7-线性规划的概念及图解法
合集下载
管理运筹学第二章 线性规划的图解法
B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
线性规划(图解法)
D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
管理运筹学第二章线性规划的图解法
02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。
线性规划图解法
第二章 线性规划的图解法
在管理中一些典型的线性规划应用 • 合理利用线材问题:如何在保证生产的条
件下,下料最少 • 配料问题:在原料供应量的限制下如何获
取最大利润 • 投资问题:从投资项目中选取方案,使投
资回报最大
3
第二章 线性规划的图解法
• 产品生产计划:合理利用人力、物力、财 力等,使获利最大
第二章 线性规划的图解法
• 对于只有两个变量的简单的线性规划问 题,一般采用图解法求解。这种方法仅 适用于只有两个变量的线性规划问题。 它的特点是直观而易于理解,但实用价 值不大。
第二章 线性规划的图解法
1.基本概念 (1)可行解:满足约束条件的决策变量的取值 (2)可行域:可行解的全体 (3)最优解:使目标函数取得最优值的可行解 (4)最优值:最优解代入目标函数所得到的值
决策变量为可控的连续变量。
x 1 ≥ 0,x 2 ≥ 0
x 1 =0,1,2,3…n
目标函数和约束条件都是线性的。
Maxf 7x1 12x2
9x1 4x2 360
s.t.34xx11
5x2 10 x
2
2 ln
x2
1 x3
第二章 线性规划的图解法
9x1 4x2 360
s
.t
.43
x1 x1
5x2 10x
200 2 300
x1, x2 0
第二章 线性规划的图解法
★线性规划模型的三个基本要素: (也是所有规划问题的三个基本要素):
(1)决策变量:甲、乙产品的产量x1 ,x2 决策变量:需要决策的量,即等待求解的未知数。
(2)目标函数:总收入最大,Max f = 7 x 1 +12 x 2
线性规划的图解法
X2
5– 4– 最 点 优
l1 3B E ( 1/3) 1+(4/3)x2=3 x 2D l2 1– x1 0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
(1/3)x1+(1/3)x2=1
箭头表示使两种产品的总利润递增的方向. 箭头表示使两种产品的总利润递增的方向.
5– 4–
最优点
l1 3B E 2D (1/3)x1+(4/3)x2=3 l2 1– 0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
其中c 令 Z=2x1+3x2=c,其中c为任选的一个常数,在图中 其中 为任选的一个常数, 画出直线 2x1+3x2=c,这条直线上的点即对应着一个可 这条直线上的点即对应着一个可 行的生产方案,即使两种产品的总利润达到c. 行的生产方案,即使两种产品的总利润达到 . 这样的直线有无数条,而且相互平行, 这样的直线有无数条,而且相互平行,称这样的直线 目标函数等值线.只要画出两条目标函数等值线, 画出两条目标函数等值线 为目标函数等值线.只要画出两条目标函数等值线, 比如令c= 和 比如令 =0和c=6,就能看出 , 目标函数值递增的方向, 目标函数值递增的方向, 箭头标出这个方向. 用箭头标出这个方向. 这个方向 图中两条虚线 l1和l2就 分别代表 目标函数等值线 2x1+3x2=0 和 2x1+3x2=6,
结
论
从上面用图解法求解案例1的过程中明 从上面用图解法求解案例 的过程中明 显感觉到对具有三个决策变量的线性规划进 行图解就麻烦得多了. 因此, 行图解就麻烦得多了 . 因此 , 尽管图解法具 有简单, 直观的优点, 有简单 , 直观的优点 , 但它的使用是有局限 性的, 性的 , 对仅含有两个至多不超过三个决策变 量的线性规划才适于使用图解法, 量的线性规划才适于使用图解法 , 大多数情 况下仅对含有两个决策变量的线性规划才使 况下 仅对含有两个决策变量的线性规划才使 用图解法求解, 用图解法求解 , 而对含有三个及三个以上决 策变量的线性规划则应考虑使用更加有效的 通用算法-- 单纯形法来进行求解 --单纯形法 来进行求解, 通用算法 -- 单纯形法 来进行求解 , 这将在 节加以介绍. §1-3节加以介绍. 节加以介绍
5– 4– 最 点 优
l1 3B E ( 1/3) 1+(4/3)x2=3 x 2D l2 1– x1 0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
(1/3)x1+(1/3)x2=1
箭头表示使两种产品的总利润递增的方向. 箭头表示使两种产品的总利润递增的方向.
