理安排焊缝位置:焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。
(4)预留收缩余量:焊件焊后纵向横向收缩变形可通过对焊缝收缩量的估算,在设计时预先留出收缩余量进行控制。
(5)留出装焊卡具的位置:在结构上留有可装焊夹具的位置,以便在焊接过程中可利用夹具来控制技术变形。
2、反变形法(1)板厚8~12mm钢板单边V型坡口对接焊,装配时反变形1.5°焊接后几乎无角变形。
(2)工字梁焊后因横向收缩引起的角变形,若采用焊前预先把上、下盖板压成反变形(塑性变形),然后装配后进行焊接,即可消除上、下盖板的焊后角变形。
但是上下盖板反变形量的大小主要与该板的厚度和宽度有关,同时还与腹板厚度和热输入有关。
(3)锅炉、集装箱的管接头都集中在上部,焊后引起弯曲变形所以要借用强制反变形夹紧装置,并配以对称均匀加热的痕迹顺序,交替跳焊法这样采用了在外力作用下的弹性反变形再配合以合理的受热的施焊顺序,焊后基本上可消除弯曲变形。
(4)桥式起重机的两根主梁是由左、右腹板和上、下盖板组成的箱型结构的为提高该梁的刚性,梁内设计有大、小肋板,且这些肋板角焊缝大多集中在梁的上部,焊后会引起下桡弯曲变形。
但桥式起重机技术要求规定,主梁焊后应有一定的上拱度,为解决焊后变形与技术要求的矛盾,常采用预制腹板上拱度的方法,即在备料时,预先使两块腹板留出上拱度。
焊接变形的主要形式
焊接变形的主要形式
焊接变形是由于热输入和冷却引起的,在焊接过程中,焊缝和母材受到热变形和冷却收缩的影响,从而导致材料的形状发生变化。
主要的焊接变形形式包括以下几种:
1.线形变形(拉伸或收缩):这是焊接最常见的变形形式。
焊接过程中,热输入会使焊缝和母材变热膨胀,当冷却时,会产生线形拉伸或收缩。
这种变形可以导致焊接材料的长度增加或减少。
2.弯曲变形:弯曲变形是由于不均匀的热输入引起的,其中焊接接头的一侧受到更多的热影响,从而导致焊缝区域的弯曲。
3.翘曲变形:翘曲变形是焊接材料的一侧受到较多的热输入,使其膨胀,而另一侧受到较少的热输入,导致焊接材料呈现弯曲或翘曲的形状。
4.转动变形:在角接头的焊接中,热输入可能导致角度的变化,从而使工件在角度上发生旋转。
5.板材变形:焊接过程中,大型板材可能会因为不均匀的热输入而导致板材整体发生变形,如扭曲和翘曲。
6.螺旋扭曲变形:这种变形通常发生在长焊缝上,焊接后,焊缝可能呈现螺旋形的扭曲。
为减少焊接变形,可以采取以下措施:
使用适当的夹具和支撑结构,以固定工件的位置。
控制焊接参数,如焊接电流、电压和焊接速度,以减少热输入。
使用预热和后热处理来减少热应力。
采用适当的焊接序列,以平衡热输入。
使用应力释放切口或减小焊缝的尺寸。
注意,不同类型的焊接工艺和焊接材料可能会产生不同类型的变形,因此需要根据具体情况采取相应的措施来减少变形。
防止焊接变形的方法
焊接变形是焊接过程中常见的问题之一,可能会导致焊接件的尺寸偏差、形状变形等问题。
以下是一些防止焊接变形的方法:
1. 预热焊接件:在进行焊接前,可以先对焊接件进行预热,以减少焊接时的热应力和变形。
预热温度和时间应根据材料和焊接方式来确定。
2. 采用合适的焊接方法:不同的焊接方法会产生不同的热影响区域和热应力,因此需要选择适合的焊接方法。
例如,对于较薄的材料,可以采用冷焊接方法,而对于较厚的材料,则可以采用热输入较小的热熔焊等焊接方法。
3. 采用预热夹具:在进行焊接前,可以采用预热夹具对焊接件进行预热,以减少焊接时的热应力和变形。
4. 控制焊接速度和热输入:焊接速度和热输入对焊接变形也有较大的影响。
