运动控制系统第1讲
《运动控制系统》课件
闭环控制系统包含反馈回路,通过负反馈来自动调节系统的输出量,使其达到预定的目标值。
闭环控制系统的优点是精度高,抗干扰能力强,能够自动修正误差,适用于对精度要求较高的复杂系统。
闭环控制系统的缺点是结构复杂,设计难度较大,需要具备一定的稳定性分析和调整能力。
03
反馈控制原理的实现需要具备一定的传感器和控制器技术,以及对系统的数学建模和仿真分析能力。
01
反馈控制原理是通过比较系统的输入与输出信号,将输出信号的差值用于控制执行机构,以实现系统的自动调节。
02
反馈控制原理广泛应用于各种运动控制系统,能够提高系统的稳定性和精度。
04
运动控制系统的应用
运动控制系统能够精确控制机器人的动作和位置,实现自动化生产线的连续作业,提高生产效率和产品质量。
控制器的种类繁多,根据应用需求可以选择不同的控制器,如单片机、PLC、运动控制卡等。
执行器是运动控制系统的输出部分,负责将驱动器的电压或电流信号转换为机械运动。
执行器的种类也很多,常见的有步进电机、伺服电机、直线电机等。
执行器的选择要根据实际应用需求来决定,如需要高精度定位、快速响应等。
传感器的种类也很多,常见的有光电编码器、旋转变压器、霍尔元件等。
自动化决策
智能化运动控制系统将具备自适应学习能力,能够根据不同环境和工况自动调整控制策略,以适应各种复杂和动态的运动需求。
自适应控制
远程监控与控制
通过网络技术,实现对运动控制系统的远程监控和控制,方便对设备进行远程调试、故障诊断和远程维护。
数据共享与协同工作
通过网络化实现多设备之间的数据共享和协同工作,提高生产效率和设备利用率。
运动控制系统(第4版)第1章 绪论
第1章 绪论
• 信号转换和处理包括电压匹配、极性转换、脉冲整形等,对 于计算机数字控制系统而言,必须将传感器输出的模拟或数 字信号变换为可用于计算机运算的数字量。数据处理的另一 个重要作用是去伪存真,即从带有随机扰动的信号中筛选出 反映被测量的真实信号,去掉随机的扰动信号,以满足控制 系统的需要。 • 常用的数据处理方法是信号滤波,模拟控制系统常采用模拟 器件构成的滤波电路,而计算机数字控制系统往往采用模拟 滤波电路和计算机软件数字滤波相结合的方法。
GD2 4gJ ;
n——转子的机械转速(r/min),
60 m n . 2
第1章 绪论
• 运动控制系统的任务就是控制电动机的转速和转角,对于直 线电动机来说就是控制速度和位移。由式(1-1)和式(1-2) 可知,要控制转速和转角,唯一的途径就是控制电动机的电 磁转矩Te,使转速变化率按人们期望的规律变化。因此,转矩 控制是运动控制的根本问题。 • 为了有效地控制电磁转矩,充分利用电机铁心,在一定的电 流作用下进可能产生最大的电磁转矩,以加快系统的过渡过 程,必须在控制转矩的同时也控制磁通(或磁链)。因为当 磁通(或磁链)很小时,即使电枢电流(或交流电机定子电 流的转矩分量)很大,实际转矩仍然很小。何况由于物理条 件限制,电枢电流(或定子电流)总是有限的。因此,磁链 控制与转矩控制同样重要,不可偏废。通常在基速(额定转 速)以下采用恒磁通(或磁链)控制,而在基速以上采用弱 磁控制。
第1章 绪论
• 1.2 运动控制系统的历史与发展
• 直流电动机电力拖动与交流电动机电力拖动在19世纪中叶先后诞 生(1866年德国人西门子制成了自激式的直流发电机;1890年 美国西屋电气公司利用尼古拉· 特斯拉的专利研制出第一台交流 同步电机;1898年第一台异步电动机诞生),在20世纪前半叶, 约占整个电力拖动容量80%的不可调速拖动系统采用交流电动机, 只有20%的高性能可调速拖动系统采用直流电动机。20世纪后半 叶,电力电子技术和微电子技术带动了带动了新一代的交流调速 系统的兴起与发展,逐步打破了直流调速系统一统高性能拖动天 下的格局。进入21世纪后,用交流调速系统取代直流调速系统已 成为不争的事实。 • 直流电动机的数学模型简单,转矩易于控制。其换向器与电刷