5– 4–
最优点
l1 3B E 2D (1/3)x1+(4/3)x2=3 l2 1– 0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
其中c 令 Z=2x1+3x2=c,其中c为任选的一个常数,在图中 其中 为任选的一个常数, 画出直线 2x1+3x2=c,这条直线上的点即对应着一个可 这条直线上的点即对应着一个可 行的生产方案,即使两种产品的总利润达到c. 行的生产方案,即使两种产品的总利润达到 . 这样的直线有无数条,而且相互平行, 这样的直线有无数条,而且相互平行,称这样的直线 目标函数等值线.只要画出两条目标函数等值线, 画出两条目标函数等值线 为目标函数等值线.只要画出两条目标函数等值线, 比如令c= 和 比如令 =0和c=6,就能看出 , 目标函数值递增的方向, 目标函数值递增的方向, 箭头标出这个方向. 用箭头标出这个方向. 这个方向 图中两条虚线 l1和l2就 分别代表 目标函数等值线 2x1+3x2=0 和 2x1+3x2=6,
结
论
从上面用图解法求解案例1的过程中明 从上面用图解法求解案例 的过程中明 显感觉到对具有三个决策变量的线性规划进 行图解就麻烦得多了. 因此, 行图解就麻烦得多了 . 因此 , 尽管图解法具 有简单, 直观的优点, 有简单 , 直观的优点 , 但它的使用是有局限 性的, 性的 , 对仅含有两个至多不超过三个决策变 量的线性规划才适于使用图解法, 量的线性规划才适于使用图解法 , 大多数情 况下仅对含有两个决策变量的线性规划才使 况下 仅对含有两个决策变量的线性规划才使 用图解法求解, 用图解法求解 , 而对含有三个及三个以上决 策变量的线性规划则应考虑使用更加有效的 通用算法-- 单纯形法来进行求解 --单纯形法 来进行求解, 通用算法 -- 单纯形法 来进行求解 , 这将在 节加以介绍. §1-3节加以介绍. 节加以介绍
线性规划的图解法
价值系数向量或 目标函数系数向量
a11 a 21 A a m1
a12 a 22 am2
a1n a2n a mn
x1 x2 X x n
决策变量向量
b1 b2 b b模型的一般形式(推广)
设决策变量 x1 ,x2 ,… ,xn 目标函数:max(min)z = c1x1+c2x2+…+cnxn 约束条件 s.t.:a11 x1 + a12 x2 + … + a1n xn ≤(=, ≥)b1 a21 x1 + a22 x2 + … + a2n xn ≤(=, ≥)b2 …… am1 x1 + am2 x2 + … + amn xn ≤(=, ≥)bm x1 ,x2 ,… ,xn ≥0
主要内容
问题的提出(建模)
线性规划模型的标准化
图解法
灵敏度分析
线性规划(Linear Programming)
规划问题:生产和经营管理中经常提出如何合理安 排,使人力、物力等各种资源得到充分利用,获得 最大的效益。
线性规划是运筹学的一个重要分支。它是现代科学管 理的重要手段之一,是帮助管理者作出最优决策的一 个有效的方法。
线性规划问题的数学模型
例 如图所示,如何截取x使铁皮所围成 的容积最大?
x
v a 2 x x
2
a
dv 0 dx
2(a 2 x ) x (2) (a 2 x )2 0
a x 6
2.1 问题的提出(建模)
例1:某工厂在计划期内要安排Ⅰ、Ⅱ两种产 品的生产,生产单位产品所需的设备台时及 A、B 两种原材料的消耗以及资源的限制,如 下表所示,问:工厂应分别生产多少单位Ⅰ、 Ⅱ产品才能使工厂获利最多?
a11 a 21 A a m1
a12 a 22 am2
a1n a2n a mn
x1 x2 X x n
决策变量向量
b1 b2 b b模型的一般形式(推广)
设决策变量 x1 ,x2 ,… ,xn 目标函数:max(min)z = c1x1+c2x2+…+cnxn 约束条件 s.t.:a11 x1 + a12 x2 + … + a1n xn ≤(=, ≥)b1 a21 x1 + a22 x2 + … + a2n xn ≤(=, ≥)b2 …… am1 x1 + am2 x2 + … + amn xn ≤(=, ≥)bm x1 ,x2 ,… ,xn ≥0
主要内容
问题的提出(建模)
线性规划模型的标准化
图解法
灵敏度分析
线性规划(Linear Programming)
规划问题:生产和经营管理中经常提出如何合理安 排,使人力、物力等各种资源得到充分利用,获得 最大的效益。
线性规划是运筹学的一个重要分支。它是现代科学管 理的重要手段之一,是帮助管理者作出最优决策的一 个有效的方法。
线性规划问题的数学模型
例 如图所示,如何截取x使铁皮所围成 的容积最大?
x
v a 2 x x
2
a
dv 0 dx
2(a 2 x ) x (2) (a 2 x )2 0
a x 6
2.1 问题的提出(建模)
例1:某工厂在计划期内要安排Ⅰ、Ⅱ两种产 品的生产,生产单位产品所需的设备台时及 A、B 两种原材料的消耗以及资源的限制,如 下表所示,问:工厂应分别生产多少单位Ⅰ、 Ⅱ产品才能使工厂获利最多?