应根据材料和焊接方式来控制焊接速度和热输入,以减少焊接变形的发生。
5. 采用反变形措施:在焊接完成后,可以采用反变形措施,例如对焊接件进行退火或加热,以消除焊接变形。
同时,也可以采用一些特殊的工艺措施,例如使用支撑物或夹具等,来减少焊接件的变形。
减少焊接应力与变形的工艺措施
焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。
焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。
减少焊接应力与变形的工艺措施主要有:
一、预留收缩变形量。
根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊后工件达到所要求的形状、尺寸。
二、反变形法。
根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。
三、刚性固定法。
焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。
此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。
四、选择合理的焊接顺序。
尽量使焊缝自由收缩。
焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。
如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形。
五、锤击焊缝法。
在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。
六、加热“减应区”法。
焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。
七、焊前预热和焊后缓冷。
预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。
(焊接网 )。
焊接变形的产生和防止
焊接变形的产生和防止焊接变形的产生和防止手工电弧焊接过程中的变形成因及对策在工业生产中,焊接作业特别是手工电弧焊作业作为制造、修理的一种重要的工艺方法得到越来越广泛的运用。
同时,由于手工电弧焊自身的焊接特点必然引起其焊接变形较大,如不对其变形的原因进行分析并针对其成因提出有效的对策,必将给生产带来极大的危害。
一、手工电弧焊接过程中的变形成因我们知道,手工电弧焊接过程中的焊接电弧由在两个电极之间的气体介质中产生持久的放电现象所产生的。
电弧的产生是先将两电极相互接触而形成短路,由于接触电阻和短路电流产生电流热效应的结果,使两电极间的接触点达到白热状态,然后将两电极拉开,两电极间的空气间隙强烈地受热,空气热作用后形成电离化;与此同时,阴极上有高速度的电子飞出,撞击空气中的分子和原子,将其中的电子撞击出来,产生了离子和自由电子。
在电场的作用下,阳离子向阴极碰撞;阴离子和自由电子向阳极碰撞。
这样碰撞的结果,在两电极间产生了高热,并且放射强光。
电弧是由阴极区(位于阴极)、弧柱(其长度差不多等于电弧长度)和阳极区(位于阳极)三部分所组成。
阴极区和阳极区的温度,主要取决于电极的材料。
一般地,随电极材料而异,阴极区的温度大约为2400K—3500K,而阳极区大约为2600K—4200K,中间弧柱部分的温度最高,约为5000K—8000K。
焊接接头包括焊缝和热影响区两部分金属。
焊缝金属是由熔池中的液态金属迅速冷却、凝固结晶而成,其中心点温度可达2500℃以上。