电力拖动自动控制系统—运动控制系统第1章绪论
随着环保意识的提高,电力拖动 自动控制系统将更加注重节能减 排和资源循环利用,实现绿色环 保的生产方式。
THANKS
感谢观看
提高产品质量
自动化控制能够减少人为误差,提高 产品加工精度和一致性,从而提高产 品质量。
提升工业安全
自动化控制能够减少人工操作,降低 操作风险,提升工业安全。
电力拖动自动控制系统在工业中的应用案例
数控机床
自动化生产线
电力拖动自动控制系统用于数控机床的进 给轴、主轴等部分,实现高精度、高效率 的加工。
重要性
在现代工业生产中,电力拖动自动控制系统已成为不可或缺的重要技术手段, 它能够提高生产效率、降低能耗、保证产品质量和生产安全,对于实现工业自 动化和智能化具有重要意义。
电力拖动自动控制系统的历史与发展
历史
电力拖动自动控制系统的发展可以追溯到20世纪初,随着电力技术和控制理论的 发展,电力拖动自动控制系统经历了从简单到复杂、从手动到自动的演变过程。
重要性
在现代工业自动化生产中,运动控制 系统扮演着至关重要的角色,它能够 提高生产效率、降低能耗、提升产品 质量,是实现自动化生产的关键技术 之一。
运动控制系统的基本组成
控制器
用于接收输入信号,根据控制 算法计算输出信号,并输出到
执行机构。
执行机构
根据控制器输出的信号,驱动 电动机转动,实现运动控制。
特性。
交流电力拖动系统
采用交流电动机作为动力源,具有 结构简单、价格低廉、维护方便等 优点。
伺服电力拖动系统
采用伺服电动机作为动力源,具有 高精度、高响应速度和高稳定性的 特点,常用于精密控制领域。
电力拖动系统的基本特性
调速性能
运动控制第1讲
三种调速方法的比较
对于要求在一定范围内无级平滑调速的系统 对于要求在一定范围内无级平滑调速的系统 无级平滑调速 来说,以调节电枢供电电压的方式为最好。 来说,以调节电枢供电电压的方式为最好。 改变电阻只能有级调速 且损耗大。 有级调速, 改变电阻只能有级调速,且损耗大。 减弱磁通虽然能够平滑调速, 减弱磁通虽然能够平滑调速,但调速范围不 往往只是配合调压方案,在基速( 大,往往只是配合调压方案,在基速(即电 弱磁升速。 机额定转速)以上作小范围的弱磁升速 机额定转速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往以调 因此,自动控制的直流调速系统往往以调 为主。 压调速为主 压调速为主。
电力拖动自动控制系统
主讲教师: 主讲教师:张杰
湖北工业大学
绪 论
需要解决的几个问题: 需要解决的几个问题: 电气专业学生的就业方向 电气专业学生的继续深造方向 未来的发展趋势
电气专业学生的就业方向(1) 电气专业学生的就业方向( )
电力系统的发电、输电、 电力系统的发电、输电、配电的各个环 各单位的供、配电部门, 节,各单位的供、配电部门,及其设备 制造公司
注意的问题
课程学习过程中, 课程学习过程中,重视分析问题和解决 问题的能力; 问题的能力; 计算部分仅涉及工程设计方法; 计算部分仅涉及工程设计方法; 多注意各种方法的区别和联系。 多注意各种方法的区别和联系。
参考书
《电力拖动自动控制系统》第三版 陈伯 电力拖动自动控制系统》 时,机械工业出版社 拖动与调速系统》 许建国, 《拖动与调速系统》 许建国,武汉测绘科 技大学出版社 《电力电子学与交流传动 》,B.K.BOSS 著 朱仁初译,西安交大出版社 朱仁初译,
电气专业学生的就业方向(2) 电气专业学生的就业方向( )
运动控制系统课件
在弱磁调速范围内,转速越高,磁通越 弱,容许输出转矩减小,而容许输出转矩 与转速的乘积则不变,即容许功率不变, 为“恒功率调速方式 。 恒功率调速方式” 恒功率调速方式
Shanghai university
两种调速方式: 两种调速方式:
U Te Φ P
ΦN
UN Te U P nN
变电压调速 两种调速方式 弱磁调速
Shanghai university
绪论
一。什么是运动控制系统?
