电化学技术用于污水脱氮除磷研究进展PPT优质课件
废水生物脱氮除磷技术148页PPT
概述
废水生物脱氮利用自然界氮素循环的原理, 在水处理构筑物中营造出适宜于不同微生物 种群生长的环境,通过人工措施,提高生物 硝化反硝化速率,达到废水中氮素去除的目 的。废水生物脱氮一般由三种作用组成:氨 化作用、硝化作用和反硝化作用。
氨化作用
在未经处理的原废水中,含氮化合物主要以
有机氮如蛋白质、尿素、胺类化合物、硝基 化合物以及氨基酸等形式存在,此外还含有 部分氨态氮如NH3和NH+4-N。在细菌的作用 下,有机氮化合物分解、转化为氨态氮。以 氨基酸为例,反应式为:
亚硝酸菌
H4+ +H2CO3 + HCO3- + O2 NO3- +
H2O + 硝酸菌
(13-3)
总反应:
NH4+ + O2 + HCO3微生物细胞
生物脱氮的基本原理及影响因素
一、生物脱氮的基本原理 二、生物脱氮的影响因素
生物脱氮的基本原理
概述 1、氨化作用(Nitrogen) 2、硝化作用(Nitrification) 3、反硝化作用(Denitrification) 4、生物脱氮的新发现
概述
废水生物脱氮技术是70年代中期美国和南 非等国的水处理专家们在对化学、催化和生 物处理方法研究的基础上,提出的一种经济 有效的处理技术。废水生物脱氮有同化脱氮 与异化脱氮。同化脱氮是指微生物的合成代 谢利用水体中的氮素合成自身物质,从而将 水体中的氮转化为细胞成分而使之从废水中 分离。通常所说的废水生物脱氮是指异化脱 氮。
氮、磷污染的环境效应及现状
我国水体富营养化问题已越来越突出,成 为近几年我国水体污染中非常严峻的问题。 “富营养化”(Eutrophication)是湖泊分类 方面的概念。湖泊学家认为天然富营养化是 水体衰老的一种表现。而过量的植物性营养 元素氮、磷进入水体则是人为加速了水体的 富营养化过程。
污水厂生物脱氮除磷工艺讲座PPT
生物除磷原理与过程
好氧条件下, 除磷菌过量 摄取磷
厌氧条件下, 除磷菌将磷 释放
I——PHB(聚羟基丁酸) S——聚合磷酸盐
高含磷污 泥的排出
一、厌氧——好氧除磷工艺(A—O工艺)
一、厌氧——好氧除磷工艺(A—O工艺)
工艺特点: 水力停留时间为3~6h; 曝气池内的污泥浓度一般在2700~3000mg/l; 磷的去除效果好(~70%),出水中磷的含量低于1mg/l; 污泥中的磷含量约为4%,肥效好; SVI小于100,易沉淀,不易膨胀。
5Ca 2
4OH
3HPO
2 4
Ca5 (OH )( PO4 )3
3H 2O
羟磷灰石
废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧—好氧活性污泥法生物脱氮系统(A—O工艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
1、三级活性污泥法流程:
①碳化: ②氨化:
二、缺氧——好氧活性污泥脱氮系统(A—O工艺)
在反硝化反应过程中产生的碱度可补偿硝化反应消耗的碱 度的一半左右;
硝化曝气池在后,使反硝化残留的有机物得以进一步去除, 无需增建后曝气池。
三、氧化沟生物脱氮工艺
四、生物转盘硝化脱氮工艺
好氧碳化及硝化
进 水
BOD去除
缺氧 脱氮
好氧
废水生物除磷工艺与技术
生物脱氮除磷工艺
概述 生物脱氮工艺与技术 生物除磷工艺与技术 同步脱氮除磷工艺
概述
一、营养元素的危害 二、脱氮的物化法 三、除磷的物化法
一、营养元素的危害
氨氮会消耗水体中的溶解氧;
《废水脱氮除磷》PPT课件
危害:促进藻类等浮游生物的繁殖,破坏水体耗氧和复氧 平衡;使水质迅速恶化,危害水产资源。
有机磷 有机磷包括磷酸甘油酸、磷肌酸等
含磷化合物 无机磷
磷酸盐:正磷酸盐(PO43-)、磷酸氢盐(HPO42-) 、
磷酸二氢盐H2PO4-、偏磷酸盐(PO3-)