靠近焊缝的基本金属在电弧的高温作用下,内部组织发生变化,这一区域称为热影响区。
焊缝处的温度很高,而稍稍向外则温度迅速下降,热影响区主要由不完全熔化区、过热区、正火区、不完全正火区、再结晶区和蓝脆区等段组成,热影响区的宽度在8—30 mm范围内,其温度从底到高大约在500 ℃--1500℃之间。
金属结构内部由于焊接时不均匀的加热和冷却产生的内应力叫焊接应力。
由于焊接应力造成的变形叫焊接变形。
焊接变形控制方法
焊接变形控制方法焊接变形是指在焊接过程中,由于焊接热量的作用,导致工件发生变形。
焊接变形不仅影响外观和尺寸精度,还可能导致工件的力学性能降低或破坏。
因此,控制焊接变形是焊接工艺中的一个重要问题。
焊接变形的控制方法可以分为几个方面:1. 选用合适的焊接工艺:合适的焊接工艺可以减小热输入,减少焊接变形。
一般来说,低热输入的焊接方法,如TIG焊、脉冲MIG焊等,会比高热输入的焊接方法,如电弧焊、气焊等,产生更小的变形。
2. 控制焊接参数:控制焊接参数,如电流、电压、焊接速度等,可以调节焊接热量的输入,从而控制焊接变形。
通常需要根据具体情况进行试验和优化,找到一个合适的参数组合。
3. 采用适当的焊接顺序:焊接顺序的选择可以减小残余应力和变形。
一般来说,从中心向两侧对称地焊接,或者采用逆序焊接等方法,可以减小焊接变形。
4. 使用夹具和焊接变形补偿:使用合适的夹具和焊接变形补偿方法,可以在焊接过程中限制工件的变形。
夹具可以限制工件的自由变形,而焊接变形补偿可以根据工件的预期变形,调整焊接过程中的维度和形状。
5. 控制焊接速度和温度:控制焊接速度和温度,可以调节焊接热量的输入和分布,从而减小焊接变形。
通常需要根据材料的热导率和热膨胀系数等参数,合理选择焊接速度和温度。
6. 采用预约束或后约束:预约束是在焊接前施加应力,限制工件的自由变形,后约束是在焊接后施加应力,矫正工件的变形。
通过预约束或后约束,可以控制焊接变形。
总之,焊接变形控制方法的选择应根据具体工作情况进行综合考虑,通过合适的焊接工艺、参数调节、焊接顺序、夹具使用等方法,最终实现对焊接变形的有效控制。
同时,需要注意在实际焊接过程中进行试验和优化,根据实际情况进行调整。
钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法主要包括以下几个方面:
1. 设计合理的焊接接头:在设计焊接结构时,尽量采用简化接头、减小接头长度、采用对称结构等措施,以减少焊接变形的可能性。
2. 控制焊接工艺参数:在焊接过程中,控制焊接电流、焊接速度、预热温度等焊接工艺参数,避免产生过大的热影响区,以减小焊接变形的发生。
3. 采用预应力或预拉伸技术:在焊接前对工件进行预应力或预拉伸处理,可以提前消除部分应力,减小焊接变形。
4. 采用适当的焊接顺序:根据焊接结构的形状和尺寸,合理安排焊接顺序,从而控制焊接变形的产生。
5. 使用焊接辅助物:在焊接过程中,使用一些焊接辅助物,如支撑物、夹具等,来固定和支撑工件,减少焊接变形的发生。
6. 焊后热处理:对已焊接的结构进行合适的热处理,如回火、正火等,可以进一步消除残余应力,控制焊接变形。
以上是钢结构制造中控制焊接变形的一些常用方法,通过合理的设计、控制焊接工艺参数和采用适当的辅助措施,可以有效地减小焊接变形的发生。
浅谈焊接结构件焊接变形的控制
浅谈焊接结构件焊接变形的控制
焊接是一种常见的金属加工方法,广泛应用于制造业中的各种结构件的制造中。
焊接
过程中会产生焊接变形,严重影响焊接结构件的形状和精度。
