2020高考数学(理)必刷试题+参考答案+评分标准 (90)
2020年高考理科数学新课标必刷试卷二(含解析)
《2020年高考理科数学新课标必刷试卷二(含解析)》摘要:试题分析:由的最小正周期为,得.因为,所以,由,得,故.令,得,故的对称中心为,当时,的对称中心为,故选A.考点:三角函数的图像与性质. 9.在中,D为BC中点,O为AD中点,过O作一直线分别交AB、AC于M、N两点,若(),则( ) A.3 B.2 C.4 D.【答案,解:(Ⅰ)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:化简得. (Ⅱ)设过点M(m,0)(m0)的直线l与曲线C的交点为A,B.设l的方程为x=ty+m,由得,△=16(+m)0,于是① 又.=+1+0② 又,于是不等式②等价于③ 由①式,不等式③等价于④ 对任意实数t,的最小值为0,所以不等式④对于一切t成立等价于,即.由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有,且m的取值范围. 20.已知函数. (1)求曲线在点处的切线方程,(Ⅱ)直线时过原点的直线,并且倾斜角是,所以设直线的极坐标方程是,代入圆的极坐标方程得到的二次方程,而,根据根与系数的关系得到结果. 试题解析:(Ⅰ)直线的普通方程是即曲线的直角坐标方程是即(Ⅱ)直线的极坐标方程是,代入曲线的极坐标方程得:,所以. 23.选修4-5:不等式选讲已知函数,. (1)若,求不等式的解集2020年高考必刷卷(新课标卷)02 数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
2020届江苏高考数学必刷试卷3(解析版)
江苏卷09-2020年高考数学必刷试卷(解析版)数学试题I一、 填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填写在相应位置上.1. 函数y =x -1的定义域为A ,函数y =lg(2-x)的定义域为B ,则A∩B =____________. 答案:[1,2)解析:易知A =[1,+∞),B =(-∞,2),A∩B =[1,2).2. 已知⎝⎛⎭⎫1+2i 2=a +bi(a 、b ∈R ,i 为虚数单位),则a +b =__________. 答案:-7解析:∵ 2i =-2i ,∴ (1+2i)2=(1-2i)2=-3-4i ,∴ a =-3,b =-4,a +b =-7. 3. 在平面直角坐标系xOy 中,已知双曲线x 29-y 2m=1的一个焦点为(5,0),则实数m =________. 答案:16 解析:由题知a 2+b 2=9+m =25,∴ m =16.4. 样本容量为100的频率分布直方图如图所示,由此估计样本数据落在[6,10]内的频数为________.(第4题)答案:32解析:[6,10]内的频数为100×0.08×4=32.5. “φ=π2”是“函数y =sin(x +φ)的图象关于y 轴对称”的__________条件. 答案:充分不必要解析:当φ=π2时,y =sin(x +π2)=cosx 为偶函数,当y =sin(x +φ)为偶函数时,φ=kπ+π2, 6. 已知S n 为等差数列{a n }的前n 项和,a 1=-1,S 3=6,则S 6=________.答案:39解析:由题设知a 1=-1,a 2+a 3=7,从而d =3,从而a 6=-1+5d =14,S 6=(-1+14)×62=39. 7. 函数y =1lnx(x≥e)的值域是________.答案:(0,1]解析:y =1lnx 为[e ,+∞)上单调递减函数,从而函数值域为(0,1] 8. 执行下面的程序图,那么输出n 的值为____________.答案:6解析:由题知流程图执行如下:第1次 ⎩⎪⎨⎪⎧n =2,S =1,第2次 ⎩⎪⎨⎪⎧n =3,S =3,第3次 ⎩⎪⎨⎪⎧n =4,S =7,第4次 ⎩⎪⎨⎪⎧n =5,S =15, 第5次 ⎩⎪⎨⎪⎧n =6,S =31.停止输出n =6. (第8题)9. 在1,2,3,4四个数中随机地抽取1个数记为a ,再在剩余的三个数中随机地抽取1个数记为b ,则“a b是整数”的概率为____________. 答案:13解析:由题设可求出基本事件如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).其中a b 整数的个数为4,从而所求概率为43×4=13. 10. 已知△ABC 为等腰直角三角形,斜边BC 上的中线AD =2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥CABD 的体积为____________.答案:233解析:如下图所示:作BC 中点E ,连结DE 、AE ,则易知BC ⊥平面ADE ,从而V CABD =13S △ADE ·BC ,又DE =3,AE =7,从而V CABD =13×12×2×3×2=233. 11. 直线y =kx 与曲线y =2e x 相切,则实数k =__________.答案:2e解析:设切点(x 0,2ex 0),则切线方程为y =2ex 0(x -x 0)+2ex 0,又切线过点(0,0),得x 0=1,从而切点为(1,2e),从而k =2e.12. 已知平面内四点O 、A 、B 、C 满足OA →·BC →=2,OB →·CA →=3,则OC →·AB →=____________.答案:-5解析:由题设知OA →(OC →-OB →)=2,OB →(OA →-OC →)=3,两式相加得OA →·OC →-OB →·OC →=5,即OC →·(OA →-OB →)=5,从而OC →·AB →=-5.13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________.