聚合磷酸盐:焦磷酸盐(P2O74-) 、三磷酸盐(P3O105-)、
总反应式为:
N 4 2 H O 2 硝 化 N 细 3 2 O H 菌 H 2 O
N 4 2 N e H 2 O 羟 H 2 H N e硝 胺 酰 O 2 N e 2 酰 2 H N e O 3
硝化细菌是化能自养菌,生长率低,对环境条件
吹脱过程包括将废水的pH提高至10.5~11.5,然后曝
气,这一过程在吹脱塔中进行。
编辑ppt
7
编辑ppt
8
(2) 折点加氯法: 含氨氮的水加氯时,有下列反应:
C 2 lH 2 O HO H C C ll N 4 H H O N 2 C C H H l lH 2 O
废水的电化学处理法ppt课件
实例:
ACF电极电化学氧化法处理水中 难降解有机物的研究
1. 难降解有机物
• 难降解有机物是指被微生物分解时速度很慢,分解不彻底 的有机物(也包括某些有机物的代谢产物),这类污染物易 在生物体内富集,也容易成为水体的潜在污染源。这类污 染物包括多环芳烃、卤化烃、杂环类化合物、有机氰化 物、有机磷农药、表面活性剂、有机染料等有毒难降解 有机污染物。
结论
1. 研究证实了ACF阳极电氧化法处理水中分子尺寸不同的各类难降解有 机物的适宜性和可行性。
2. 通过对苯酚降解中间产物的分析测定,初步探讨了ACF阳极电氧化法 降解苯酚的机理,证实了以ACF为阳极通电电解时能产生·OH。
3. 在以ACF为阳极材料用电化学氧化法处理有机物的过程中,吸附和氧 化降解起着协同的作用。ACF对有机物的吸附促进了有机物在阳极的 电氧化降解,而电氧化作用在分解被吸附的这些有机物的同时,促进 了ACF阳极的再生,从而使得ACF的吸附能力得以基本保持。
3. 电解槽
• 电解槽有二维平板电解槽和三维电解 槽。
电化学技术用于污水脱氮除磷的研究进展
电化学技术用于污水脱氮除磷的研究进展电化学技术用于污水脱氮除磷的研究进展随着人口的迅速增长和工业化的加速发展,水资源的污染问题日益严重。
污水中的氮和磷元素是主要的污染源之一,严重影响水体的生态平衡和人类健康。
电化学技术作为一种环境友好、高效、经济实用的处理技术,被广泛应用于污水处理领域,尤其是在脱氮除磷方面的研究取得了显著的进展。
1. 电化学技术的基本原理和分类电化学技术是通过电解池中的电流和电极之间的反应,实现物质的转化、传质和传热过程。
根据电化学反应的特点,电化学技术可以分为氧化还原反应、电解反应和电吸附等几种。
2. 电化学技术在污水脱氮除磷中的应用2.1 电化学氧化法电化学氧化法通过提供适当的电压和电流,在阳极上氧化有机物质,实现水中氨氮的转化和氮的去除。
该方法具有高效、无需添加化学药剂和低投资成本等优点,已经成功应用于实际的污水处理厂。
2.2 电吸附法电吸附法利用电化学作用使污水中的磷元素在电极表面吸附,通过改变电极表面的电荷状态来实现磷的去除。
该方法具有去除效率高、无需添加化学药剂和操作简便等优点,在实际应用中也取得了良好的效果。
3. 研究进展及存在的问题近年来,电化学技术用于污水脱氮除磷的研究取得了一系列的进展。
例如,通过改变电极材料和结构设计,提高了电化学脱氮除磷的效率和稳定性。
同时,研究人员还探索了新型电极材料的应用,并发展了一些新的电化学方法,如微电极技术和电化学调控等。
然而,电化学技术在污水脱氮除磷中仍然存在一些问题。
首先,电化学方法的能耗相对较高,并且操作复杂,需要进一步改进和优化。
其次,一些电极材料的资源稀缺,限制了电化学技术的大规模应用。
此外,一些特定的废水中含有大量的有机物和杂质,对电极表面产生不良影响,降低了电化学脱氮除磷的效果。
为了解决上述问题,未来的研究重点可以放在以下几个方面:研发新型电极材料,提高电极的反应活性和稳定性;探索新的电化学方法,如电化学催化和电氧化等,提高脱氮和除磷的效率;开展工程示范项目,验证电化学技术在实际应用中的可行性和经济性。
