8086矩阵键盘显示
在数码管上动态显示矩阵键盘数字
/**********************************************程序功能:在数码管上动态显示矩阵键盘数字***********************************************/#include <msp430x14x.h>typedef unsigned char uchar;typedef unsigned int uint;#define LED_IN_USE 8//共阴极数码管7位段码:0--fuchar scandata[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; uchar led_Buf[LED_IN_USE]; // LED显示缓冲区,// 存放要显示数据uchar led_Ctrl;//记录显示位数的全局变量uchar key_Pressed; //按键是否被按下:1--是,0--否uchar key_val; //存放键值uchar key_Flag; //按键是否已放开:1--是,0--否//设置键盘逻辑键值与程序计算键值的映射uchar key_Map[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};uchar Dispbuf[2];/******************************************************* * 模块初始化*******************************************************/ void init_LED(void){//uchar tmpv;P5DIR = 0xff; //设置P5的IO方向为输出P3DIR |= 0x18; //设置P3.3 P3.4的IO方向为输出P3OUT &= 0xe7;//设置P3.3 P3.4为0,关闭两锁存器P5OUT = 0x00;//设置P5的输出初值led_Ctrl = 0; // led_Ctrl用于控制哪个LED可显示//for(tmpv=0;tmpv<LED_IN_USE;tmpv++)//{ // 初始化缓冲区,可放入主函数//led_Buf[tmpv] = 0;// }}void led_Display(){//P5DIR = 0xff; //设置P5的IO方向为输出//P3DIR |= 0x18; //设置P3.3 P3.4的IO方向为输出//P3OUT &= 0xe7;//设置P3.3 P3.4为0,关闭两锁存器//P5OUT = 0x00;//设置P5的输出初值P5OUT = scandata[Dispbuf[led_Ctrl]]; // 设置显示值P3OUT |= 0x10; // 打开数据锁存器P3OUT &= 0xef; // 关闭数据锁存P5OUT = ~(1 << (led_Ctrl)); // 设置哪只LED显示P3OUT |= 0x08; // 打开控制锁存P3OUT &= 0xf7; // 关闭控制锁存led_Ctrl++;if(led_Ctrl == 2) led_Ctrl = 0; // 设置下一个要显示的LED}/*******************************************函数名称:Init_Keypad功能:初始化扫描键盘的IO端口参数:无返回值:无********************************************/void Init_Keypad(void){P1DIR = 0xf0; //P1.0~P1.3设置为输入状态, P1.4~P1.7设置为输出状态P1OUT |= 0xf0; // P1.4~P1.7输出高电平key_Flag = 0;key_Pressed = 0;key_val = 0;}/********************************************** Check_Key(),检查按键,确认键值*********************************************//*******************************************函数名称:Check_Key功能:扫描键盘的IO端口,获得键值参数:无返回值:无********************************************/void Check_Key(void){uchar row ,col,tmp1,tmp2;tmp1 = 0x80;for(row = 0;row < 4;row++) //行扫描{P1OUT = 0xf0; //P1.4~P1.7输出全1P1OUT -= tmp1; //P1.4~p1.7输出四位中有一个为0tmp1 >>=1;if ((P1IN & 0x0f) < 0x0f) //是否P1IN的P1.0~P1.3中有一位为0{tmp2 = 0x01; // tmp2用于检测出那一位为0for(col = 0;col < 4;col++) // 列检测{if((P1IN & tmp2) == 0x00) // 是否是该列,等于0为是{key_val = key_Map[row * 4 + col]; // 获取键值return; // 退出循环}tmp2 <<= 1; // tmp2左移1位}}}}/*******************************************函数名称:delay功能:延时约15ms,完成消抖功能参数:无返回值:无********************************************/void delay(){uint tmp;for(tmp = 12000;tmp > 0;tmp--);}/*******************************************函数名称:Key_Event功能:检测按键,并获取键值参数:无返回值:无********************************************/void Key_Event(void){uchar tmp;P1OUT &= 0x00; // 设置P1OUT全为0,等待按键输入tmp = P1IN; // 获取p1INif ((key_Pressed == 0x00)&&((tmp & 0x0f) < 0x0f)) //如果有键按下{key_Pressed = 1; // 如果有按键按下,设置key_Pressed标识delay(); //消除抖动Check_Key(); // 调用check_Key(),获取键值}else if ((key_Pressed == 1)&&((tmp & 0x0f) == 0x0f)) //如果按键已经释放{key_Pressed = 0; // 清除key_Pressed标识key_Flag = 1; // 设置key_Flag标识}else{_NOP();}}/********************主函数********************/void main(void){WDTCTL = WDT_ADLY_1_9; // 设置内部看门狗工作在定时器模式,1.9ms中断一次IE1 |= WDTIE; // 使能看门狗中断init_LED();_EINT(); //打开全局中断Init_Keypad();while(1){Key_Event();if(key_Flag == 1){key_Flag = 0;Dispbuf[0] = key_val / 10;Dispbuf[1] = key_val % 10;}}// _BIS_SR(GIE);//_BIS_SR(LPM3_bits + GIE); //CPU进入LPM3低功耗模式,同时打开全局中断//_BIS_SR(CPUOFF+ GIE); //进入LPM0//_BIS_SR(LPM0_bits + GIE); //进入LPM0 }/*******************************************函数名称:watchdog_timer功能:看门狗中断服务函数,在这里输出数码管的段选和位选信号参数:无返回值:无********************************************/#pragma vector=WDT_VECTOR__interrupt void watchdog_timer(void){led_Display();}。
单片机C语言程序设计:数码管显示4X4矩阵键盘按键号
按键号
/* 名称:数码管显示 4X4 矩阵 键盘按键号 说明:按下任意键时,数码 管都会显示其键的序号,扫描程 序首先判断按键发生在哪一列, 然后根据所发生的行附加不同的 值,从而得到按键的序号。 */ #include #defineucharunsignedchar
BEEP=0; while(1) { P1=0xf0; if(P1!=0xf0)Keys_Scan(); //获取键序号 if(Pre_KeyNo!=KeyNo) { P0=~DSY_CODE[KeyNo]; Beep(); Pre_KeyNo=KeyNo; } Del KeyNo=1;break; case4:KeyNo=2;break; case8: KeyNo=3;break; default:KeyNo=16;//无键按下 } P1=0xf0;//低 4 位置 0,放入 4 列 DelayMS(1); Tmp=P1>>4x0f;//按键后 f0 变成 XXXX0000,X 中有 1 个为 0,三个仍为 1;高 4 位转移到低 4 位并 异或得到改变的值 switch(Tmp)//对 0~3 行分别附加起始值 0,4,8,12 { case1: KeyNo+=0;break;