第二章线性规划的图解法
➢ 答案:
X2 ➢ 最优解为: x1 =15 ,x2=10 40 ➢ 最优值为:z*=2500×15+1500×10
➢
30
=52500
3x2=75
20
(15,10)
10
O
10
20
30
40
50 X1
3x1+2x2=65
2x1+x2=40
五、线性规划问题解的情况
➢ 例1.5的最优解只有一个,这是线性规划问题 最一般的解的情况,但线性规划问题解的情 况还存在其它特殊的可能:无穷多最优解、 无界解或无可行解。
... am1x1+am2x2 +…+amnxn≤( =, ≥ )bm x1 ,x2 ,… ,xn ≥ ( ≤) 0 或无约束
xj为待定的决策变量; cj为目标函数系数,或价值系数、费用系数; aij为技术系数; bj为资源常数,简称右端项; 其中i=1,2,…m; j=1,2,…n
可以看出,一般LP模型的特点: A、决策变量x1,x2,x3,……xn表示要寻求
O
100 200 300
X1
3、无界解的情况
➢若将例1.5的线性规划模型中约束条件1、2的 不等式符号改变,则线性规划模型变为:
➢ 目标函数:Max z= 50x1+100 x2 约束条件:x1+x2 ≥ 300 2x1+x2 ≥ 400 x2≤250 x1 ≥0, x2 ≥0
B、定义决策变量;
C、用决策变量的线性函数形式写出所要追求 的目标,即目标函数;
D、用一组决策变量的等式或不等式来表示在 解决问题过程中所必须遵循的约束条件。
三、线性规划的数学模型
1、LP模型的一般形式 目标函数:
第二章 线性规划的图解法(简)
第二节 图解法
在线性规划中,对一个约束条件中没使用的资源或能力的大小称 之为松弛量。记为Si。
第二节 图解法
像这样把所有的约束条件都写成等式 ,称为线性规划模型的标准化,所得结果 称为线性规划的标准形式。
第二节 图解法
同样对于≥约束条件中,可以增加一些代表
最低限约束的超过量,称之为剩余变量,把≥约
第二章 线性规划的图解法
主要内容:
§1 问题的提出 (什么是线性规划) §2 图解法 §3 图解法的灵敏度分析
重点和难点
重点: (1)线性规划问题的主要概念 (2)线性规划问题的数学模型 (3)线性规划图解法的过程 (4)阴影价格的定义和灵敏度分析 难点: 灵敏度分析
第一节 问题的提出
约束条件对偶价格小于零时,约束条件
右边常数增加一个单位,就使得最优目
标函数值减少一个其对偶价格。
第三节 图解法的灵敏度分析
对目标函数值求最小值的情况下, 当对偶价格大于零时,约束条件右边常数增加 一个单位就使其最优目标函数值减少一个其对 偶价格; 当对偶价格等于零时,约束条件右边常数增加 一个单位,并不影响其最优目标函数值; 当对偶价格小于零时,约束条件右边常数增加 一个单位,就使得其最忧目标函数值增加一个 其对偶价格。
具有上述3个特征的问题为线性规划问题。
第一节 问题的提出
我们的仸务就是要选择一组或多组方案,使目
标函数值最大或最小。从选择方案的角度说,
这是规划问题。从使目标函数值最大或最小的
角度说,就是优化问题。
线性规划数学模型的一般表示方式
max(min) f ( x) c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn a x a x a x 21 1 22 2 2n n s.t. a x a x a x m2 2 mn n m1 1 x1 , x2 , , xn n : 变量个数 ; m : 约束行数 ; n m : 线性规划问题的规模 c j : 价值系数 ; b j : 右端项; aij : 技术系数 (, )b1 (, )b2 (, )bm 0
第一章--线性规划及图解法
x1 - 1.9 x2 = -3.8
(0,2)
D
x1 - 1.9 x2 = 3.8
(7.6,2) ) 34.2 = 3 x1 +5.7 x2
可行域
max Z (3.8,0) min Z
o
0=3 x1 +5.7 x2
x1 + 1.9 x2= 3.8
x1
第一章
线性规划及单纯形法
可行域为无界 区域一定无最 优解吗? 优解吗?