运动控制系统(Motion Control System)也可称作电力 拖动控制系统(Control Systems of Electric Drive) 运动控制系统--通过对电动机电压、电流、频率等 输入电量的控制,来改变工作机械的转矩、速度、位 移等机械量,使各种工作机械按人们期望的要求运行, 以满足生产工艺及其他应用的需要。工业生产和科学 技术的发展对运动控制系统提出了日益复杂的要求, 同时也为研制和生产各类新型的控制装置提供了可能。
直流电机 速度控制 位置控制 直流调速系统* 直流调速系统 直流伺服系统 交流电机
(异步电机*、同步电机) 异步电机 、同步电机)
交流调速系统* 交流调速系统 交流伺服系统
直流调速系统--第一篇,运动控制( 直流调速系统--第一篇,运动控制(一) --第一篇 交流调速系统--第二篇,运动控制( 交流调速系统--第二篇,运动控制(二) --第二篇
Shanghai university
电力拖动自动控制系统
第1Biblioteka 篇直流拖动控制系统
Shanghai university
直流调速方法
根据直流电动机转速方程
U − IR n= KeΦ
式中 n — U— I — R— Φ— Ke— (1-1)
运动控制系统精品课件完整最新版
特点:综合性,工程性,理论与实践相结合. 前期课程:电力电子技术,电机拖动基础,控制
理论, 电路原理, 电磁学,系统仿真……
1.3 运动控制系统转矩控制规律
运动控制系统的基本运动方程式
J
d m
dt
Te
TL
Dm
K m
d m
dt
m
1.3 运动控制系统转矩控制规律
4 现代的运动控制系统
驱动的交流化和超高速、超大型化、超 小型化
系统实现集成化 控制数字化、智能化和网络化
(2)课程的核心内容:
一个主题:运动控制系统(直流=》交流); 主线:不断改进系统以提高系统性能,从提高静态
性能到追求动态性能
研究控制系统时要关注: 稳定性,动静态特性; 系统的分析方法、控制方法和设计方法; 与系统的实现相关的电力电子技术、控制理论、计
节能调结方式:取消挡板,阀门,调节转速
调节流量
节能率达20%-30%
调速节能-风机水泵类负载-体量非常大!!
风机主要应用于冶金、石化、电力、城市轨道交通、 纺织、船舶等国民经济各领域以及各种场所的通风换 气
在我国,风机、泵类、压缩机和空调制冷机的用电量 分别占全国用电量的10.4%、20.9%、9.4%和6%。
2)知识体系
电机学、 电力电子技术 微电子技术、 计算机控制技术、 控制理论、 信号检测与处理技术
图1-1运动控制及其相关学科
3 运动控制系统的分类
按电机分:直流系统,交流系统; 按被控量分:调速系统,位置随动系统,转矩 控制系统; 按控制器的类型分:模拟型,数字型; 按控制原理分:PID控制,模糊控制,矢量控 制等等; 按闭环数分:单环,双环,多环系统,可交 叉:如数字式双闭环直流调速系统
运动控制讲义
2.2.2 转动惯量和飞轮转矩的折算 可根据动能守恒原则: 可根据动能守恒原则:即 E=EM+E1+EL 2 2 2 2 1)对于旋转运动 1/2J ωM = 1/2JM ωM + 1/2J1 ω1 + 1/2JL ωL 对于旋转运动 J = JM nM 2 / nM 2 + J1 n1 2 / nM 2 + JL nL 2 / nM 2
传动部件从根本 上限制了伺服系 统的精度! 统的精度!
伺服控制系统及其产生
能量
驱动电路
Uidea、Iidea
Fidea、Videa
动力部件
(Tidea、nidea)
最终执行部件
伺服系统
控制部件
伺服控制系统
能量流动方向: 信息流动方向:
运动控制系统的总体构成
给定运动指令 能量
运动控制系统 运动 动指令 控制 器
0
TL
T
位能转矩:由物体的重力和弹性体的压缩、拉伸与扭转大亨作用所 位能转矩:由物体的重力和弹性体的压缩、 产生的负载转矩 n 特点:其作用方向恒定, 特点:其作用方向恒定,与运动方向无关 其机械特性曲线: 其机械特性曲线: 2.3.2 离心式通风机型机械特性 特点:按离心力原理工作,即负载转矩 与转速n的平方成正比 特点:按离心力原理工作,即负载转矩TL与转速 的平方成正比 2.3.3 直线型机械特性 特点:负载转矩 随转速n的增加成正比的增大 的增加成正比的增大, 特点:负载转矩TL随转速 的增加成正比的增大,即TL =c n 2.3.4 恒功率型机械特性 特点:负载转矩 与转速n成反比 成反比, 特点:负载转矩TL与转速 成反比,即TL =k/ n n 也就是: 也就是:k=TLn ∝ P 0 T 0 TL T
《运动控制系统》知识要点
《运动控制系统》知识要点——— PH.D 戴卫力CH1 绪论运动控制系统由电动机、功率放大与变换装置、控制器及相应的传感器等构成。
运动控制系统的基本运动方程:dtdn GD T T L e 3752=-2GD :转动惯量,为飞轮矩(2Nm )n :转子的机械转速(r/min )πω260mn =转矩控制是运动控制的根本问题。