污水的脱氮除磷技术 PPT
在好氧条件下,聚磷菌将PHB降解以提供摄磷所需能 量,从而完成聚磷过程。
可见,生物除磷是系统中污泥在厌氧-好氧交替运行 的条件下通过磷的释放和对磷的摄取,最终通过剩余污泥 的排放而完成的。
吹脱法脱氨处理流程
N 4 H O N 2 C C H H l l H 2 O 2 N 2 C H H l O N 2 3 C C H 2 l O l 3 H
(2)化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种
方法。(折点加氯法)
(3)离子交换法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱
① 同化反硝化,即最终产物是有机氮化合物,是菌体 的组成部分;
② 异化反硝化,即最终产物是氮气(N2)。 ⅱ:反硝化反应过程与方程式
以甲醇为电子供体:
ⅲ:硝化反应所需要的环境条件 ① 碳源:一是原废水中的有机物,当废水的C/N大于
3~5时,可认为碳源充足;二是外加碳源,多采用甲醇; ② pH值:适宜的pH值是6.5~7.5,pH值高于8或低于6,
采用石灰作为除磷的絮凝剂已在国内外被广泛采用。
据研究,当pH值为11.5时,石灰法的除磷效率较高, 磷的去除率可达99%。缺点是药剂费导致系统运行费用偏 高,同是易在池子、管道和其他设备上结垢,大量沉渣污 泥需处理,费用较高。
2、生物法除磷
(1)生物法除磷的机理 生物法除磷的核心是聚磷菌的超量吸磷现象:
污水的脱氮除磷技术
主要内容
水体富营养化的概念、危害及控制方法 污水脱氮技术 污水除磷技术 污水同步脱氮除磷技术
脱氮除磷污水处理工艺 ppt课件
的布置简洁,节约了工程投资及建设用地。
30
BCFS工艺是在帕斯韦尔氧化沟(Pasveersloot)与 UCT工艺及原理的基础上开发的生物除磷脱氮新工艺, 它由5个功能相对专一的反应器组成,通过控制反应 器之间的3个循环来优化各反应器内细菌的生存环境, 具有污泥产率低、除磷脱氮效率高(均大于90%)等 特点,其出水总氮<5mg/L,正磷酸盐含量几乎为零。
⑥使用生物除磷器获得富含磷的污泥,使磷的循环利用成为可
⑦与Pasveer氧化沟的污泥负荷相同。
34
前景
BCFS工艺在荷兰的应用已有10例, 目前正在规划处理规模相当于 10×104m3/d的Rotterdam污水处理
表2为3座采用BCFS工艺的城市 污水厂的设计及运行情况。
35
36
37
SHARON与ANAMMOX联合工艺
脱氮除磷污水处理工艺
1
2
精品资料
你怎么称呼老师? 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进? 你所经历的课堂,是讲座式还是讨论式? 教师的教鞭 “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……” “太阳当空照,花儿对我笑,小鸟说早早早……”
②SVI值低(80~120mL/g)且稳定(夏季为80mL/g,冬季为100mL/g, 最大值为120m L/g),从而可有效地减少曝气池及二沉池的容积。
③控制简单,通过氧化还原电位与溶解氧可有效地实现过程稳
废水脱氮除磷处理工艺 教学PPT课件
氧反应器组成的联合系统。
10
活性污泥回流
缺
废
氧
水
反
硝
化
好好 氧氧 脱硝 碳化
回流
二沉池
出水
混合液回流
A/O脱氮工艺
11
(一) A/O(anoxic oxic)工艺
► A/O工艺流程中,原水先进入缺氧池,再进 入好氧池。
► A/O工艺将好氧池的混合液与沉淀池的污泥 一起回流到缺氧池,为缺氧池提供了丰富的 硝酸盐氮和充足的微生物,保证了反硝化过 程的顺利进行。
生物吸收法无害物质。常用的固体颗粒有土壤和 生物洗涤法堆肥。 生物过利滤用法微生物利和用培污养水液处组理成厂的剩微余生的物活吸性收污液