O A
x1
§2 线性规划问题的图解法
由以上两例分析可得如下重要结论: 由以上两例分析可得如下重要结论:
1、LP 问题从解的角度可分为: 、 问题从解的角度可分为:
a. 有唯一最优解
⑴ 有可行解 b. 有无穷多最优解
C. 无最优解
⑵ 无可行解 2、LP 问题若有最优解,必在可行域的某个顶点上取 、 问题若有最优解,
§1 线性规划问题及其数学模型 特点: 特点:
线性规划问题的标准形式:
1、目标函数为极
max z = c1x1 + c2x2 + … + cnxn s.t. a11x1 + a12x2 + … + a1nxn = b1 a21x1 + a22x2 + … + a2nxn = b2 …… am1x1 + am2x2 + … + amnxn = bm xj ≥ 0 (j = 1,2,…,n) bi ≥ 0 (i = 1,2,…,m)
若有两个顶点上同时取到, 到;若有两个顶点上同时取到,则这两点的连线上 任一点都是最优解。 任一点都是最优解。
§2 线性规划问题的图解法
图解法优点: 图解法优点: 直观、易掌握。有助于了解解的结构。 直观、易掌握。有助于了解解的结构。 图解法缺点: 图解法缺点: 只能解决低维问题,对高维无能为力。 只能解决低维问题,对高维无能为力。
第二章 线性规划的图解法
x2
AB
z
C
D
z=0=50x1+100x2
E
x1
图2-2
12
❖ 目标函数:Maxz = 50 x1 + 100 x2
❖ 约束条件:s.t. x1 + x2 ≤ 300
❖
2 x1 + x2 ≤ 400
❖
x2 ≤ 250
❖
x1 , x2 ≥ 0
❖最优解: x1 =50 x2 = 250
❖例2:某工厂在计划期内要安排生产Ⅰ、Ⅱ 两种产品,已知生产单位产品所需的设备台
- (c1 / c2 ) , 当 -1 - (c1 / c2 ) 0 (*) 时,原最优解仍是最优解。
❖假设产品Ⅱ的利润100元不变,即 c2 = 100,代到式(*)并整理得 0 c1 100
❖假设产品Ⅰ的利润 50 元不变,即 c1 = 50 ,代到式(*)并整理得 50 c2 +
▪ 4.无可行解。若在例1的数学模型中 再增加一个约束条件4x1+3x2≥1200, 则可行域为空域,不存在满足约束条 件的解,当然也就不存在最优解了。
例3.某公司由于生产需要,共需要A,B两种原料至 少350吨(A,B两种材料有一定替代性),其中A原 料至少购进125吨。但由于A,B两种原料的规格不同 ,各自所需的加工时间也是不同的,加工每吨A原料 需要2个小时,加工每吨B原料需要1小时,而公司总 共有600个加工小时。又知道每吨A原料的价格为2万 元,每吨B原料的价格为3万元,试问在满足生产需 要的前提下,在公司加工能力的范围内,如何购买A ,B两种原料,使得购进成本最低?
❖-ai1 x1-ai2 x2- … -ain xn = -bi。
AB
z
C
D
z=0=50x1+100x2
E
x1
图2-2
12
❖ 目标函数:Maxz = 50 x1 + 100 x2
❖ 约束条件:s.t. x1 + x2 ≤ 300
❖
2 x1 + x2 ≤ 400
❖
x2 ≤ 250
❖
x1 , x2 ≥ 0
❖最优解: x1 =50 x2 = 250
❖例2:某工厂在计划期内要安排生产Ⅰ、Ⅱ 两种产品,已知生产单位产品所需的设备台
- (c1 / c2 ) , 当 -1 - (c1 / c2 ) 0 (*) 时,原最优解仍是最优解。
❖假设产品Ⅱ的利润100元不变,即 c2 = 100,代到式(*)并整理得 0 c1 100
❖假设产品Ⅰ的利润 50 元不变,即 c1 = 50 ,代到式(*)并整理得 50 c2 +
▪ 4.无可行解。若在例1的数学模型中 再增加一个约束条件4x1+3x2≥1200, 则可行域为空域,不存在满足约束条 件的解,当然也就不存在最优解了。
例3.某公司由于生产需要,共需要A,B两种原料至 少350吨(A,B两种材料有一定替代性),其中A原 料至少购进125吨。但由于A,B两种原料的规格不同 ,各自所需的加工时间也是不同的,加工每吨A原料 需要2个小时,加工每吨B原料需要1小时,而公司总 共有600个加工小时。又知道每吨A原料的价格为2万 元,每吨B原料的价格为3万元,试问在满足生产需 要的前提下,在公司加工能力的范围内,如何购买A ,B两种原料,使得购进成本最低?