生产机械的负载转矩特性一般分为恒转矩负载、恒功率负载和风机、泵类负载。
恒转矩负载又分为位能性和反抗性负载两种。
前者有重力产生,具有固定的大小和方向。
反抗性恒转矩负载的大小不变,方向始终与转速反向。
恒功率负载的特征是负载转矩与转速成反比,而功率为常数。
即 mLL P T ω=风机、泵类负载的转矩与转速的平方成正比。
闭环控制的直流调速系统直流调速公式的推想Φ-=e K IRU n Φ=e e K C ① 调节电枢电压U ;② 弱磁(只能弱,升磁会导致磁饱和); ③ 改变电枢回路电阻R属无级调速的为①和②;有级调速的为③;调速范围小的② 因此,采用的最多的是①。
CH2 转速反馈控制的直流调速系统2.1 加在直流电机电枢绕组上的直流电源类型:旋转变流机组、静止式可控整流器、PWM 控制变换器 抑制电流脉动的措施:1)增加整流电路相数,或采用多重化技术。
2)设置电感量足够大的平波电抗器。
V-M 系统电流工作在断续时,有两个显著的特点:一是机械特性变软;二是理想空载转速高。
晶闸管整流器的失控时间Ts :整流电路输出电压脉动周期的一半。
不可逆PWM 变换器中,加在电机两端的端电压是_____________桥式可逆PWM 变换器的输出平均电压为(2D-1)Us (D 为占空比,D=ton/T )调速系统的稳态性能指标:调速范围D :电动机提供的最高转速max n 和最低转速min n 之比;min max /n n D =注意的是:这里的最高和最低转速是指电动机额定负载时的最高和最低转速。
《运动控制系统》课件第1章
第1章 绪论
自从微处理器出现以后,在绕线转子异步电动机串级调 速、无换向器电动机调速、笼型异步电动机的矢量控制以及 PWM技术方面都已经获得了重大突破与发展,并已进入工 业应用阶段。目前,以大功率半导体器件、大规模集成电路 为基础的交流电动机调速系统已具备了较宽的调速范围、较 高的稳态精度、较快的动态响应、较高的工作效率以及可以 四象限运行等优异性能,其静、动态特性均可以与直流电动 机调速系统相媲美。而这时,直流电动机和交流电动机相比 其缺点也日益显露出来。例如,直流电动机存在换向问题, 其最大供电电压受到限制,机械强度也限制了转速的进一步 提高,结构的影响使其不适于腐蚀性、易爆性和含尘气体的 特殊场合。
第1章 绪论
1.4 自动控制系统仿真基本概念
系统仿真作为一种特殊的试验技术,在20世纪30年代到 90年代的半个多世纪中经历了飞速发展,到今天已经发展成 为一种真正的、系统的试验科学。伴随着第一台电子管电子 计算机的诞生和以相似理论为基础的模拟技术的应用,仿真 作为一种研究和发展新产品、新技术的科学手段,在航空、 航天、造船、兵器等与国防科研相关的行业中首先发展起来, 并显示了巨大的社会效益和经济效益。
第1章 绪论
因此,交流电动机越来越受到人们的重视,可以说,交 流调速逐步取代直流调速已成为明显的发展趋势。特别是节 能型交流调速技术,已得到很快发展。在过去大量应用的所 谓不变速拖动系统中,有相当一部分是风机、水泵等拖动系 统,这类负载约占工业电力拖动总量的一半。其中有些并不 是真的不需要变速,只是由于过去的交流电动机不能调速, 因而不得不依赖挡板和阀门来调节流量,同时也消耗掉大量 的电能。如。从各方面来看,改造恒速电动机为交流调 速电动机,每台月节能20%以上,总体的节能效益是可观的。
【PPT】什么是运动控制系统.
运动控制系统的发展过程及应用(续)
早就普遍应用于恒速运行场合的交流电机可以弥补直流电机的不 足,加之世界范围的能源短缺,人们又开始了新一轮的交流调速的 研究。仅对占传动总量三分之一强的风机、水泵设备而言,如果改 恒速为调速的话,就可节节电30%左右。近三四十年来,随着电力 电子技术、微电子技术、现代控制理论的发展,为交流调速产品的 开发创造了有利的条件,使交流调速逐步具备了宽调速范围、高稳 速精度、快速动态响应和四象限运行等良好的技术性能,并实现了 产品的系列化,从调速性能上完全可与直流调速系统相媲美。目前 交流调速系统已占据主导地位。 当今社会,运动控制系统的应用已相当普及,不论是民用还是军 用。在工厂、农村以及大多数家庭中,到处可以看到以电动机为动 力的各种生产机械或家用电器。例如:轧钢厂的连轧机,加工车间 的切削机床,造纸厂的纸机,纺织厂的纺织机,化工厂的搅拌机和 离心机,搬运场的起重机和传送带,矿山的卷扬机,田间的抽水泵, 家庭中的冰箱、空调、洗衣机以及电脑等。
图0.1 运动控制系统的基本结构
图中的三个主要组成部分是构成运动控制系统所必需的,而 且也是变化多样的。任何一部分微小的变化都可构成不同的 运动控制系统,这些不同系统的共性和特点以及它们的分析 和设计方法就是本课程研究的主要内容。我们把每一部分可 能的变化列于表0.1中。
表中各部分的不同组合,可以构成不同的运动控制系统。电动机部分、功率驱动部分 和控制器中的大部分内容分别在其他课程中有介绍,但它们组合成完整的运动控制系统以 后,有哪些新的控制要求,如何分析系统的性能,如何设计控制器使系统达到较高的性能 指标,在实际应用中存在哪些具体问题,以及如何解决等,这些都是个课程要解决的问题。