处理废气,泥然配后置在混进合行液好,氧作处为理吸,收去剂除处液 体中吸收的理污废染气物。。这种方法适合于处理 可溶性的气态污染物。
21
依靠固自体然界废广弃泛分物布的处微理生物方,法人为地促
► 厌氧生物分解有机物的过程
水解阶段 发酵(酸化)阶段 产乙酸阶段 产甲烷阶段
27
内源代谢残留物
内源代谢产物(CO2 内源 、H2O、NH3)+能 代谢 量
CO2,H2O,NH3, +能量
热
分解 SO42-,PO43-
26
厌氧生物处理的基本原理
► 厌氧生物处理(Anaerobic process):在 无氧条件下,利用多种厌氧微生物的代谢活 动,将有机物转化为CH4和CO2以及少量细胞 物质的过程。
4
生物脱氮的基本原理
2、反硝化作用
反硝化由一群异养微生物完成,主要是将 硝酸盐氮还原成气态氮或氮氧化物,反应在 无分子氧的状态下进行。 细菌:反硝化细菌(兼性厌氧菌) 反应:NO3-N反硝化还原为N2,溢出水面释放 到大气中。
污水的脱氮除磷技术学习教育课件PPT
(4)生物脱氮的工艺流程
ⅰ、传统脱氮工艺
活性污泥法传统脱氮工艺 (三级生物脱氮系统)
第一级曝气池的功能: ① 碳化——去除BOD5、COD; ② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH值;
污水的脱氮除磷技术
主要内容
水体富营养化的概念、危害及控制方法
污水脱氮技术
污水除磷技术
污水同步脱氮除磷技术
一、富营养化的危害及控制方法
1、水体的富营养化
水体富营养化是由于氮、磷等植物营养物的排入 引起水体中藻类大量繁殖的现象。
在湖泊、水库、河口和港湾等水流较缓的区域, 最容易发生水体富营养化现象。一般来说,总磷和无 机氮分别为 20mg/m3 和 300mg/m3 ,就可以认为水体 已处于富营养化的状态。
( 2 )藻类大量繁殖,降低了水的透明度;同时,藻 类的生长过程还会向水体排放有毒物质,影响鱼类的生 存; ( 3 )藻类在水体中占据的空间越来越大,占据水体 空间、阻塞水道,使鱼类活动的空间越来越小;
( 4 )沉于水底的死亡藻类在缺氧状态下腐化、分解, 使水体变黑、变臭。
3、水体富营养化的控制
在碱性条件下,利用氨氮的气相浓度和液相浓度之间 的气液平衡关系进行分离的一种方法。
污水中的氨氮是以氨离子 (NH4+)和游离氨(NH3)两种 形式保持平衡状态而存在: NH3 + H2O NH4+ + OH-
将pH值保持在11.5左右(投加一定量的碱),让污水流 过吹脱塔,使NH3逸出,以达脱氮目的。
吹脱法脱氨处理流程
NH 4 HOCl NH 2Cl H H 2O
2NH 2Cl HOCl N 2 3Cl H 2O 3H
污水生物脱氮除磷新工艺PPT课件
硝化反应式如下:
氨化反应:
RC2 C HO N O O H 2 N H3 H C2 O RCOOH
硝化反应:
NH
4
1.5O2
NO2
H2O
2H
NO2 0.5O2 NO3
硝化过程总反应式
NH
4
2O2
NO3
H2O 2H
反硝化菌为异养型兼性厌氧菌,在有氧气存在时,它会 以氧气为电子受体进行好氧呼吸;在无氧而有硝酸盐氮或 亚硝酸盐氮存在时,则以硝酸盐氮或亚硝酸盐氮为电子受 体,以有机碳为电子供体进行反硝化反应。
上较小的完全混合式反应格串联组成,在各反应 段具有良好的基质浓度梯度分布。 (2)污泥龄短、负荷高,运行速率高,除磷效果好。
4.MSBR工艺 MSBR是SBR和A2/O工艺的组合,污水和脱
氮后的活性污泥一并进入厌氧区,聚磷污泥在此 充分放磷,然后泥水混合液交替进入缺氧区和好 氧区,分别完成反硝化、有机物的好氧降解和吸 磷作用,最后在SBR池中沉淀出水。
由于硝化菌是自养菌,水中的C/N 不宜过高,否则将有助于异养菌的 迅速增殖,微生物中的硝化菌的比 例下降。