} 扩展阅读:4X4 矩阵键盘控制条形 LED 显示程序
case2: KeyNo+=4;break; case4: KeyNo+=8;break; case8: KeyNo+=12; } } //蜂鸣器 voidBeep() { uchari; for(i=0;i {
DelayMS(1); BEEP=~BEEP; } BEEP=0; } //主程序 voidmain() { P0=0x00;
4X4矩阵键盘控制数码管显示按键值
4X4矩阵键盘控制数码管显示按键值4X4矩阵键盘控制数码管显示按键值一、设计内容与要求用80C51单片机控制系统显示按键值0~F。
二、设计目的意义2.1 设计目的1、了解单片机系统中实现LED动态显示的原理及方法;2、详细了解8051芯片的性能及编程方法;3、了解单片机系统基本原理,了解单片机控制原理;4、掌握AT89C51输入/输出接口电路设计方法;5、掌握AT89C51程序控制方法;6、掌握单片机汇编编程技术中的设计和分析方法;7、掌握使用PROTEUS软件进行仿真的方法。
8、学会使用并熟练掌握电路绘制软件Protel99SE;9、掌握电路图绘制及PCB图布线技巧。
2.2 设计意义1、在系统掌握单片机相应基础知识的前提下,熟悉单片机应用系统的设计方法及系统设计的基本步骤。
2、完成所需单片机应用系统原理图设计绘制的基础上完成系统的电路图设计。
3、完成系统所需的硬件设计制作,在提高实际动手能力的基础上进一步巩固所学知识。
4、进行题目要求功能基础上的软件程序编程,会用相应软件进行程序调试和测试工作。
5、用AT89C51设计出题目所要求的数码管动态循环显示,并针对实际设计过程中软、硬件设计方面出现的问题提出相应解决办法。
6、通过单片机应用系统的设计将所学的知识融会贯通,锻炼独立设计、制作和调试单片机应用系统的能力;领会单片机应用系统的软、硬件调试方法和系统的研制开发过程,为进一步的科研实践活动打下坚实的基础。
三、系统硬件电路图3.1 Proteus软件简介以及仿真电路图Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。
是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、1ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。
矩阵键盘显示系统
1 4×4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O 端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N×N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
最常见的键盘布局如图1.1所示。
一般由16个按键组成,在单片机中正好可以用一个P口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。
图1.1 键盘布局2系统主要硬件电路设计2.1单片机控制系统原理图2.1 单片机控制系统原理框图2.2单片机主机系统电路AT89C52单片机是51系列单片机的一个成员,是52单片机的简化版。
内部自带2K字节可编程FLASH存储器的低电压、高性能COMS八位微处理器,与Intel MCS-52系列单片机的指令和输出管脚相兼容。
由于将多功能八位CPU和闪速存储器结合在单个芯片中,因此,AT89C52构成的单片机系统是具有结构最简单、造价最低廉、效率最高的微控制系统,省去了外部的RAM、ROM和接口器件,减少了硬件开销,节省了成本,提高了系统的性价比。
图2.2 单片机主机系统图2.2.1时钟电路时钟信号用来提供单片机片内各种微操作的时间基准,时钟信号通常用两种电路形式得到:内部振荡和外部振荡。
MCS-52单片机内部有一个用于构成振荡器的高增益反向放大器,引脚XTALl和XTAL2分别是此放大电器的输入端和输出端,由于采用内部方式时,电路简单,所得的时钟信号比较稳定,实际使用中常采用这种方式,如图2.2所示在其外接晶体振荡器(简称晶振)或陶瓷谐振器就构成了内部振荡方式,片内高增益反向放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起可构成一个自激振荡器并产生振荡时钟脉冲。
单片机实验报告——矩阵键盘数码管显示
单片机实验报告信息处理实验实验二矩阵键盘专业:电气工程及其自动化指导老师:***组员:明洪开张鸿伟张谦赵智奇学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日矩阵键盘一、实验内容1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。
按其它键没有结果。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。
4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。
5、掌握利用Keil51软件对程序进行编译。
6、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
三、实验原理1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
自己写的单片机矩阵键盘显示程序及仿真
Protues 电路连接图如下所示:PS:矩阵键盘说明——4×4矩阵从左到右依次编码为1,,3,4,5,6,7,8,9,10,11,12,13,14,15,16按下某一按键,Led数码管就会显示相应的数字。
Keil C51 程序如下:有点不足望改进。
O(∩_∩)O谢谢!!!/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////#include <reg51.h>#define uchar unsigned char //宏的定义变量类型 uchar 代替 unsigned char#define uint unsigned int //宏的定义变量类型 uint 代替 unsigned intuchar dis_buf; //显示缓存uchar temp;uchar l,h,j; //定义行列void delay0(uchar x); //x*0.14MS// 此表为 LED 的字模 0 1 2 3 4 5 6 78 9uchar code LED7Code[] = {0xc0,0xf9,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F};/************************************************************* * ** 延时子程序 ** **************************************************************/void delay(uchar x){ uchar j;while((x--)!=0) //CPU执行x*12次,x=10{ for(j=0;j<50;j++){;}}}/************************************************************* * * * 键扫描子程序 (4*4的矩阵) P1.4 P1.5 P1.6 P1.7为行 * * P1.0 P1.1 P1.2 P1.3为列 ** * *************************************************************/void keyscan(void){ temp=0;P1=0xF0; //高四位输入行为高电平列为低电delay(3); //延时temp=P1; //读P1口temp=temp&0xF0;//屏蔽低四位temp=~((temp>>4)|0xF0); //高四位取反无键按下取反应为0xf0if(temp==1) //0001 [1,1] 被拉低h=1;else if(temp==2) //0010[2,1] 被拉低h=2;else if(temp==4) //0100[3,1] 被拉低h=3;else if(temp==8) //1000[4,1] 被拉低h=4;dis_buf = h;dis_buf = (dis_buf<<4) & 0xf0; //行信息现存在第四位delay(10);P1=0x0F; //低四位输入列为高电平行为低电平delay(3); //延时temp=P1; //读P1口temp=temp&0x0F; //屏蔽高四位temp=~(temp|0xF0); //取反if(temp==1) //1列被拉低l=1;else if(temp==2) //2列被拉低l=2;else if(temp==4) //3列被拉低l=3;else if(temp==8) //4列被拉低l=4;l= l & 0x0f;delay(3);dis_buf= l | dis_buf;}/************************************************************** **判断键是否按下 ** **************************************************************/void keydown(void){P2=0xF0; //显示00P3=0xf0;//将高4位全部置1 低四位全部置0if(P1!