0.1 什么是运动控制系统
按中国大百科全书的解释,运动是物质的固有性质和 存在方式,是物质所固有的根本属性.没有不运动的物 质,也没有离开物质的运动、这是基于哲学的解释。与 中文“运动”对应的英义词汇有“movment”和 “motion”,按照大英百科全书的解释,运动是一个物 体相对于另一个物体或相对于一个坐标系统的位置的变 化、这是基于运动学的定义。运动涉及宇宙万物、大到 遥远的天体,小到物质内部的质子和电子,对这些运动 的研究覆盖了整个科学技术领域。 本课程所指的运动(motion)和运动控制系统(motion control system)是近10多年来在国际上流行的一个技术 术语,它源于一种狭义的、约定俗成的共识,即它的主 要研究内容是机械运动过程中涉及的力学、机械学、动 力驱动、运动参数检测和控制等方面的理论和技术问题。
《精品课件》运动控制课件 (1)
-
-
U fn
Ufi
器
TA
T G
模拟电路方式--数字模拟电路方式--全数字方式 数字控制器与模拟控制器相比,具有下列优点:
◆能明显地降低控制器硬件成本。 ◆可显著改善控制的可靠性。 ◆数字电路温度漂移小,不存在参数变化的影响,稳定性好。
◆硬件电路易标准化。 ◆为复杂控制算法的实现提供了坚实基础。
运动控制系统的微机数字控制,大体经历三个阶段∶ 第一个阶段: 系统的控制器主要采用具有单一数据处理功能的 微处理器(Microprocessor)。如Intel 8086 。 第二个阶段: 系统主要采用单片微型计算机(Micro-Controller) 和数字信号处理器(DSP)。如MCS-51系列和MCS-96系列单片机 ; 数字信号处理器(DSP),如TMS320系列、MOTOROLA公司的 68000系列以及NEC公司的μPD7720系列等等 。 第三个阶段: 九十年代后期的具有单片机特点的数字信号处理器 。 1997年TI公司推出了面向电机控制领域的DSP芯片-- TMS320C240(F240)芯片。
第三代器件的主要特点是采用MOS门极控制和集成化。其代表性器 件是功率MOSFET、IGBT和IPM
现代的电力电子变换装置中,PWM技术是目前主要采用 的变换器控制技术。
IPM(智能功率模块)
P
泵升电阻 (需外接)
VT1
VT3
B U
VT5
V
W
VT7
VT4
VT6
VT2
N
3.电动机方面
与直流电动机相比,交流电动机特别是鼠笼式异步电动机具有一系列 突出的优点:制造成本低廉、重量轻、惯性小、可靠性和运行效率高、基 本上不用维修、能在恶劣的甚至是含有易爆性气体的环境中安全运行。正 是由于交流电动机有这些优势,使它在电力传动系统中的应用范围比直流 电动机广泛得多。据统计,
运动控制系统ppt课件
ud
ua
ub
uc
ud
O
ud
ua
ub
uc
ud
Ud E
t O
id ic O
ia
ib
ic
id
a)电流连续
ic
t O
ia
ib
ic
b)电流断续
图1-9 V-M系统的电流波形
Ud E
t
t
1.2.3 抑制电流脉动的措施
在V-M系统中,脉动电流会产生脉动的 转矩,对生产机械不利,同时也增加电机 的发热。为了避免或减轻这种影响,须采 用抑制电流脉动的措施,主要是:
• 瞬时电压平衡方程
ud0
E
id R
L
did dt
(1-3)
式中
E — 电动机反电动势;
id — 整流电流瞬时值; L — 主电路总电感;
R — 主电路等效电阻;
且有 R = Rrec + Ra + RL;
对ud0进行积分,即得理想空载整流电压 平均值Ud0 。
用触发脉冲的相位角 控制整流电压的
序言
课程的内容、目的
以电动机为控制对象、以实现既定(旋转) 运动规律和特性为目标、以电力能量变换技 术(电力电子应用技术)和自动控制理论及 相关控制技术为手段,探讨如何构成运动控 制系统。
序言
课程的地位、意义
• 自动化学科及自动控制领域背景知识 • 自动化专业的内涵及专业特征 • 本课程的专业地位及重要性
O
TL
2 3
Te
曲线变软。
调磁调速特性曲线
▪ 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(即电机 额定转速)以上作小范围的弱磁升速。
(完整word版)运动控制系统 复习知识点总结
1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。
(运动控制系统框图)2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。
因此,转矩控制是运动控制的根本问题。
第1章可控直流电源-电动机系统内容提要相控整流器-电动机调速系统直流PWM变换器-电动机系统调速系统性能指标1相控整流器-电动机调速系统原理2.晶闸管可控整流器的特点(1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。