在反硝化反应中,最大的问题 就是污水中可用于反硝化的有 机碳的多少及其可生化程度。
硝酸菌的停留时间必须大于其最小 世代时间
2.新的硝化-反硝化脱氮原理
同步硝化反硝化:在供氧受限或缺少有机碳源的厌氧 条件下发生同步硝化反硝化,这时氨和亚硝酸盐分别充当电子 供体和电子受体,致使曝气能耗和有机碳源需求量大大减少。 与其他活性污泥法工艺相比,同步硝化反硝化在氧化沟工艺中 最为显著。究其原因是在氧化沟中独特的表面曝气,打散了活 性污泥絮体,形成了新的活性污泥絮体,使活性污泥能够很好 地进行新陈代谢。另外,氧化沟工艺较长的HRT缓解了同步硝化 反硝化速率较低的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 李伟东[5]等人利用电化学氧化技术处理垃圾渗滤液,在极板间 距为1.0 cm,电流密度为10 A·dm-2 的条件下,对中等浓度垃圾 渗滤液中的氨氮去除率达到97.3%。林海波[18]等人研究了利用 流动式电解槽中氨氮的去除规律,发现当电流密度为50 mA·cm2、体积流量为50mL·min-1 时,氨氮去除速率常数为38.9×10-6 g·L-1·m-1·s-1,去除1 kg 氨氮的能耗为55.7 kWh;此外林海波等 人还利用电化学氧化法处理化肥厂外排废水[19],在外排废水 流量为75 mL·min-1,电流密度为10 mA·cm-2 的条件下电解70 min 后,出水的氨氮质量浓度从22.3 mg·L-1 稳定到0 mg·L-1。王 鹏[20]等人利用电化学氧化脱氮技术处理UASB 厌氧工艺垃圾渗 滤液处理出水中的氨氮,发现在外加Cl- 质量浓度为2 000 mg·L-1, 电流密度为32.3 mA·cm-2 的条件下,经6 h 的电解间接氧化,对 质量浓度为2 000 mg·L-1 以下的氨氮去除率可以达到100%。此 外,还有一些关于电化学氧化去除垃圾渗滤液或高浓度有机废 水中氨氮的研究报道[21-25],结果都比较令人满意。
.
• 利用电化学方法还原污中的硝酸盐而将其去除的研究 相对电化学氧化去除氨氮较少,但是由于电化学反硝化 比起生物法反硝化具有无需添加碳源、容易操作等优点, 因而已经引起人们的关注。
• Katsounaros[26]等人研究了利用锡电极还原去除浓度为 0.1 mol·L-1 K2SO4和0.05 mol·L-1 KNO3混合溶液中的硝酸 盐氮,结果表明,当相对电压(以饱和Ag/AgCl 为参考) 控制在-2.9 V 时,可以获得0.206mmol·min-1·cm-2 的硝 酸盐氮去除速率,产生的气体中氮气占了92%。Dash[27] 等人研究了电化学反硝化去除地下水中硝酸盐,发现利 用铁电极、铝电极和钛电极能够得到70%~97%的硝酸 盐氮去除率,且只有钛电极能将硝酸盐转换成以氮气为 主的产物而不是以氨气为主,利用石墨电极则只能得到 8%的硝酸盐氮去除率。Polatides[28]等人的研究则发现 利用脉冲电流,能够有效提高污水中硝酸盐还原生成氮 气的选择性,而减少NO2- 和NH3这些副产物的生成。
.
• 1.2 电絮凝除磷技术 通常水中的磷以无机态的形式存在为主,当采
用电絮凝技术除磷时,其原理是利用铁、铝等阳极 材料在电解时生成的金属阳离子或其水合物与水中 的磷酸盐形成沉淀而去除污水中的磷,在电絮凝过 程中其原理如下: 铝电极电絮凝除磷:
2Al→2Al3++6e, 2Al3++6H2O→2Al(OH)3+6H+; 铁电极电絮凝除磷:
4Fe→4Fe2++8e, 4Fe2++10H2O+O2→4Fe (OH)3+8H+
.
2 电化学技术用于污水脱氮除磷的研究
• 2.1 电化学脱氮技术 电化学脱氮技术以电化学氧化去除污水中的氨氮研究得较多,而
电化学还原去除水中的硝酸盐、亚硝酸盐则研究得相对较少。 电化学氧化去除污水中氨氮的方法自从20 世纪80 年代得到人们
.