如何控制焊接变形成为焊接
技术中的一个重要问题。
焊接变形的产生主要有三个原因:热应力、组织相变和收缩。
焊接过程中,焊接区域
受到高温的热影响,导致焊接区域的材料膨胀,形成一定的热应力。
在焊接过程中,由于
材料的物理状态发生改变,可能会引起组织相变,进而产生焊接变形。
在焊接完成后,焊
缝周围的材料会发生冷却收缩,导致结构件发生变形。
为了控制焊接变形,可以采取以下几种措施。
可以采用后焊加热的方法。
通过在焊接
完成后对焊接区域加热,可以使焊接区域重新达到高温状态,减少焊接变形。
可以选择适
当的焊接顺序。
焊接顺序应该从内向外进行,以减少引起热应力和收缩的影响。
还可以通
过预设焊接变形来控制焊接变形。
预设焊接变形是通过在设计和加工过程中,根据结构件
的形状和要求,预先设置焊接变形的方式。
可以采用剪切焊接或者滚焊接等焊接方法,以
减少焊接变形的产生。
除了以上控制焊接变形的方法外,还可以通过选择合适的焊接工艺参数来控制焊接变形。
可以调整焊接速度、焊接电流和焊接角度等参数,以控制焊接过程中的热应力和收缩。
还可以采用预热和后热处理的方法,通过控制材料的温度分布和组织结构,减少焊接变
形。
焊接变形的处理方法
焊接变形的处理方法摘要:在油田地面工程施工过程中,各种设备、管道焊接产生的应力变形是个比较突出的问题,采用合理焊接工艺方法可以较好减少变形。
关键词:工艺;焊接;变形;处理焊接在设备、管道安装过程中举足轻重,由于焊接过程中的变形与应力直接影响工艺质量、使用性能、配件装配,为提高质量,我们在施工中采取了相对的措施。
一、焊接应力与变形产生的原因焊接过程中,对焊件进行局部不均匀加热,会产生焊接应力和变形。
焊接时焊缝和附近的金属处于高温,焊缝和近缝区纵向受拉应力,远离焊缝区受压应力,整个焊件纵向及横向尺寸有一定的收缩。
如果在焊接过程中,焊件能够较自由的伸缩,则焊后焊件的变形较大而焊接应力较小;反之,如果焊件厚度或刚性较大不能自由伸缩,则焊后焊件的变形较小而焊接应力较大。
还有组装与施焊的顺序不当,焊接方向不正确,焊接参数不合理,引起局部过热,没有采用适当的辅助措施等。
二、减小焊接变形的工艺措施由于焊接变形在焊接生产中是不可避免的,因此应在生产中根据焊接结构的具体形式,选用一种或几种方法,以达到控制变形的目的。
1、加裕量法和反变形法:在下料时留一定量,补充焊后收缩。
预先确定焊后可能发生的变形大小和方向,将工件放在相反的方向位置上;或在焊前使工件反方向变形,抵消焊后所发生的变形。
2、刚性夹固法:主管路上常常出现分支,这是根据工艺流程来设计的,在制作汇管时产生很大的焊接变形,为了减少变形需把此工艺汇管固定起来,如制作Φ426×7汇管,可在其下放一Φ630×7的铜管,用Φ48×4短管固定。
因此焊前将工件固定夹紧,并设置拉杆提高焊接刚性,焊后即缩小变形。
3、选择合理的焊接次序:减少焊接变形的施焊顺序方式很多,基本原则是使焊接热比较均匀地加上去;或者使焊接变形相互抵消;或者用前道焊缝提高结构刚性以限制后焊焊缝的变形工序合理的次序可缩小变形。
4、选择合理的焊接工艺:(1)焊接速度高的焊接方法能减少焊件受热,减少焊件受热,减少焊缝冷却时的收缩区宽度,从而减少变形。
如何预防螺母焊接变形
如何预防螺母焊接变形引言螺母焊接是一种常见的焊接方法,用于将螺母固定在薄板上。
然而,焊接过程中往往会导致螺母变形,影响其正常使用。
本文将介绍如何预防螺母焊接变形,以确保焊接质量和螺母使用寿命。
1. 选择合适的螺母材料选择正确的螺母材料是预防焊接变形的第一步。
通常,不锈钢螺母比普通碳钢螺母更抗变形。