=0xF0) //判断按键是否按下如果按钮按下会拉低P1其中的一个端口{keyscan(); //调用按键扫描程序}}void display( ){j=50;while(j){P2= 0x80;P0= LED7Code[0];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display1( ){j=50;while(j){P2= 0x80;P0= LED7Code[2];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display2( ){j=50;while(j){P2= 0x80;P0= LED7Code[3];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display3( ){j=50;while(j){P2= 0x80;P0= LED7Code[4];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display4( ){j=50;while(j){P2= 0x80;P0= LED7Code[5];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;} }void display5( ){j=50;while(j){P2= 0x80;P0= LED7Code[6];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}/************************************************************** ** 主程序 ** **************************************************************/ void main(){P0=0xc0;delay(20); //延时while(1){ keydown(); //调用按键判断检测程序switch( dis_buf){case 0x11 : P2=0x80; P0= LED7Code[1]; break;case 0x12 : P2=0x80; P0= LED7Code[2]; break;case 0x13 : P2=0x80; P0= LED7Code[3]; break;case 0x14 : P2=0x80; P0= LED7Code[4]; break;case 0x21 : P2=0x80; P0= LED7Code[5]; break;case 0x22 : P2=0x80; P0= LED7Code[6]; break;case 0x23 : P2=0x80; P0= LED7Code[7]; break;case 0x24 : P2=0x80; P0= LED7Code[8]; break;case 0x31 : P2=0x80; P0= LED7Code[9]; break;case 0x32 : display();break;case 0x33 : P2 = LED7Code[1]; P0= LED7Code[1]; break;case 0x34 : display1(); break;case 0x41 : display2(); break;case 0x42 : display3();; break;case 0x43 : display4();; break;case 0x44 : display5();; break;}delay(250);}}/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////(注:本资料素材和资料部分来自网络,仅供参考。
矩阵键盘显示,六位数码管滚动显示
南京邮电大学课程设计报告设计类别: EDA-VHDL专业名称: 通信工程班级学号: B09010504 学生姓名: 张嫣艳基本题 : 矩阵键盘按键的数码管显示综合题 : 数码管学号滚动显示同小组成员:学号:B09010502姓名:沈沁芳指导教师: 王奇、梅中辉、周晓燕、孔凡坤日期:2012年3月5日—3月30日目录一矩阵键盘按键的数码管显示1.实验目的--------------------------------------------------------------------- 3 2.实验所用仪器及元器件----------------------------------------------------3 3.实验任务要求----------------------------------------------------------------34. 设计思路-----------------------------------------------------------------------35. 模块分析-----------------------------------------------------------------------36. 逻辑仿真图及功能分析-----------------------------------------------------47. 调试过程与问题--------------------------------------------------------------88. 实验总结-----------------------------------------------------------------------89. 附录(VHDL源程序)-----------------------------------------------------8二数码管学号滚动显示1.实验目的----------------------------------------------------------------------12 2.实验所用仪器及元器件----------------------------------------------------12 3.实验任务要求----------------------------------------------------------------134. 设计思路----------------------------------------------------------------------135. 模块分析----------------------------------------------------------------------136. 逻辑仿真图及功能分析----------------------------------------------------167. 调试过程与问题-------------------------------------------------------------188. 实验总结----------------------------------------------------------------------189. 附录(VHDL源程序)----------------------------------------------------18一矩阵键盘按键的数码管显示1.实验目的(1).使学生全面了解如何应用该硬件描述语言进行高速集成电路设计;(2).通过软件设计环节与仿真环节使学生熟悉Quartus II设计与仿真环境;(3).通过对基本题、综合题的设计实践,使学生掌握硬件系统设计方法(自底向上或自顶向下),熟悉VHDL语言三种设计风格,熟悉其芯片硬件实现的过程。
实验五 矩阵式键盘按键值的数码管显示
实验五矩阵式键盘按键值的数码管显示一实验目的将矩阵键盘的键值采用LED数码管显示出来(分别考虑用动态显示、静态显示)二实验内容与具体任务描述任务1:行列式键盘接口,扫描实现LED动态显示键盘被按下。
将图中的动态显示改成静态显示。
:修改代码及图,2任务三设计的电路图与描述P1口控制键盘,P0口控制LED显示器。
四程序清单任务1:#include<reg51.h> //包含51单片机寄存器定义的头文件sbit P14=P1^4; //将P14位定义为P1.4引脚sbit P15=P1^5; //将P15位定义为P1.5引脚sbit P16=P1^6; //将P16位定义为P1.6引脚sbit P17=P1^7; //将P17位定义为P1.7引脚unsigned char code Tab[ ]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //数字的段码0~9.unsigned char keyval; //定义变量储存按键值/**************************************************************函数功能:数码管动态扫描延时**************************************************************/ void led_delay(void){unsigned char j;for(j=0;j<200;j++);}/************************************************************** 函数功能:按键值的数码管显示子程序**************************************************************/ void display(unsigned char