• 2.2 电化学除磷技术 • 电絮凝技术用于污水中磷的去除在国内外已经有一定的研究,
但相对于电化学脱氮,相关的文献报道要少很多。冯爽等人[33] 研究了利用铁电极去除城市污水2 级处理出水中的磷,结果表 明,电絮凝除磷为零级反应,电解7 min 后模拟污水中磷的去除 率就可以达到70%左右。rdemez 等人系统得研究了初始pH、电 流密度、磷浓度等操作条件对铝电极或铁电极电絮凝去除污水 中磷的影响[8,34-35],发现随着电流密度的增加,对于两种电 极其相应的除磷效率和除磷速度都增加,但同时能耗也随之增 加;对于铁电极电絮凝除磷工艺,较佳的pH 为7.0,除磷效率 随着磷浓度的增加而下降;对于不同磷浓度的模拟污水,使用 铝电极时,当电流密度为一定值时,几乎都可得到100%的磷去 除率;根据研究结果,一般认为铝电极比铁电极能够更加有效 得去除污水中的磷。Bektas等人[7]研究了在电流密度为2.5~10 mA·cm-2,水力停留时间为5~20 min 的条件下,铝电极对磷质 量浓度10~200 mg·L-1 的模拟污水的净化效果,结果表明去除 率几乎可以全部达到80%以上。
电化学技术用于污水 脱氮除磷的研究进展
污水电化学脱氮除磷技术由于具有 高效、安全、避免了化学物质的直接投加、 无需使用微生物、反应速度快、容易操作、 容易实现自控等优点,因而逐渐得到人们 的重视和应用。
.
1 电化学脱氮除磷技术的原理
1.1 电化学脱氮技术 污水中的氮以有机氮和无机氮的形式存在于水
溶液中,有机氮可以分为以溶解形式存在的有机氮 (如尿素、氨基酸等) 和非溶解形式存在的有机氮 (污水中的含有机氮悬浮颗粒物等),无机氮又可 以分为铵离子、硝酸盐、亚硝酸盐、溶于水的氨气 和氮氧化合物等,且上述各种形态的氮在一定条件 下,可以在水溶液中相互转化,因而利用电化学技 术去除污水中的氮时,情况比较复杂。虽然有机氮 也可以通过电絮凝技术或电极表面的吸附作用得到 一定的去除,但通常所指的电化学脱氮技术是指利 用电化学氧化去除污水中的氨氮(铵离子、氨水、 溶于水的氨气)和电化学还原去除污水中的硝酸盐、 亚硝酸盐等无机氮。
.
• 范经华[29]等人研究了以多孔钛板负载钯- 铜(质量 比4:1)合金作为阴极通过电化学还原脱除饮用水中 的硝酸盐氮,结果表明,电催化反硝化的主要产物 为氮气,钯- 铜合金的电催化活性可达到16.69 mg·g1·h-1,选择性可达96.9%,在低硝酸盐氮浓度下,电 催化反硝化反应符合表观一级反应动力学,高浓度 时符合零级反应动力学,当槽电压或电流强度增加 到一定程度时,阴极生成氨氮的副反应显著增加, 中性条件下电催化反硝化的活性和选择性都能达到 较好的效果,酸性条件下反应活性增加但选择性降 低,溶液中的传质对反硝化没有显著影响,溶液中 存在的其它阴离子对反硝化不利。
重视以来,已经广泛应用于垃圾渗滤液、化肥厂废水、养猪场废水、 石化废水等污水中氨氮的去除。如Kim[9]等人研究了pH、氯离子浓度、 初始氨氮浓度、电流密度、反应器中有无离子选择性透过膜等因素对 IrO2和RuO2和Pt 分别修饰的3 种不同钛电极材料电化学氧化去除模拟 污水中氨氮的影响(氨氮浓度为1.0 mol·L-1),结果表明,无论是在 酸性或碱性条件下,IrO2和RuO2修饰电极去除氨氮的性能要强于Pt 修 饰电极;在80 mA·cm-2的电流密度下氨氮的去除率最高,高于该值则 氨氮吸附于电极上的过程被溶液中的离子所阻碍而引起去除率下降; 随着溶液中氯离子浓度的增加,氨氮的去除率提高,当氯离子的质量 浓度高于10 g·L-1 时,由于氯离子浓度的提高而引起的氨氮去除率的 提高就非常有限;