因此,在焊接后要求螺母保持形状的情况下,应优先选择不锈钢螺母。
2. 控制焊接热量焊接过程中的热量是导致螺母变形的主要原因之一。
因此,控制焊接热量是预防螺母焊接变形的关键。
以下是一些控制焊接热量的方法:•选择适当的焊接电流和电压,避免过高的电流和电压引起过热。
•使用合适的焊接速度,避免焊接时间过长导致过热。
•使用适当的焊接方法,如螺柱焊接或托板焊接,以减少热影响区域。
3. 控制焊接位置和角度焊接位置和角度的选择也会影响焊接变形的程度。
以下是一些建议:•尽量将焊接位置选在螺母周围的边缘位置,以减少焊接热量对螺母的影响。
•避免将焊接位置选在螺母的中心位置,因为中心位置容易受到热膨胀影响而变形。
•调整焊接角度,选择适当的焊接方向和焊接顺序,以最小化变形。
4. 使用适当的焊接设备和工艺选择适当的焊接设备和工艺也是预防螺母焊接变形的重要因素。
以下是一些建议:•使用恒定焊接电流和电压的设备,以获得稳定的焊接质量。
•使用高频预热设备进行焊前预热,以减少焊接过程中的变形。
•使用专用的焊接工艺,如螺母自动焊接机,以确保焊接质量和一致性。
5. 采用焊后热处理方法在焊接完成后,进行适当的焊后热处理也有助于减少螺母的变形。
以下是一些常用的焊后热处理方法:•焊后冷却,通过将焊接部件放入冷水中迅速冷却,使螺母保持形状。
•焊后回火,通过将焊接部件加热至适当温度并保持一段时间,使螺母恢复原来的形状。
结论预防螺母焊接变形是确保焊接质量和螺母使用寿命的关键。
通过选择合适的螺母材料、控制焊接热量、控制焊接位置和角度、使用适当的焊接设备和工艺,以及采用适当的焊后热处理方法,可以有效预防螺母焊接变形。
矫正焊接变形的方法
矫正焊接变形的方法焊接变形是焊接过程中不可避免的现象,主要是由于焊接热引起的材料的物理性质和结构的改变所导致的。
焊接变形对焊接件的尺寸稳定性、装配精度、力学性能和外观质量都有一定的影响。
为了矫正焊接变形,可以采取以下几种方法:预应力法、焊接顺序控制法、辅助约束法、局部加热法、焊接参数优化法和焊后热处理法等。
1. 预应力法:预应力法是通过在焊接件上施加反方向的应力来抵消焊接引起的变形。
一般可采用拉紧或预应力装置在焊接前或焊接过程中施加预应力。
这种方法可以在一定程度上抵消焊接变形,但需要注意控制预应力的大小和施加的位置,以免引起其他问题。
2. 焊接顺序控制法:焊接顺序控制法是通过控制焊接次序和方向来减小焊接变形。
通常将长焊接接缝从中间向两边焊接,以减小焊接热的集中和温度梯度的差异。
此外,也可以先采用脉冲焊接或低温焊接,再采用常规焊接,以减小焊接温度对材料的影响。
3. 辅助约束法:辅助约束法是通过添加辅助约束或局部支撑来限制焊缝变形。
通过在焊接件上添加支撑架、临时焊缝或临时加固材料等方式,减小焊接过程中的自由度,限制焊接件的变形。
需要注意的是,辅助约束应合理设计,不得影响焊接质量和后续工艺。
4. 局部加热法:局部加热法是通过在焊接区域施加局部加热,使焊接区域膨胀,从而减小变形。
可采用火焰加热、电阻加热或激光加热等方式。
需要注意的是,加热温度应适当控制,以免引起其他问题和损害。
5. 焊接参数优化法:焊接参数优化法是通过优化焊接参数,控制焊接过程中的温度场和残余应力,从而减小变形。
可通过调整焊接电流、电压、速度和预热温度等参数,以减小焊接变形。
需要针对具体情况进行实验和优化。
6. 焊后热处理法:焊后热处理法是通过在焊后对焊接件进行热处理,以消除或减小焊接变形。
可采用退火、时效处理、回火等热处理方式。
需要根据焊接材料和焊接方式选择适当的热处理方法。