k){P2=0xbf; //点亮数码管DS6P0=Tab[k/10]; //显示十位led_delay(); //动态扫描延时P2=0x7f; //点亮数码管DS7P0=Tab[k_x0010_]; //显示个位led_delay(); //动态扫描延时}/************************************************************** 函数功能:软件延时子程序**************************************************************/ void delay20ms(void){unsigned char i,j;for(i=0;i<100;i++)for(j=0;j<60;j++);}/************************************************************** 函数功能:主函数**************************************************************/ void main(void){EA=1; //开总中断ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式1TH0=(65536-500)/256; //定时器T0的高8位赋初值TL0=(65536-500)%6; //定时器T0的高8位赋初值TR0=1; //启动定时器T0按键值初始化为// keyval=0x00;while(1) //无限循环{display(keyval); //调用按键值的数码管显示子程序}}/**************************************************************函数功能:定时器0的中断服务子程序,进行键盘扫描,判断键位**************************************************************/void time0_interserve(void) interrupt 1 using 1{TR0=0; //关闭定时器T0P1=0xf0; //所有行线置为低电平“0”,所有列线置为高电平“1”if((P1&0xf0)!=0xf0) //列线中有一位为低电平“0”,说明有键按下delay20ms(); //延时一段时间、软件消抖if((P1&0xf0)!=0xf0) //确实有键按下{P1=0xfe; //第一行置为低电平“0”(P1.1出低电平“0”)if(P14==0) keyval=1; //可判断是S1键被按下if(P15==0) keyval=2; //可判断是S2键被按下if(P16==0) keyval=3; //可判断是S3键被按下if(P17==0) keyval=4; //可判断是S4键被按下P1=0xfd; //第二行置为低电平“0”(P1.1出低电平“0”)if(P14==0) keyval=5; //可判断是S5键被按下if(P15==0) keyval=6; //可判断是S6键被按下if(P16==0) keyval=7; //可判断是S7键被按下if(P17==0) keyval=8; //可判断是S8键被按下P1=0xfb; //第三行置为低电平“0”(P1.2输出低电平“0”)if(P14==0) keyval=9; //可判断是S9键被按下if(P15==0) keyval=10; //可判断是S10键被按下if(P16==0) keyval=11; //可判断是S11键被按下if(P17==0) keyval=12; //可判断是S12键被按下P1=0xf7;if(P14==0) keyval=13; //可判断是S13键被按下if(P15==0) keyval=14; //可判断是S14键被按下if(P16==0) keyval=15; //可判断是S15键被按下if(P17==0) keyval=16; //可判断是S16键被按下}TR0=1; //开启定时器T0TH0=(65536-500)/256; //定时器T0的高8位赋初值TL0=(65536-500)%6; //定时器T0的高8位赋初值}任务2:#include<reg51.h> //包含51单片机寄存器定义的头文件sbit P14=P1^4; //将P14位定义为P1.4引脚sbit P15=P1^5; //将P15位定义为P1.5引脚sbit P16=P1^6; //将P16位定义为P1.6引脚sbit P17=P1^7; //将P17位定义为P1.7引脚unsigned char code Tab[ ]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; 数字// 0~9的段码//定义变量储存按键值unsigned char keyval;/**************************************************************函数功能:数码管动态扫描延时**************************************************************//*void led_delay(void){unsigned char j;for(j=0;j<20;j++);}/**************************************************************函数功能:按键值的数码管显示子程序**************************************************************/void display(unsigned char k){DS6 点亮数码管// P2=0x3f;P0=Tab[k/10]; //显示十位//动态扫描延时//led_delay();DS7 //点亮数码管//P2=0x7f;显示个位// P3=Tab[k_x0010_];//led_delay(); //动态扫描延时}/**************************************************************函数功能:软件延时子程序**************************************************************/void delay20ms(void){unsigned char i,j;for(i=0;i<100;i++)for(j=0;j<60;j++);}/**************************************************************函数功能:主函数**************************************************************/void main(void){EA=1; //开总中断ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式1TH0=(65536-500)/256; //定时器T0的高8位赋初值TL0=(65536-500)%6; //定时器T0 的高8位赋初值TR0=1; //启动定时器T0keyval=0x00; //按键值初始化为0while(1) //无限循环{display(keyval); //调用按键值的数码管显示子程序}}/**************************************************************函数功能:定时器0的中断服务子程序,进行键盘扫描,判断键位**************************************************************/void time0_interserve(void) interrupt 1 using 1{TR0=0; //关闭定时器T0P1=0xf0; //所有行线置为低电平ぜ,所有列线置为高电平if((P1&0xf0)!=0xf0) //列线中有一位为低电平ぜ,说明有键按下delay20ms(); //延时一段时间、软件消抖if((P1&0xf0)!=0xf0) //确实有键按下{P1=0xfe; //第一行置为低电平ぜ(P1.1 出低电平ぜ)if(P14==0) keyval=1; //可判断是S1键被按下if(P15==0) keyval=2; //可判断是S2键被按下if(P16==0) keyval=3; //可判断是S3键被按下if(P17==0) keyval=4; //可判断是S4键被按下P1=0xfd; //第二行置为低电平ぜ(P1.1出低电平ぜ)if(P14==0)keyval=5; //可判断是S5键被按下if(P15==0) keyval=6; //可判断是S6键被按下if(P16==0) keyval=7; //可判断是S7键被按下if(P17==0) keyval=8; //可判断是S8键被按下P1=0xfb; //第三行置为低电平ぜ(P1.2输出低电平ぜ)if(P14==0) keyval=9; //可判断是S9键被按下if(P15==0) keyval=10; //可判断是S10键被按下if(P16==0) keyval=11; //可判断是S11键被按下if(P17==0) keyval=12; //可判断是S12键被按下P1=0xf7;键被按下S13可判断是// keyval=13; if(P14==0)if(P15==0) keyval=14; //可判断是S14键被按下if(P16==0) keyval=15; //可判断是S15键被按下if(P17==0) keyval=16; //可判断是S16键被按下}TR0=1; //开启定时器T0TH0=(65536-500)/256; //定时器T0的高8位赋初值TL0=(65536-500)%6; //定时器T0的高8位赋初值}五运行结果任务1:两个LED显示器动态显示被按下键盘号。