❖-ai1 x1-ai2 x2- … -ain xn = -bi。
管理运筹学 线性规划的图解法课件
线性规划的应用领域
生产计划
线性规划可以用于制定生产计划,优 化资源配置,提高生产效率。
物流优化
线性规划可以用于优化物流配送路线 、车辆调度等问题,降低运输成本。
金融投资
线性规划可以用于金融投资组合优化 ,实现风险和收益的平衡。
资源分配
线性规划可以用于资源分配问题,如 人员、资金、设备等资源的合理分配 ,提高资源利用效率。
束条件。
线性规划的目标是在满足一系列 限制条件下,使某一目标函数达
到最优值。
线性规划问题通常表示为求解一 组变量的最优值,使得这些变量 满足一系列线性等式或不等式约
束。
线性规划的数学模型
线性规划的数学模型由决策变量、目标函数和约束条 件三部分组成。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
04
目标函数是问题要优化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
03
绿色发展与线性规 划的结合
将可持续发展理念融入线性规划 ,实现资源节约、环境友好的发 展目标。
THANKS
[ 感谢观看 ]
约束条件
生产计划问题通常受到资源限制、市场需求和生 产能力等约束条件的限制。
详细描述
生产计划问题通常涉及到如何分配有限的资源, 以最大化某种目标函数(如利润)。通过图解法 ,我们可以将约束条件和目标函数在二维平面上 表示出来,从而找到最优解。
线性规划图解
六、线性规划模型的建立与图 解法求解
1、建模 2、线性规划的求解——图解法
1、建模 [例1]某小流域有耕地20公顷,可采用甲 乙两种种植方式。甲种植方式每公顷需 投资280元,每公顷排放TP6kg/a,可获 收入1000元,乙方式每公顷需投资150 元 , 每 公 顷 排 放 TP15kg/a , 可 获 收 入 1200元,该户共有可用资金4200元、小 流 域 内 的 湖 泊 每 年 可 接 纳 的 TP 为 240kg/a。问如何安排甲乙两种方式的 生产,可使总收入最大? 解:设甲方式种 x1 公顷,乙方式种 x2 公顷, 总收入为Z,则有:
A B x1+x2=10 x1+6x2=15 D 15 x1 3x1+x2=15 可行域
10 5
C
ZA=300 ZB=175 ZC=110 ZD=150
O
5
10
10x1+20x2=0
Z=1000x1+1200x2
2、线性规划的求解——图解法 (六)最小化问题的图解法 例:Min Z=10x1+20x2 s.t. x1+x2≥10 3x1+x2≥15 x1+6x2≥15 x1≥0, x2≥0
A(0,15) B(2.5,7.5) C(9,1)
x2 15
D (15,0)
三、线性规划模型的基本结构
1. 决策变量 —— 未知数。它是通过模型计算来 确定的决策因素。又分为实际变量 —— 求解 的变量和计算变量,计算变量又分松弛变量 (上限)和人工变量(下限)。 2.目标函数——经济目标的数学表达式。目标函 数是求变量的线性函数的极大值和极小值这 样一个极值问题。 3.约束条件——实现经济目标的制约因素。它包 括:生产资源的限制(客观约束条件)、生 产数量、质量要求的限制(主观约束条件)、 特定技术要求和非负限制。
第二节 线性规划解的概念、性质及图解法
5
2.线性规划的图解法 2.线性规划的图解法
例 2.4: 某工厂拥有 A 、 B 、 C 三种 类型的设备,生产甲、乙两种产品。 类型的设备,生产甲、乙两种产品。 每件产品在生产中需要占用的设备机 时数, 时数,每件产品可以获得的利润以及 三种设备可利用的时数如下表所示:
产品甲 设备A 设备B 设备C 利润(元/件) 3 2 0 1500 产品乙 2 1 3 2500
无可行解的情况
22
2.线性规划的图解法 2.线性规划的图解法
根据以上例题,进一步分析讨 论可知线性规划的可行域和最优解 有以下几种可能的情况 1.可行域为封闭的有界区域 1.可行域为封闭的有界区域 (a)有唯一的最优解; (a)有唯一的最优解; (b)有无穷多个最优解; (b)有无穷多个最优解; 2.可行域为封闭的无界区域 2.可行域为封闭的无界区域 (c)有唯一的最优解; (c)有唯一的最优解;
31
2.线性规划解的概念 2.线性规划解的概念
直线B、E的交点对应于约束条件(A)、(B)、 的交点对应于约束条件( (C)、(E)、(G)的解,即: 的解, x(7) = (20,0,5,0,75)T 20, 75) 直线C、D的交点对应于约束条件(A)、(B)、 的交点对应于约束条件( (C)、(D)、(H)的解,即: 的解, x(8) = (0,25,15,15,0)T 25,15,15, 直线C、E无交点(C、E相互平行) 无交点( 相互平行) 直线D、E的交点对应于约束条件(A)、(B)、 的交点对应于约束条件( (C)、(D)、(E)的解,即: 的解, x(9) = (0,0,65,40,75)T 65,40,75)
26
2.线性规划解的概念 2.线性规划解的概念