总之,矫正焊接变形需要综合考虑焊接材料、焊接方式、焊接结构和工艺条件等因素。
焊接变形原因分析及其防止措施
焊接变形原因分析及其防止措施摘要:本文重点对常见焊接变形的原因进行分析,并根据原因分别从设计和工艺两个方面论述防止变形的措施。
关键词:焊接变形原因分析防止措施随着新材料、新结构和新焊接工艺的不断发展,有越来越多的焊接应力变形和强度问题需要研究。
焊接变形在焊接结构生产中经常出现,如果构件上出现了变形,不但影响结构尺寸的准确性和外观美观,而且有可能降低结构的承载能力,引起事故。
同时校正焊接变形需要花费许多工时,有的变形很大,甚至无法校正,造成废品,给企业带来损失。
因此掌握焊接变形的规律和控制焊接变形具有十分重要的现实意义。
一、焊接变形种类生产中常见的焊接变形主要有纵向收缩变形、横向收缩变形、挠曲变形、角变形、波浪变形、错边变形、螺旋变形。
这几种变形在焊接结构中往往并不是单独出现,而是同时出现,相互影响。
在这里重点对生产中经常出现的纵向收缩变形、横向收缩变形、角变形、错边变形进行分析。
二、焊接变形原因分析1.纵向收缩变形。
焊接时,焊缝及其附近的金属由于在高温下自由变形受到阻碍,产生的压缩性变形,在平行于焊缝的变形称之为纵向收缩性变形。
焊缝纵向收缩变形量可近似的用塑性变形区面积S来衡量,变形区面积S于焊接线能量有直接关系,焊接线能量越小,S越小,反之S越大。
同样截面的焊缝可以一次焊成,也可以分几层焊成,多层焊每次所用的线能量比单层焊时小得多,因此每层焊缝产生的塑性变形区的面积S比单层焊时小,但多层焊所引起的总变形量并不等于各层焊缝的总和。
因为各层所产生的塑性变形区面积和是相互重叠的。
从上述分析可以看出多层焊所引起的纵向收缩比单层焊小,所以分的层数越多,每层所用的线能量就越小,变形也越小。
2.横向收缩变形。
横向收缩变形是指垂直于焊缝方向的变形,焊缝不但发生纵向收缩变形,同时也发生横向收缩变形,其变形产生的过程比较复杂,下面分几种焊缝情况来分析。
2.1堆焊和角焊缝。
首先研究在平板全长上对焊一条焊缝的情况。
当板很窄,可以把焊缝当作沿全长同时加热,采用分析纵向收缩的方法加以处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、预防和减少焊接变形的方法
预防和减少焊接变形的方法必须考虑焊接工艺设计以及在焊接时克服冷热循环的变化。
收缩无法消除,但可以控制。
减少收缩变形的途径有以下几方面。
1.勿过量焊接
越多的金属填充在焊接点会产生较大的变形力。
正确制定焊缝尺寸,不仅能得到较小的焊接变形,还可节省焊材和时间。
填充焊缝的焊接金属量应最小,焊缝应呈平坦或微凸形,过量的焊接金属不会增加强度。
反而会增加收缩力,增加焊接变形。
2.间断焊缝
另一种减少焊缝填充量的途径是较多地采用间断焊接。
如焊接加强板,间断焊接可减少75%的焊缝填充量,同时也能保证所需强度。
3.减少焊道
采用粗焊丝、少焊道焊接比采用细焊丝、多焊道焊接变形小。
多焊道时每一焊道引起的收缩累计增加了焊缝总的收缩。
由图可知,少焊道、粗焊条焊接工艺比多焊道、细焊条焊接的工艺效果更好。
注意:采用粗焊丝、少焊道焊接或细焊丝、多焊道焊接工艺依据材质而定,一般低碳钢、16Mn 等材质适用粗焊丝、少焊道焊接,不锈钢、高碳钢等材质适用细焊丝、多焊道焊接
4.反变形技术
焊接前使零件预先向焊接变形的相反方向弯曲或倾斜放置(仰焊或立焊除外),。
反变形的预置量需经过试验确定。
预弯、预置或预拱焊接零件是利用反向机械力,抵消焊接应力的一种
简单方法。