8086矩阵键盘显示
1. 实验要求利用可编程并行接口芯片 8255A 设计一个键盘与 LED 显示器接口。
1)系统设置一个 4 行×4 列的行/ 列扫描式键盘和一个 8 位的共阴极七段数码管2)键盘提供 0~F 这 16 个十六进制数字键,采用行/列扫描式接口,数码管采用动态扫描的方式;3)编写程序,将键盘键入的数字,采用左移的方式显示在数码管上;4)按下 C 键清除所有显示内容。
2. 实验目的1)熟练掌握 8086 汇编语言程序设计以及可编程接口芯片应用技术;2)掌握 Proteus 仿真软件的基本操作与调试功能;3)掌握基于 Proteus 的 8086 应用系统软硬件设计与调试方法与步骤,并完成仿真实验3. 实验分析本实验可具体分解为三大部分,分别是扫描式矩阵键盘的实现,左移数码管的实现以及清零键的实现。
扫描式矩阵键盘的原理如下:设定行线输出,列线输入,行线逐行输出0,如果某列有按键,则列线输入为 0;若无按键,列线输入全为 1。
在本实验中,我们将 8255A 的 C 口单元作为负责扫描式键盘的端口。
在代码的编程上,我们让 C 口的低四位输出全为 0,高四位输入检查是否有 0从而判断是否有按键按下,该段语句通过 loop 语句完成循环进行重复检查按键的按下情况。
假如有按键按下,则通过逐行扫描的形式获取按下按键的行数以及列数,再通过该行数与该列数形成的坐标信息得出是哪个按键按下。
左移数码管的实现需要两个子功能:第一个功能是要输出键盘对应的数字,第二个功能是要实现数字的左移功能。
本实验中,我们将 8255A的 A 口负责键盘对应字形码的输出, B 口负责对应位码的输出。
首先,在获取键盘按下的坐标后,我们在对应的表格中得到要输出的字形码。
接着字形码入栈和出栈的操作以及指针sp 的操作实现对应码数和字型码的输出,也就成功实现了左移功能。
程序中必须设定延时以防止两个数同时显示。
清零键的设定实现的是按下清零键消除数码管中所有显示数字的功能。
矩阵式键盘识别显示电路的设计
第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。
单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。
4*4矩阵式键盘采用AT89S51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用汇编语言编程。
单片机将检测到的按键信号转换成数字量,显示于LED显示器上。
该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。
1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。
显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。
并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。
矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N*N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
最常见的键盘布局如图1-1所示。
一般由16个按键组成,在单片机中正好可以用一个P口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。
图1-1 键盘布局随着21世纪的到来,资源危机接踵而至。
快速席卷整个国家,这一状况还将随着时间的推移和社会的发展而更加严重。
国家提倡资源节约型社会,资源危机已成为全球性的突出问题,利用科技手段缓解这一危机,将是人类主要的出路。
矩阵键盘按键的数码管显示矩阵键盘按键的数码管显示
一、矩阵键盘按键的数码管显示1.实验目的(1)掌握VHDL语言的语法规范,掌握时序电路描述方法(2)掌握多个数码管动态扫描显示的原理及设计方法2.实验所用仪器及元器件计算机一台实验板一块电源线一根扁平线一根下载线一根3.实验任务要求设计出4*4矩阵键盘对某一按键按下就在数码管显示一个数字。
按键从左上角到右下角依次为1,2, (16)4.实验原理按键模块原理键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出4行为高电平,然后输出4列为低电平,在读入输出的4行的值,通常高电平会被低电平拉低,如果读入的4行均为高电平,那么肯定没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。
同理,获取列值也是如此,先输出4列为高电平,然后在输出4行为低电平,再读入列值,如果其中有哪一位为低电平,那么肯定对应的那一列有按键按下。
键盘键值的获取:键盘上的每一个按键其实就是一个开关电路,当某键被按下时,该按键的接点会呈现0的状态,反之,未被按下时则呈现逻辑1的状态。
扫描信号由r o w进入键盘,变化的顺序依次为1110-1101-1011-0111-1110。
每一次扫描一排,依次地周而复始。
例如现在的扫描信号为1011,代表目前正在扫描9,10,11,12这一排的按键,如果这排当中没有按键被按下的话,则由column读出的值为1111;反之当9这个按键被按下的话,则由colu mn读出的值为1110。
根据上面所述原理,我们可得到各按键的位置与数码关系如表所示:1110 1110 1110 1110 1101 1101 1101 1101row1110 1101 1011 0111 1110 1101 1011 0111 column1 2 3 4 5 6 7 8键值row 1011 1011 1011 1011 0111 0111 0111 0111column1110 1101 1011 0111 1110 1101 1011 0111键值9 10 11 12 13 14 15 16动态显示原理为使得输入控制电路简单且易于实现,采用动态扫描的方式实现设计要求。
矩阵键盘扫描与数码管显示实验结果分析
矩阵键盘扫描与数码管显示实验结果分析
矩阵键盘扫描与数码管显示实验是一种常见的数字电路实验。
在这个实验中,我们可以通过按下矩阵键盘上的按键,控制数码管上的数字显示。
实验结果分析主要包括以下几个方面:
1. 矩阵键盘扫描:在实验中按下键盘上的某个按键,可以通过扫描算法检测到按键的位置,并将对应按键的行列信息送入微处理器或控制电路。
分析实验结果时,可以观察是否可以正常检测到按键的位置,并且是否能够正确传递给其他部分的电路或处理器。
2. 数码管显示:通过实验中的控制电路,可以将微处理器或其他控制器输出的数字信号转换成数码管上的对应数字显示。
在分析实验结果时,可以观察数码管是否能够正常显示所期望的数字,并且是否能够响应输入信号的变化。
3. 信号传递与处理:在整个实验电路中,信号的传递和处理是关键部分。
可以分析信号在各个部分的传递过程中是否出现错误或干扰,是否能够实现正确的数据传输和处理。
4. 稳定性和可靠性:实验结果的分析还需要考虑电路的稳定性和可靠性。
即在长时间使用或复杂环境条件下,电路能否保持正常工作,并且不出现意外错误或故障。
总结来说,矩阵键盘扫描与数码管显示实验结果的分析需要关注按键的检测和传递、数码管的正确显示、信号传递与处理等方面,同时也需要考虑电路的稳定性和可靠性。
8086接口实验
接口实验部分实验1 简单I/O口扩展实验一、实验目的1、熟悉74LS273,74LS244的应用接口方法。
2、掌握用锁存器、三态门扩展简单并行输入、输出口的方法。
二、实验设备CPU挂箱、8086CPU模块。
三、实验内容逻辑电平开关的状态输入74LS244,然后通过74LS273锁存输出,利用LED显示电路作为输出的状态显示。
四、实验原理介绍本实验用到两部分电路:开关量输入输出电路,简单I/O口扩展电路。
五、实验步骤1、实验接线:(↔表示相互连接)CS0 ↔CS244; CS1↔CS273;平推开关的输出K1~K8 ↔ IN0~IN7(对应连接); O0~O7↔LED1~LED8。
2、编辑程序,单步运行,调试程序3、调试通过后,全速运行程序,观看实验结果。
4、编写实验报告。
六、实验提示74LS244或74LS273的片选信号可以改变,例如连接CS2,此时应同时修改程序中相应的地址。
七、实验结果程序全速运行后,逻辑电平开关的状态改变应能在LED上显示出来。
例如:K2置于L位置,则对应的LED2应该点亮。
八、程序框图(实验程序名: T244273.ASM)九、程序源代码清单assume cs:codecode segment publicorg 100hstart: mov dx,04a0h ;74LS244地址 in al,dx ;读输入开关量 mov dx,04b0h ;74LS273地址 out dx,al ;输出至LED jmp startcode endsend start实验2 存储器读写实验一、实验目的1.掌握PC机外存扩展的方法。
2.熟悉6264芯片的接口方法。
3.掌握8086十六位数据存储的方法。
二、实验设备CPU挂箱、8086CPU模块。
三、实验内容向02000~020FFH单元的偶地址送入AAH,奇地址送入55H。
四、实验原理介绍本实验用到存储器电路五、实验步骤1、实验接线:本实验无需接线。
矩阵按键控制数码管显示
定时消抖 Case 0xee; P0口送0 段码 Case 0xed; P0口送1 段码 Case 0x77; …… P0口送F 段码
有键按下?