(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。
晶闸管可控整流器的不足之处晶闸管是单向导电的,给电机的可逆运行带来困难。
晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。
在交流侧会产生较大的谐波电流,引起电网电压的畸变。
需要在电网中增设无功补偿装置和谐波滤波装置。
3.V-M系统机械特4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。
5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类(2)简单的不可逆PWM变换器-直流电动机系统(3)有制动电流通路的不可逆PWM-直流电动机系统(4)桥式可逆PWM变换器(5)双极式控制的桥式可逆PWM变换器的优点双极式控制方式的不足之处(6)直流PWM变换器-电动机系统的能量回馈问题”。
(7)直流PWM调速系统的机械特性6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式)当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。
运动控制系统PPT参考课件
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
电力拖动自动控制系统—运动控制系统第1章绪论
03 电力拖动系统基础知识
电力拖动系统概述
电力拖动系统的定义
利用电动机将电能转换为机械能,实 现对机械运动过程的控制。
电力拖动系统的组成
电力拖动系统的分类
根据电动机类型、传动方式和控制要 求等不同,可分为直流电力拖动系统 和交流电力拖动系统。
包括电动机、传动机构、控制设备和 电源等部分。
直流电机与交流电机原理及应用
插补功能
根据预设轨迹生成中间点,实 现平滑运动。
输入输出处理
接收外部信号并处理,输出控 制信号给执行器。
传感器与执行器
传感器类型
包括光电编码器、磁编码器、霍尔传感器等。
传感器与执行器的匹配
根据被控对象和控制要求选择合适的传感器 和执行器。
执行器类型
包括直流电机、交流电机、步进电机、伺服 电机等。
性能参数
为了提高跟踪精度和响应速度,常采 用先进的控制算法,如自适应控制、 滑模变结构控制等。
关节控制系统通过接收来自上位控制器的指 令,驱动伺服电机或步进电机等执行机构, 实现关节的精确角速度或角位移跟踪。
包装机械中物料传输线速度调节
包装机械中的物料传输线负责 将待包装物品传输到包装工位, 其速度调节对于保证包装效率 和质量至关重要。
智能化、网络化的发展推动了运 动控制系统的变革和升级,但同 时也需要解决相关的技术难题和
安全问题。
未来研究方向和热点问题探讨
新型传感器和执行器的研发与应用
探索新型传感器和执行器的原理、结构、制造工艺等关键技术,提高 其性能、可靠性和寿命。
先进控制策略的研究与优化
针对复杂非线性系统,研究更为先进的控制策略,提高系统的控制精 度和稳定性。
性能指标定义及分类
运动控制系统基础PPT课件
Servo Drive
Position Feedback To
Motion Controller
9
第9页/共43页
伺服电机——抱闸的概念
伺服电机可以选择带有抱闸装置。 例如在垂直负载应用中,为了防 止在电机失电的情况下自由落体 状况的发生。 通常,在抱闸线圈通电的时候, 弹簧压紧,抱闸处于打开状态; 而当电机失电,抱闸在弹簧作用 下关闭,防止轴的坠落。 在其他需要的场合,也需要使用 抱闸电机。
Motor Power ( 3 phase) •Motor Current •Motor Voltage
−115VAC −230VAC −460VAC
Typical Servo Drive Line
Voltage
Servo Drive
•100-240VAC (Single Phase) •100-240VAC (3-Phase)
Motion Controller
Motion Software
8
第8页/共43页
伺服电机——反馈的概念
Servo Motor Feedback 伺服电机反馈设备通常安装在电机上,用来提供实际位置 反馈给控制器,以确保位置精度。反馈类型的选择则取决于实际应用和用户需求。 目前有很多不同的反馈检测技术和产品可供选择。
Motor with Feedback
Motor Power
Position Feedback
Servo Drives 伺服驱动 接受运动控制器的指令信号,控制电机所提 供的速度和扭矩(电流),要完成这些,驱动器需要将主进线电能 转换成电机所需要的电压和电流,以完成营工控制要求。
Plant Power
伺服电机 驱动器 执行和传动机构 电机电流 电机电压 运动控制器 运动控制软件 行程限位 回零 抱闸
运动控制系统总结ppt课件
图3-3 双闭环直流调速系统的稳态结构图 α——转速反馈系数 β——电流反馈系数
47
AB段是两个调 节器都不饱和 时的静特性,