当工件预置时,产生使工件与焊缝收缩应力相反的变形。
焊前的预置变形与焊后变形相互抵消,使焊接工件成为理想平面。
另一个常用的平衡收缩力的方法是将同样的焊接工件相对放置,并将其夹紧。
预弯也可采用此种方法,在夹紧前,将楔子放置在工件的适当位置。
特殊的重型焊接工件由于自身刚性或零件相互位置能产生所需的平衡力,如没有产生这些平衡力,就需利用其他方法来平衡焊接材料的收缩力,以达到相互抵消的目的。
平衡力可以是其他收缩力、利用工装夹具形成机械约束力、部件装焊顺序排列的约束力、重力形成的约束力。
5.焊接顺序
根据工件的结构形式确定合理的组装顺序,使工件结构在同一位置收缩。
在工件中和轴处开双面坡口,采用多层焊接,并确定双面焊接顺序。
在角焊缝中采用间断焊接,第1 道焊接中的收缩由第2 道焊接中的收缩平衡。
工装夹具可在所需的位置固定工件,增加刚性,减小焊接变形。
这一方式广泛用于小工件或小型组件的焊接,由于增大了焊接应力,只适用于塑性较好的低碳钢结构。
6.焊后去除收缩力
敲击是抵消焊缝收缩力的一种方法,如同焊缝冷却。
敲击将使焊缝延伸,变得更薄,从而消除应力(弹性变形)。
但是,使用这种方法必须注意,焊缝根部不能敲击,敲击时可能产生裂纹。
通常,敲击也不能用在盖面焊道上。
因为,盖面层可能有焊缝裂纹,影响焊缝检测,产生硬化效果。
所以,技术的利用是有限的,甚至有实例要求在焊道敲击中仅在多层焊道内(打底焊和盖面焊除外)敲击以解决变形或裂纹问题。
热处理也是去除收缩力的方法之一,控制工件的高温和冷却;有时同样工件背靠背夹装、焊接,以这种校直条件来消除应力,使工件残余应力最小。
7.减少焊接时间
焊接时产生受热和冷却,传输热量时也需要时间。
因此,时间因素也影响变形。
通常,希望体积大的工件受热膨胀之前,焊接尽快完成。
焊接工艺,如焊条的类型和尺寸、焊接电流、焊接速度等影响焊接工件收缩和变形的程度。
机械化焊接设备的使用减少了焊接时间和受热引起的变形量。
二、减少焊接变形的其他方法
1.水冷块
很多技术都可用来控制特殊焊接工件的焊接变形。
例如,在薄板焊接中,采用水冷块可带走焊接工件的热量。
采用铜焊或锡焊将铜管焊接到铜制夹具,通过水管进行循环冷却,以减少焊接变形。
2.楔形块定位板
“定位板”是钢板对焊时的一种有效控制焊接变形的技术,如图所示。
定位板的一端焊在工件的一块板上,另一端将楔形块楔入压板,甚至可采用多个定位板排列,以保持焊接时对焊接钢板的定位、固定。
3.消除热应力
除特殊情况外,采用加热来消除应力不是正确的方法,应在工件焊接完成前进行预防或减少焊接变形。
三、结论
为了减少焊接变形和残余应力的影响,设计和焊装工件时应注意以下几点:
(1)不进行过量焊接;(2)控制好工件的定位;(3)尽可能采用间断焊接,但应满足设计要求;
(4)尽可能采用小的焊脚尺寸;(5)对于开坡口焊接,应使接头的焊接量最小,并考虑双边坡口替代单边坡口接头;(6)尽可能采用多层多焊道焊替代单层双边焊交替焊接。
在工件中和轴处开双面坡口焊接,采用多层焊,并确定双面焊接顺序;(7)采用多层少焊道焊接;(8)采用低热输入焊接工艺,意味着较高的熔敷率和较快的焊接速度;(9)采用变位机使工件处于船形焊位置。
船形焊位置可使用大直径的焊丝和高熔敷率的焊接工艺;(10)尽可能在工件的中和轴设置焊缝,并对称施焊;(11) 尽可能地通过焊接顺序和焊接定位使焊接热量均匀扩散;(12)向工件的无约束方向焊接;(13)使用夹具、工装和定位板进行调整、定位。
(14)向收缩的相反方向预弯工件或预置焊缝接头。
(15)按序列分件焊装和总焊装,可使焊接围绕中和轴一直保持平衡。