是
否
存储当前P2的状态1 Break P2=0X0F 结束 存储当前P2的状态2
返回(状态1|状态2)
返回0XFF
程序编写
//========================================== //函数名称: keyscan() //函数功能: 检测按键 //入口参数:无 //出口参数:cord_h|cord_1 //备注: //========================================== UINT8 keyscan(void) { INT8 cord_h=0; INT8 cord_1=0; P2=0xf0; if(P2!=0xf0) { delay_ms(10); if(P2!=0xf0) { cord_h=P2; P2=0x0f; cord_1=P2; return(cord_h|cord_1); } } return(0xff); }
在没有按键按下时,即DS2450 的输入量时0,当有丌 同的按键按下时,DS2450 的输入量丌同,微处理器就会 得到丌同的数字量,微处理器根据采集到的数字量可判断 按键情况。
单片机控制的“机电一体化产品”中按键的接口设计 科技咨询,李迚波
键盘扫描子程序一般包括以下内容:
1.判别有无键按下;
2.消除键盘机械抖动;
出线输出为全低电平,则列线中电平由高变低所在列为按
键所在列。
两步即可确定按键所在的行和列,从而识别出所按的键。
采用线反转法的矩阵式键盘
假设键3被按下。
第一步,P1.0~P1.3输出全为“0”,然后,读入 P1.4~P1.7线的状态,结果P1.4=0,而P1.5~P1.7均为 1,因此,第1行出现电平的变化,说明第1行有键按下; 第二步,让P1.4~P1.7输出全为“0”,然后,读入 P1.0~P1.3位,结果P1.0=0,而P1.1~P1.3均为1,因 此第4列出现电平的变化,说明第4列有键按下。
基于单片机控制的矩阵键盘显示系统设计
基于单片机控制的矩阵键盘显示系统设计矩阵键盘是一种常见的输入设备,用于将用户的按键操作转换成数字信号,以便与其他电子设备进行交互。
基于单片机的矩阵键盘显示系统设计实现了对键盘输入的读取,并通过显示器将按键信息进行显示。
下面将对该系统的设计进行详细介绍。
1.系统概述本系统主要由矩阵键盘、单片机、显示器组成。
矩阵键盘采用常见的4行4列的布局,每个按键都与单片机的输入引脚相连接。
单片机负责读取输入引脚的状态,并根据不同的按键进行不同的处理。
而显示器则用于显示按键输入的结果。
2.硬件设计2.1矩阵键盘矩阵键盘采用4行4列的布局,每个按键都与单片机的输入引脚相连接。
为了实现多按键同时按下的检测,采用按键矩阵的方式进行连接。
在按键矩阵中,每个按键与四个不同的引脚相连接,分别代表行和列。
单片机通过轮询的方式读取每个行和列的引脚状态,从而实现对按键状态的检测。
2.2单片机单片机作为系统的核心控制器,负责读取矩阵键盘的输入信号,并对按键进行处理。
单片机需要配置相应的IO引脚作为输入引脚,并进行轮询式的读取。
当按键按下时,单片机会通过扫描算法检测到按键的位置,并将按键的信息存储到相应的缓存区。
2.3显示器显示器用于显示按键输入的结果。
可以采用常见的数码管、LCD屏幕或者LED矩阵作为显示设备。
单片机通过输出引脚将按键信息传递给显示器,显示器根据这些信息进行相应的显示操作。
3.软件设计3.1初始化在系统启动时,单片机需要进行相应的初始化工作。
主要包括配置口线方向、扫描算法的设置、中断使能等。
3.2扫描算法为了检测按键的位置,需要采用合适的扫描算法。
常用的有逐行扫描、逐列扫描和矩阵扫描等。
逐行扫描的方法是先给每一行输出低电平,然后通过检测每一列的引脚状态来确定按键位置。
逐列扫描的方法与之类似,只是输出低电平的对象从行变为列。
矩阵扫描方法是同时扫描行和列,通过检测相交的引脚状态来确定按键位置。
在实际应用中,可以根据具体需求选择合适的扫描算法。
基于Intel8086的键盘显示系统
基于Intel 8086的键盘显示系统——“专业课程设计”设计报告学院:机电工程及其自动化专业:电气工程及其自动化学号:0912XXXX姓名:XXX指导老师:汪西川时间:2012年6月29日1.课程设计要求利用Intel 8086CPU、8259、8253、8255芯片和LED、按钮开关等元器件设计一个键盘显示系统。
其中:LED数码显示器共8位,要求每过10ms从右到左显示一遍。
键盘为4*8阵列(键名为:0~9,A~F,F1~F16),要求每过10ms 全盘扫描一遍,每当“F1”键按下时显示字符串“20120629”,其余各键扫描后的处理程序暂不考虑。
要求:画出系统连接图,并编写相关控制程序。
2.系统连接图系统连接图如下页所示:3.控制程序及简要说明3.1 芯片初始化程序8253:MOV DX, 67HMOV AL,00110101BOUT DX,AL ;将定时器0设为工作方式2,采用BCD码MOV AL,00HMOV AL,01H ;让定时器0每10MS送出一个脉冲信号8255(KEYBOARD):MOV DX,6BHMOV AL,10110110BOUT DX,AL ;将8255(键盘)设为工作方式1,A、B口输入,可以查询中断8255(LED):MOV DX,6FHMOV AL,10000000BOUT DX,AL ;将8255(LED)设为工作方式0,A、B口输出8259:MOV DX,60HMOV AL,00011011BOUT DX,AL ;ICW1初始化MOV DX,61HMOV AL,28HOUT DX,AL ;ICW2初始化MOV AL,00000001BOUT DX,AL ;ICW4初始化3.2 定时中断服务程序利用8259的查询中断方式:MOV DX,60HMOV AL,00001100BOUT DX,ALIN AL,DX ;查询IR3,输入查询命令,读出查询字3.3 键盘扫描程序WALK:MOV DX,68HMOV AL,0OUT DX,ALMOV DX,6AHIN AL,DXCMP AL,0FFH ;扫描全0输出JZ WALK ;无键合上继续等待MOV BL,0 ;从PA0开始扫描MOV BH,FEHMOV CX,4FNDROW:MOV AL,BHMOV DX,69HOUT DX,ALROL BH,1MOV DX,6AHIN AL,DXCMP AL,0FFHJNZ RNDCOLADD BL,8 ;本行无键合上,扫描下一行,键号加8 LOOP FNDROWJMP DONEFNDCOL: ROR AL,1 ;本行有键合上,判断哪一位JNC RIGHT ;键号在BL中INC BLJMP FNDCOLRIGHT:CMP BL,17 ;判断是不是F1JNZ DONE ;不是F1结束中断. ;是F1,输出20120629..DONE:…3.4 显示控制程序循环点亮8个LED:MOV AL, 80HOUT 6FH, ALMOV AL, 0FFHOUT 6CH, ALMOV AL,0FEH ;第一盏灯亮,其余灭AGAIN: OUT 0F8H, ALCALL DELAYROR AL, 1 ;每盏灯依次亮4.设计体会在本次程序设计之前,我对用电脑进行单片机电路模拟和仿真的知识知之甚少,在进行本次设计的过程中,我不断寻找Proteus的教学资料并进行学习与使用,让我对Proteus仿真软件的使用技能有了很大提高。