IBdC<I段dm是, nA=nS0R。调 节器饱和时的 静n<特n0。性,Id=Idm,
图3-4 双闭环直流调速系统的静特性
48
根据各调节器的给定与反馈值计算有关的 反馈系数:
特性a和b的硬 度相同,
特性a和b额定 速降相同,
特性a和b的静 差率不相同。
图2-14 不同转速下N (1 s)
28
n
K pKsUn* Id R
K
p
KsU
* n
RId
Ce (1 K pKs / Ce ) Ce (1 K ) Ce (1 K )
29
30
31
图2-21 额定励磁下直流电动机 的动态结构框图
(a)电压电流间的结构框图 (b)电流电动势间的结构框图 (c)直流电动机的动态结构
框图
32
33
34
当为被1,测则转该速测由速n方1变法为的n分2时辨,率引是起记数值增量
Q n2 n1
转速实际值和测量值之差与实际值之比定义 为测速误差率
再按照控制对象确定电流调节器的类型,按动态 性能指标要求确定电流调节器的参数。
电流环设计完成后,把电流环等效成转速环(外 环)中的一个环节,再用同样的方法设计转速环 为典型II型系统。
64
图3-26 双闭环调速系统内环和外环的开环对数幅频特性 I——电流内环 n——转速外环
(3)内、外环开环对数幅频特性的比较 外环的响应比内环慢,这是按上述工程设计方法设计多环控
《运动控制系统》期末复习资料
第1章绪论1.什么是运动控制? 电力传动又称电力拖动,是以电动机作为原动机驱动生产机械的系统的总称。
运动控制系统是将电能转变为机械能的装置,用以实现生产机械按人们期望的要求运行,以满足生产工艺及其它应用的要求。
2.运动控制系统的组成:现代运动控制技术是以电动机为控制对象,以计算机和其它电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真或计算机辅助设计为研究和开发的工具。
3.运动控制系统的基本运动方程式:第2章转速反馈控制的直流调速系统1.晶闸管-电动机(V-M )系统的组成:纯滞后环节,一阶惯性环节。
2.V-M 系统的主要问题:由于电流波形的脉动,可能出现电流连续和断续两种情况。
3.稳态性能指标:调速范围D 和静差率s 。
D =??(1-??),额定速降??,D =????,s =????04.闭环控制系统的动态特性;静态特性、结构图?5.反馈控制规律和闭环调速系统的几个实际问题,积分控制规律和比例积分控制规律。
积分控制规律:t 0n cd 1tU U 比例积分控制规律:稳态精度高,动态响应快6.有静差、无静差的主要区别:比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
比例积分放大器的结构:PI 调节器7.数字测速方法:M 法测速、T 法测速、M/T 法测速。
8.电流截止负反馈的原理:采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
电流截止负反馈的实现方法:引入比较电压,构成电流截止负反馈环节9.脉宽调制:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
10.直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、 教学过程
教学目的与要求
课程的设置目的: 融合多门课程知识,训练综合分析及解决问题的能力! 教学要求: 1 按时出勤、提高课堂效率; 2 独立完成实验及课外作业; 3 成绩构成:平时15%、实验15%、期末考试70%
学习方法
勤于思考,善于总结, “温故知新”的认知系统结 构组成、定性分析工作原理;运用自控原理的方 法定量分析系统的稳态、动态过程。
运动控制系统主要教学内容
开环系统
晶闸管+PID控制器
单闭环系统 多环系统
电 动 机 调 速 系 统
直流电动机 调速系统
(相控)
GTO/IGBT+PID控制器构成的系统
(斩控)
交流调压调速系统 交流电动机 调速系统 变频变压调速系统 同步电动机调速系统系统 串极调速系统
可 逆 系 统
运动控制系统涉及的知识范围
K e:电动势常数
3、直流电动机的调速方法
n = ( U - IaR ) / K eΦ (1)调节电枢电压 n
Ud1<Ud2<Ud3<Un
om
当磁通Φ 和电阻 nnom R一定时,改变电 n1 枢电压U,可以平 n2 滑地调节转速n,机 n3 械特性将上下平移, 如图所示。
1、恒转矩负载
负载转矩的大小恒定,称作恒转矩负载。 a)位能性恒转矩负载 ;b) 反抗性恒转矩负载
2、恒功率负载
负载转矩与转速 成反比,而功率 为常数,称作恒 功率负载
恒功率转矩负载
TL
m
PL
常数
m
3、风机、泵类负载
负载转矩与转速的 平方成正比,称作 风机、泵类负载
风机、泵类负载
电力电子型功率器 件的发展状况如何?
半控型向全控型发展、
低频开关向高频开关发展、
分立的器件向具有复合功能的功率模块发展
1.0.3运动控制系统的控制器
控制器如 何分类?