Max z = 1500 x1 + 2500 x2 s.t. 3x1+2x2+x3= 65 (A) (B) 2x1+x2+x4= 40 3x2+x5= 75 (C) x1 ,x2 ,x3 ,x4 ,x5 ≥ 0 用(D)(E)(F)(G)(H) 分别表示x1 = 0、x2 = 0、x3 = 0、 x4 = 0、x5 = 0 。 这里一共有8个约束条件,其中3个等 式约束
2.线性规划的图解法 2.线性规划的图解法
例 2.4: 某工厂拥有 A 、 B 、 C 三种 类型的设备,生产甲、乙两种产品。 类型的设备,生产甲、乙两种产品。 每件产品在生产中需要占用的设备机 时数, 时数,每件产品可以获得的利润以及 三种设备可利用的时数如下表所示:
产品甲 设备A 设备B 设备C 利润(元/件) 3 2 0 1500 产品乙 2 1 3 2500
无可行解的情况
22
2.线性规划的图解法 2.线性规划的图解法
根据以上例题,进一步分析讨 论可知线性规划的可行域和最优解 有以下几种可能的情况 1.可行域为封闭的有界区域 1.可行域为封闭的有界区域 (a)有唯一的最优解; (a)有唯一的最优解; (b)有无穷多个最优解; (b)有无穷多个最优解; 2.可行域为封闭的无界区域 2.可行域为封闭的无界区域 (c)有唯一的最优解; (c)有唯一的最优解;
31
2.线性规划解的概念 2.线性规划解的概念
直线B、E的交点对应于约束条件(A)、(B)、 的交点对应于约束条件( (C)、(E)、(G)的解,即: 的解, x(7) = (20,0,5,0,75)T 20, 75) 直线C、D的交点对应于约束条件(A)、(B)、 的交点对应于约束条件( (C)、(D)、(H)的解,即: 的解, x(8) = (0,25,15,15,0)T 25,15,15, 直线C、E无交点(C、E相互平行) 无交点( 相互平行) 直线D、E的交点对应于约束条件(A)、(B)、 的交点对应于约束条件( (C)、(D)、(E)的解,即: 的解, x(9) = (0,0,65,40,75)T 65,40,75)
26
2.线性规划解的概念 2.线性规划解的概念
Max z = 1500 x1 + 2500 x2 s.t. 3x1+2x2+x3= 65 (A) (B) 2x1+x2+x4= 40 3x2+x5= 75 (C) x1 ,x2 ,x3 ,x4 ,x5 ≥ 0 用(D)(E)(F)(G)(H) 分别表示x1 = 0、x2 = 0、x3 = 0、 x4 = 0、x5 = 0 。 这里一共有8个约束条件,其中3个等 式约束
管理运筹学第2章 线性规划的图解法
i
i
MinZ e1i e2i
i
i
s.t.eβ10i-,eβ21i无 符yi 号 β限0 制β1xi
e1i , e2i 0,i 1,2,, n
还可以加上一些特定的需求.例如,要求必须过某 一点.
16
线性规划问题的应用举例(回归分析)
新标准:最小化最大绝对误差.
–整数规划问题
• 考虑短期排班的问题
–对午休换班进行建模
• 考虑每个工人
–允许工人有不同的偏好
29
套裁下料问题
例某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢
各一根。已知原料每根长7.4 m,问:应如何下料,可使所
用原料最省?
方案 1 方案 2 方案 3 方案 4 方案 5 方案 6 方案 7 方案 8
产品名称
规格要求
单价(元/kg)
甲 原材料 1 不少于 50%,原材料 2 不超过 25%
50
乙 原材料 1 不少于 25%,原材料 2 不超过 50%
35
丙
不限
25
原材料名称
1 2 3
每天最多供应量
100 100 60
单价(元/kg) 65 25 35
9
线性规划应用举例
解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。 这样我们建立数学模型时,要考虑:
x1 + x2 ≥ 70 x2 + x3 ≥ 60 x3 + x4 ≥ 50 x4 + x5 ≥ 20 x5 + x6 ≥ 30 x1,x2,x3,x4,x5,x6 ≥ 0
20
关于决策变量的选择的启示
线性规划的图解法
据题意,可得线性规划模型 :
Wu School of Economics
Operations Research
第一讲
§1 线性规划模型的建立(3)
线性规划——Liner Programming 目标函数为变量的线性函数;约束条件为
变量的线性等式或不等式。因此,我们称 之为线性规划。 线性规划的一般形式:
Wu School of Economics
Operations Research
第一讲
第二讲 线性规划的图解法
线性规划——Liner Programming 特点:
在一定约束条件下追求最优化的目标
page 15 4 February 2016
Wu School of Economics
page 10 4 February 2016
Operations Research
第一讲
§2 线性规划的图解法(5)
max z 50x1 100x2
S.t.