矩阵式键盘控制数码管显示
目录
CONTENTS
• 矩阵式键盘工作原理 • 数码管显示原理 • 矩阵式键盘控制数码管显示方案 • 矩阵式键盘控制数码管显示应用 • 矩阵式键盘控制数码管显示常见问题及
解决方案
01 矩阵式键盘工作原理
按键检测方式
直接检测法
通过直接检测按键是否按下,判断按键状态。
间接检测法
按键与数码管显示不匹配
01
总结词
按键与数码管显示不匹配是矩阵式键盘控制数码管显示中 常见的问题之一,表现为按下某个按键后数码管显示的内 容与预期不符。
02
详细描述
这可能是由于键盘编码与数码管显示编码不匹配导致的问题。 例如,按下数字键“1”,数码管却显示字母“A”。
03
解决方案
可以通过调整键盘编码与数码管显示编码的对应关系来解 决这个问题。具体来说,需要检查键盘编码与数码管显示 编码的映射关系,确保它们一一对应。同时,也需要检查 键盘扫描程序和数码管显示驱动程序的实现是否正确。
静态驱动
每个数码管的每个段都由一个独立的 I/O口控制,适用于数码管数量较少 的情况。
动态驱动
通过扫描方式逐个点亮数码管的各个 段,可以节省I/O口资源,适用于数码 管数量较多的情况。
03 矩阵式键盘控制数码管显 示方案
硬件连接方案
矩阵式键盘与微控制器连接
将矩阵式键盘的行和列连接到微控制器的输入/输出端口,以便读取按键状态。
优化显示逻辑
优化数码管显示的逻辑,例如使用动态扫描技术,减少数码管的亮灭时间,提高显示效果。
04 矩阵式键盘控制数码管显 示应用
电子密码锁
总结词
矩阵式键盘控制数码管显示在电子密码锁中应用广泛,能够实现密码输入、显示和安全 验证等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.实验要求利用可编程并行接口芯片8255A 设计一个键盘与LED 显示器接口。
1)系统设置一个 4 行×4 列的行/列扫描式键盘和一个 8 位的共阴极七段数码管显示器;2)键盘提供 0~F 这 16 个十六进制数字键,采用行/列扫描式接口,数码管采用动态扫描的方式;3)编写程序,将键盘键入的数字,采用左移的方式显示在数码管上;4)按下 C 键清除所有显示内容。
2.实验目的1)熟练掌握 8086 汇编语言程序设计以及可编程接口芯片应用技术;2)掌握 Proteus 仿真软件的基本操作与调试功能;3)掌握基于 Proteus 的 8086 应用系统软硬件设计与调试方法与步骤,并完成仿真实验3.实验分析本实验可具体分解为三大部分,分别是扫描式矩阵键盘的实现,左移数码管的实现以及清零键的实现。
扫描式矩阵键盘的原理如下:设定行线输出,列线输入,行线逐行输出0,如果某列有按键,则列线输入为0;若无按键,列线输入全为1。
在本实验中,我们将8255A的C 口单元作为负责扫描式键盘的端口。
在代码的编程上,我们让C口的低四位输出全为0,高四位输入检查是否有0从而判断是否有按键按下,该段语句通过loop语句完成循环进行重复检查按键的按下情况。
假如有按键按下,则通过逐行扫描的形式获取按下按键的行数以及列数,再通过该行数与该列数形成的坐标信息得出是哪个按键按下。
左移数码管的实现需要两个子功能:第一个功能是要输出键盘对应的数字,第二个功能是要实现数字的左移功能。
本实验中,我们将8255A的A口负责键盘对应字形码的输出,B口负责对应位码的输出。
首先,在获取键盘按下的坐标后,我们在对应的表格中得到要输出的字形码。
接着字形码入栈和出栈的操作以及指针sp的操作实现对应码数和字型码的输出,也就成功实现了左移功能。
程序中必须设定延时以防止两个数同时显示。
清零键的设定实现的是按下清零键消除数码管中所有显示数字的功能。
本实验中,我们另加入一片8255A,通过将其A口设定为输入来检查清零键是否按下,如果是则实现清零功能。
4.电路设计4.1电路原理图图1 电路图总览4.2元件清单4.3电路分析̅̅̅̅组成,其中CS̅̅̅̅由A7、A3、A4、A6、A5、A0通过74LS138电路中8255A端口由A1、A0、CS̅̅̅̅有效,A1、A0分别连接A2、A1,A2 A1=00选择得到,当A7 A3 A4 A6 A5 A0=100100时CS时为A端口,A2 A1=01时为B端口,A2 A1=10时为C端口,A2 A1=11时为控制口,则8255A 端口地址为:A口C0H,B口C2H,C口C4H,控制口C6H。
键盘为4×4的矩阵键盘构成,按键两端分别按行连接和列连接连接到8255A,使用扫描法逐行输出1读取列值获取地址用来查表。
数码显示为8位数码管,其中PA口输出码为段选,确定所亮的字形,输出后由段选锁存器锁存数据,PB口输出码为位选,确定哪一位灯亮输出由74LS138译码后给位选锁存器锁存数据。
两锁存器配合使灯亮起,每次只亮一个灯并逐次扫描下一个输出给下一个灯亮,在高频情况下可看到所有输入数字同时亮起。
数码管LED为共阴极连接方式。
清零功能中,在当前电路中8255A三个输出端均已被占用,另接一个清零输入复用端̅̅̅̅接在74LS138的Y0输出端,即A7 A3 口易造成仿真混乱,因此另设了一个8255A,其地址CSA4 A6 A5 A0=000100时有效,清零8255A端口地址为:A口40H,B口42H,C口44H,D口46H。
5.程序代码部分5.1代码原理分析程序分为三部分:总初始化、输入数据处理、输出显示处理。
首先在数据区列表提前存放带使能的字形码。
初始化部分,段选均输出1,位选均输出1,以此确保数码管没有显示。
输入数据部分,以0123为例,其读取到的数据如表2所示。
表2 读取数字与输入关系0123、4567、89AB、CDEF分别在不同行读取到这些数据,可由此确定在输入不同位置的按键时处理其值得到所需要的查表地址值,并将得到的地址在逐次的总循环中压入堆栈。