模拟控制器 物理概念清晰、控制信号流向直观,控制规律体现 在硬件电路,并行运行、控制器的滞后时间小。 线路复杂、通用性差、制效果受到器件性能、温度 等因素的影响。 数字控制器 硬件电路标准化程度高,控制规律体现在软件上, 修改灵活方便,拥有信息存储、数据通信和故障诊断等 功能。 串行运行方式,其滞后时间比模拟控制器大得多, 在设计系统时应予以考虑。
1.0 运动控制系统及其组成分析(复习补充)
看图说话
1.0.1电动机是运动控制系统的控制对象
电动机的类型 如何分类? 电动机按类型可分为:直流电动机、交流感
应电动机(交流异步电动机)和交流同步电 动机。
电动机按用途可分为:用于调速系统的拖动 电动机和用于伺服系统的伺服电动机。
1.0.2运动控制系统的功率放大与变换装置
电力拖动自动控制系统 —运动控制系统
一 、教学目的与教学要求
1 了解运动控制系统课程设置的目的、教学要求及学习方法 2 掌握运动控制系统的基本概念及其相关知识 3 掌握直流电动机调速系统的发展历程 4 掌握PWM调速系统的优势所在 5 掌握晶闸管电动机系统的特殊问题
二、 教学内容
1.0 运动控制组成及其分析 1.1直流调速系统用的可控电源 1.2闸管电动机系统的特殊问题
TL n
2 m
2
看图说话
思考:直流调速的特殊结构组成是什么?
1.1 直流调速系统用的可控电源 1.1.1 直流电动机调速方法分析
1 直流电动机的转速特性方程(复习)
n = ( U - IaR ) / K eΦ
请说明式中各量的物理意义!
U:电枢电压
Ia :电枢电流
R:电枢回路总电阻
Φ :磁通
T e = Km Φ I a
说明:
Φ Ia
电枢电流与定子磁通相互作用产生电磁力与电磁转矩
电枢电流与定子磁通是相互独立控制的( T e是线性可 控的)
1.0.7 生产机械的负载转矩特性
生产机械的负载转矩是一个必然存在的不
可控扰动输入。
三种典型生产机械负载转矩特性,实际负
载可能是多个典型负载的组合。
GD2 dn 375 dt
要产生加速度!!
要产生加速度!! 加速度=0
电动机加速 电动机减速 电动机恒速
调速
调速定义:调速是指在一定负载作用下,通过 改变电动机或电源的参数使机械特性发生相应改 变,从而使电动机转速变化或保持不变。
4、直流电动机的电磁转矩方程
Km
直流电机转矩的结构常数
直流电动机定子磁通 直流电机电枢电流
2、电气传动系统的运动学方程
一般工程上采用飞轮惯量GD2代替J,二者关系:
GD2 = 4gJ
其中,G为转动惯量、D为旋转部分直径、g为重力加速度 由于:ω = 2π n/60 所以
电气传动运动方程为:
Te - TL =
GD2 dn 375 dt
3、运动方程与调速的关系
Te - TL = Te - TL > 0 Te - TL < 0 Te - TL = 0
1.0.4运动控制系统的信号检测与处理
信号检测:电压、电流、转速和位置等信号 信号转换:电压匹配、极性转换、脉冲整形等 数据处理: 信号滤波
1.0.5 运动控制系统的历史与发展
直流调速系统
直流电动机的数学模型简单,转矩易于控制。 换向器与电刷的位置保证了电枢电流与励磁电流的 解耦,使转矩与电枢电流成正比。
交流调速系统
交流电动机(尤其是笼型感应电动机)结构简单。 交流电动机动态数学模型具有非线性多变量强耦合 的性质,比直流电动机复杂得多。
目前,以直流控制为基础的现代交流调速系 统发展日趋完善!
1.0.6 运动控制系统的转矩控制规律
忽略阻尼转矩和扭转弹性转矩,运动控制系统的简化运动方 程式为: 1、旋转运动系统的牛顿第二定律 dω J Te - TL = dt dω 其中, J 为惯性转矩 dt
三 、教学时间
2学时
四 、教学思路流程
讨论分析课程的设置目的、明确学习方法及教学要求 运动控制系统的组成部分如何? 运动控制系统的技术发展演变的原因何在? 运动控制系统转矩控制规律是否学过? 生产机械的负载转矩特性分几类? 直流电动机有几种调速方法?
直流电动机调压调速有几种方法?
运动学方程与调速的关系如何?
电路 + 电子电路 + 电力电子电路 + 自动控制理论 + 控制原理 主、控电路
运 动 控 制 系 统
模拟
运动控制系统
数字
运动控制系统
电机与拖动
控制对象
现代运动控制技术涉及 电机学、电力电子技术、微电子技术、 计算机控制技术、控制理论、信号检测与处理技术等多门学科相互 交叉的综合性学科 。
第一章 闭环控制的直流调速系统