page 11 4 February 2016
x x 300 2 x x 400 x 250 4 x 3 x 1200 x 0, x 0
1 2 1 2 2 1 2 1 2
Wu School of Economics
Operations Research
第一讲
§2 线性规划的图解法(5)
线性规划解的情况: 如果某一个线性规划问题有最优解,则一
定有一个可行域的顶点对应最优解 线性规划存在有无穷多个解的情况。整数 规划中存在有限多个解的情况。 线性规划存在无界解,即有可行解但是无 最优解的情况 线性规划存在无可行解的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析: 分析:
规格/ 规格/ m 2.9 2.1 1.5 合计/ m 合计/ 料头/ 料头/ m 下料方案 方案 Ⅱ Ⅲ 2 0 0 2 1 2 7.3 7.2 0.1 0.2
Ⅰ 1 0 3 7.4 0
Ⅳ 1 2 0 7.1 0.3
Ⅴ 0 1 3 6.6 0.8
解:设第一种下料方式用掉x1根管料; 第一种下料方式用掉x 根管料; 下料方式用掉
数学模型为: 数学模型为:
min S = x + x + x + x + x
1 2 3 4 1 2 4 5
x + 2 x + x ≥ 100 2 x + 2 x + x ≥ 100 3 x + x + 2 x + 3 x ≥ 100 x ≥ 0, 整数(i = 1, 2, 3,4,5)
2
A z=10000=50x1+100x2
B C z=27500=50x1+100x2 z=20000=50x1+100x2 D
z=0=50x1+100x2
E
x1
图2-2
• 重要结论 : 重要结论1:
– 当线性规划问题的可行域非空时,它是 当线性规划问题的可行域非空时, 有界或无界的凸多边形(凸集) 有界或无界的凸多边形(凸集); – 如果线性规划有最优解,则一定有一个 如果线性规划有最优解, 可行域的顶点对应一个最优解; 可行域的顶点对应一个最优解; – 无穷多个最优解。若将例 中的目标函 无穷多个最优解。若将例1中的目标函 数变为max z=50x1+50x2,则线段 则线段BC 数变为 上的所有点都代表了最优解; 上的所有点都代表了最优解;
四 图 解 法
(1)分别取决策变量X (1)分别取决策变量X1 , X2 为坐标向量建立直角坐标 分别取决策变量 系。取各约束条件的公共部分
x2 2x1+x2=400 x2=250
x1+x2=300
x2=0
x1=0 图2-1
x1
(2)目标函数 )目标函数z=50x1+100x2,当z取某一固定值时得到 取某一固定值时得到 一条直线,直线上的每一点都具有相同的目标函数值, 一条直线,直线上的每一点都具有相同的目标函数值, 称之为“等值线” 平行移动等值线,当移动到B点时 点时, 称之为“等值线”。平行移动等值线,当移动到 点时, z在可行域内实现了最大化。A,B,C,D,E是可行域 在可行域内实现了最大化。 , , , , 是可行域 在可行域内实现了最大化 的顶点, 的顶点,对有限个约束条件则其可行域的顶点也是有限 的。 x
3 4 5 1 2 3 5 i
四 图解法
对于只有两个决 对于只有两个决 两个 策变量的线性规划问 题,可以在平面直角 坐标系上作图表示线 性规划问题的有关概 念,并求解。 并求解。
目标函数: 例1.目标函数: 目标函数 Max S = 50 x1 + 100 x2 约束条件: 约束条件: s.t. x1 + x2 ≤ 300 2 x1 + x2 ≤ 400 x 2 ≤ 250 x1 ≥ 0 x2 ≥ 0
线性规划 (Linear Programing )
第五章 线性规划问题的概念与图解法
一、概念的引出
某中药厂用当归作原料制成当归丸与当归膏, 例1:某中药厂用当归作原料制成当归丸与当归膏, 生产1盒当归丸需要5个劳动工时,使用2kg当归原 生产1盒当归丸需要5个劳动工时,使用2kg当归原 2kg 料,销售后获得利润160元;生产1盒当归膏需要2 销售后获得利润160元 生产1盒当归膏需要2 160 个劳动工时,使用5kg当归原料, 个劳动工时,使用5kg当归原料,销售后获得利润 5kg当归原料 80元;工厂现有可供利用的劳动工时为4000工时, 80元 工厂现有可供利用的劳动工时为4000工时, 4000工时 可供使用的当归原料为5800kg, 可供使用的当归原料为5800kg,为避免当归原料 5800kg 存放时间过长而变质,要求把5800kg当归原料都 存放时间过长而变质,要求把5800kg当归原料都 5800kg 用掉。问工厂如何安排生产, 用掉。问工厂如何安排生产,才能使得两种产品 销售后获得的总利润最大? 销售后获得的总利润最大?