在显示部分写小循环,从堆栈中循环取出数据逐个扫描显示,段选按照先输入后出栈后输入先出栈的顺序依次从堆栈中取出数据,控制位选按照顺序从000B开始输出,直至输入8个数后输出111B,经过74LS138译码到相应位灯输出0,形成左移效果,作为共阴极控制数码管显示,每次扫描只亮一个灯,在高频情况下可达成多个输入的显示。
在输入开始加入按键是否按下判断操作,在第一次即之前没有输入时循环在此判断,非第一次的重复显示,有输入执行输入地址计算操作。
清零中直接读取另一片8255A的A端口输入PA0口的信号,当其为高电平时表示清零键按下,系统直接跳转至程序初始化部分,计数值更变为0重新开始计数,实现清零功能。
5.2流程图绘制A口=FFHB口=00HBL=0C口=00H按键?BH=0CL=FEH扫描法计算地址到BH延时CX=AXBH=1CX=0?BL+1BL=8?A口输入清零?BL=7 BL=0?字形码入栈DH=CL出栈显示延时是否是否否是是否否是5.3程序代码DATA SEGMENTTAB1 DB0FEH,0B0H,0EDH,0F9H,0B3H,0DBH,0DFH,0F0H,0FFH,0F3H,0F7H,9FH,0CEH,0BDH,0CFH,0C7 HDATA ENDSSTACK SEGMENT STACK 'STACK'DW 1000H DUP(?)TOP LABEL WORDSTACK ENDSCODE SEGMENTASSUME DS:DATA,CS:CODE,SS:STACKSTART:NOPTOP1: MOV BL,00H ;输入字符位数计数,从0计至7MOV AL,88H ;端口设置为10001000BMOV DX,0C6H ;端口地址A口0C0H,B口0C2H,C口0C4H,控制口0C6H OUT DX,ALMOV AL,0FFH ;A端口初始化为11111111B,A口为字段码输出MOV DX,0C0HOUT DX,AXMOV AX,100H ;B端口初始化为00000000B,B口为字位码输出MOV DX,0C2HOUT DX,AXR3: NOPLOOP3:MOV AL,00H ;C端口低位输出0000BMOV DX,0C4HOUT DX,ALNONE: MOV DX,0C4HIN AL,DX ;C端口高位读入数据AND AL,0F0HCMP AL,0F0H ;判断是否按键JZ NO ;未按下按键JNZ YES ;有按下按键NO: CMP BL,00HJZ NONE ;之前未有按键按下,循环此阶段步骤JNZ UNONE ;之前有按键按下,跳转至显示恢复现场YES: XOR BH,BHMOV AL,88HMOV DX,0C6HOUT DX,ALMOV CL,0FEH ;记录初值1110BLOOP2:MOV AL,CL ;赋值给C端口低位输出MOV DX,0C4HOUT DX,ALIN AL,DX ;读取高位输入值MOV DH,ALOR DH,0FHSHR DH,4 ;右移至低位MOV AX,CXMOV CX,4LOOP1:SHR DH,1 ;判断输入数据0左边1的个数作为地址 INC BH ;记录循环次数JNC DONE ;有0则输出,无0循环四次到下一步执行 LOOP LOOP1XOR CX,CXMOV CX,AXROL CL,1 ;初值循环左移移位换位输出0JMP LOOP2 ;未检测到输入0重新扫描至下一行循环读取DONE: NOPMOV DX,CXMOV CX,0A000H ;按键延时LOOP6:NOPLOOP LOOP6MOV DX,CXDEC BH ;记录循环次数减一形成地址XOR CH,CHMOV CL,BLMOV AL,BH ;地址保存至AL中XOR BX,BXXOR AH,AHMOV BX,OFFSET TAB1;读取TAB1的偏移地址存在BX中XLAT ;以DS:[BX+AL]寻址,找到显示数字放在AL中 MOV BX,STACKMOV SS,BX ;确定堆栈基址CMP CL,00HJNZ GO ;非第一次输入数字跳过移动SP到栈顶MOV SP,OFFSET TOP ;SP移动到栈顶GO: PUSH AX ;从表格中取出字形码入栈XOR BX,BXMOV BL,CLINC CL ;设置显示数字循环次数LIGHT:MOV DH,CLLOOP4:XOR CH,CH ;循环开始,逐位对所要显示的数字进行显示MOV AH,DHMOV AL,BHADD AL,10H ;输出位码到B端口并在PB4口输出使能在位码锁存器所锁,共阴极控制位码MOV DX,0C2HOUT DX,ALMOV DH,AHPOP AX ;字形码出栈MOV AH,DHMOV DX,0C0HOUT DX,AL ;输出字形码到A端口输出至段码锁存器锁存,使能已在字形码中设置,与位码共同显示一个数字MOV DH,AHXOR AH,AHPUSH AX ;再次将出栈字形码入栈MOV AX,SPADD AX,1ADD AX,1MOV SP,AX ;SP地址挪至栈中下一个字形码MOV AX,CXMOV CX,120H ;两数字之间延时以防同位置双数显示LOOP7:NOPLOOP LOOP7MOV CX,AXINC BHLOOP LOOP4 ;循环扫描显数MOV BH,DHMOV DL,DHXOR DH,DHMOV AX,SPSUB AX,DXSUB AX,DXMOV SP,AX ;SP移动至已保存数据栈底用来记录下一个数INC BL ;输入数字位数加一计数CMP BL,08H ;若已经超过8个数,跳转至CHANGE将计数值强制更新位7,表示只显示8个数JZ CHANGEBACK: NOPMOV AL,9BH ;设置第二片8255A,为A口输入MOV DX,46HOUT DX,ALMOV DX,40HIN AL,DX ;读入A口输入AND AL,01HCMP AL,01H ;判断PA0是否为1,判断清零键是否按下JZ TOP1 ;按下,跳转至程序初始化重新开始NEXT: MOV AL,88H ;没有按下从新设置MOV DX,0C6HOUT DX,ALMOV CX,02HLOOP LOOP3 ;循环至按键判断CHANGE:MOV BL,07HJMP BACKUNONE:DEC BL ;有保存数据没有新输入数据,从保存循环次数中取出次数MOV CL,BHXOR BH,BHJMP LIGHT ;返回到显数位置再次显数JMP R3 ;循环读取CODE ENDSEND START6.程序调试及结果分析图2 初始化电路,此时清零键不为高电平图3 输入一个数图4 输入两个数图5 输入8个数图6 输入9个数,与图5相比实现了左移功能。