二、 线性规划的表现形式
一般形式: 一般形式:目标函数和所有的约束条件都是设计变量的 线性函数. 线性函数 目标函数: 目标函数:Max (Min)z = c1 x1 + c2 x2 + … + cn xn ) 约束条件: 约束条件:
s.t.
a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
第一种下料方式用掉 根角钢; 下料方式用掉x 解:设第一种下料方式用掉x1根角钢; 第二种下料方式用掉x 根角钢; 第二种下料方式用掉x2根角钢;第三 下料方式用掉 下料方式用掉x 根角钢;变量x 种下料方式用掉x3根角钢;变量x1 x2 即为决策变量。 x3即为决策变量。
数学模型为: 数学模型为:
x2 ≥ 350 125 x2 ≤ 600 x2 ≥ 0
s.t. 是subject to的缩写。意思为“满足 的缩写。 的缩写 意思为“ 受约束于” 于,受约束于”
数学规划模型
实际问题中 的优化模型 x~决策变量 决策变量 数 学 规 划
Min (或Max ) z = f ( x ), x = ( x1 , ⋯x n )T s.t. g i ( x ) ≤ 0, i = 1,2, ⋯ m
第二种下料方式用掉x 根管料; 第二种下料方式用掉x2根管料;第三 下料方式用掉 下料方式用掉x 根管料;第四种下 种下料方式用掉x3根管料;第四种下 料方式用掉x4根管料;第五种下料方 料方式用掉x 根管料;第五种下料方 式用掉x 根管料;变量x 式用掉x5根管料;变量x1 x2 x3 x4 x5即 为决策变量。 为决策变量。
…… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 , x2 , … , xn ≥ 0
基本线性规划形式
目标函数: 目标函数 约束条件: 约束条件: Max(Min)S = c1 x1 + c2 x2 + … + cn xn ( s.t.
a11 x1 + a12 x2 + … + a1n xn ≤b1 a21 x1 + a22 x2 + … + a2n xn ≤ b2
设购买A种原料为 , 种原料为 , 种原料为x 种原料为x 解:设购买 种原料为 1,B种原料为 2,可建立以下 数学模型: 数学模型:
目标函数: 目标函数:Min S = 2x1 + 3 x2 约束条件: 约束条件: s.t. x1 + x1 ≥ 2 x1 + x1 ,
决策变量为: 决策变量为:x1, x2
分析:共有三种下料方式,第一种是将 是将1 分析:共有三种下料方式,第一种是将1
根长210的角钢截得2根长80cm的角钢; 根长210的角钢截得2根长80cm的角钢;第 210的角钢截得 80cm的角钢 二种是将1根长210的角钢截得1根长80cm和 种是将1根长210的角钢截得1根长80cm和 210的角钢截得 80cm 2根60cm的角钢;第三种是将210cm的角钢 60cm的角钢;第三种是将210cm的角钢 的角钢 是将210cm 截得3根长60cm的角钢。 60cm的角钢 截得3根长60cm的角钢。现这三种下料方式 应该混合使用。 应该混合使用。
min S = x1 + x2 + x3 2 x1 + x2 ≥ 150 2 x1 + 3 x3 ≥ 330 x ≥ 0, 整数(i = 1,2,3) i
条件下料问题2 条件下料问题
某车间有一批长度为7.4m的同型钢管, 某车间有一批长度为7.4m的同型钢管, 7.4m的同型钢管 因生产需要,需将其截成长2.9m、 因生产需要,需将其截成长2.9m、 2.9m 2.1m、1.5m三种不同长度的管料。 2.1m、1.5m三种不同长度的管料。若 三种不同长度的管料 三种管料各需100根 问应如何下料, 三种管料各需100根,问应如何下料, 100 才能使得用料最省?写出数学模型。 才能使得用料最省?写出数学模型。
f(x)~目标函数 目标函数 线性规划 非线性规划 整数规划 gi(x)≤0~约束条件 ≤ 约束条件
线性规划问题( ): 线性规划问题(LP): 一组线性不等式约束下求线性目标函数 的极大值或极小值问题。 的极大值或极小值问题。 相关定义: 相关定义:
决策变量的一组取值便构成了线性规划问题的一个解 决策变量的一组取值便构成了线性规划问题的一个解; 满足约束条件的解称为可行解; 满足约束条件的解称为可行解; 可行解 所有可行解构成的集合称为可行解集; 所有可行解构成的集合称为可行解集; 可行解集 使目标函数达到所追求极值的可行解称为最优解; 使目标函数达到所追求极值的可行解称为最优解; 最优解 最优值。 最优解所对应的目标函数值称为最优值 最优解所对应的目标函数值称为最优值。
设工厂生产x 盒当归丸与x 瓶当归膏, 解 设工厂生产 1盒当归丸与 2瓶当归膏, 可建立以下数学模型: 可建立以下数学模型:
max S = 160 x1 + 80x 2 5x1 + 2 x 2 ≤ 4000 2x1 + 5x 2 = 5800 x ≥ 0, 整数(i = 1,2) i
…… …… am1 x1 + am2 x2 + … + amn xn ≤ bm x1 ,x2 ,… ,xn ≥ 0,bi ≥0 ,