答案:14解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14. 14. 已知x 、y ∈R ,满足2≤y≤4-x ,x≥1,则x 2+y 2+2x -2y +2xy -x +y -1的最大值为____________. 答案:103解析:由题易知x 2+y 2+2x -2y +2xy -x +y -1=(x +1)2+(y -1)2(x +1)(y -1)=x +1y -1+y -1x +1,令t =y -1x +1,则由线性规划知t ∈[13,1],从而t +1t ∈[2,103]. 二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且tanB tanA +1=2c a. (1) 求角B ;(2) 若cos ⎝⎛⎭⎫C +π6=13,求sinA 的值. 解:(1) 由tanB tanA +1=2c a 及正弦定理,得sinBcosA cosBsinA +1=2sinC sinA,(2分) 所以sinBcosA +cosBsinA cosBsinA =2sinC sinA, 即sin (A +B )cosBsinA =2sinC sinA ,则sinC cosBsinA =2sinC sinA . 因为在△ABC 中,sinA≠0,sinC≠0,所以cosB =12.(5分) 因为B ∈(0,π),所以B =π3.(7分) (2) 因为0<C <2π3, 所以π6<C +π6<5π6. 因为cos ⎝⎛⎭⎫C +π6=13, 所以sin(C +π6)=223.(10分) 所以sinA =sin(B +C)=sin ⎝⎛⎭⎫C +π3 =sin ⎣⎡⎦⎤⎝⎛⎭⎫C +π6+π6(12分) =sin ⎝⎛⎭⎫C +π6cos π6+cos(C +π6)sin π6=26+16.(14分) 16.(本小题满分14分)如图,正四棱锥P-ABCD 的高为PO ,PO =AB =2.E 、F 分别是棱PB 、CD 的中点,Q 是棱PC 上的点.(1) 求证:EF ∥平面PAD ;(2) 若PC ⊥平面QDB ,求PQ.(1) 证明:取PA 中点M ,连结ME 、MD ,由条件得,ME ∥AB ,DF ∥AB ,∴ ME ∥DF.且ME =12AB ,DF =12AB , ∴ ME =DF.(2分)∴ 四边形EFDM 是平行四边形.则EF ∥MD.(4分)又MD Ì平面PAD ,EF Ë平面PAD ,∴ EF ∥平面PAD.(7分)(2) 解:连结OQ.∵ PC ⊥平面QDB ,OQ Ì平面QDB ,∴ PC ⊥OQ.(9分)∵ PO ⊥平面ABCD ,OC Ì平面ABCD ,∴ PO ⊥OC.由正方形ABCD 的边长为2,得OC = 2.∵ PO =2,∴ PC =PO 2+OC 2= 6.(11分)则PQ =PO·sin ∠CPO =2·26=233.(14分), 所以FH =|3x 0-4|x 20+⎝⎛⎭⎫1-x 204-23x 0+3=|3x 0-4|34x 20-23x 0+4=|3x 0-4|⎝⎛⎭⎫32x 0-22=2.(1417. (本小题满分14分)某种树苗栽种时高度为A(A 为常数)米,栽种n 年后的高度记为f(n).经研究发现f(n)近似地满足f(n)=9A a +btn ,其中t =2-23,a 、b 为常数,n ∈N ,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍.(1) 栽种多少年后,该树木的高度是栽种时高度的8倍;(2) 该树木在栽种后哪一年的增长高度最大.解:(1) 由题意知f(0)=A ,f(3)=3A.所以⎩⎪⎨⎪⎧9Aa +b =A ,9A a +14b=3A ,解得a =1,b =8.(4分) 所以f(n)=9A 1+8×t n ,其中t =2-23. 令f(n)=8A ,得9A 1+8×t n=8A , 解得t n =164, 即2-2n 3=164,所以n =9.。
2020高考数学(理)必刷试题+参考答案+评分标准 (88)
2020高考数学模拟试题(理科)一、选择题(本大题共12小题)1.已知集合A={x|-1<x<2},,则A∩B=()A. B. C. D.2.命题“∀x∈N*,x2∈N*且x2≥x”的否定形式是()A. ,且B. ,或C. ,且D. ,或3.已知数列{a n}中,“a n+12=a n•a n+2”是“数列{a n}为等比数列”的什么条件()A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要4.设函数,若,则b等于()A. 2B. 1C.D.5.已知,则cos2α=()A. B. C. D.6.设向量满足,且与的夹角为,则=()A. 2B. 4C. 12D.7.已知等差数列{a n}中,a3+a5=π,S n是其前n项和.则sin S7等于()A. 1B. 0C.D.8.△ABC的内角A,B,C的对边分别为a,b,c,已知,则C等于()A. B. C. 或 D. 或9.设f(x)是定义域为R的偶函数,且f(x+3)=f(x-1),若当x∈[-2,0]时,f(x)=2-x,记,,c=f(32),则a,b,c的大小关系为()A. B. C. D.10.已知函数f(x)=sin x-cos x,g(x)是f(x)的导函数,则下列结论中错误的是()A. 函数的值域与的值域相同B. 若是函数的极值点,则是函数的零点C. 把函数的图象向右平移个单位,就可以得到函数的图象D. 函数和在区间上都是增函数11.在△ABC中,AC⊥AB,AB=2,AC=1,点P是△ABC所在平面内一点,,且满足,若,则2λ+μ的最小值是()A. B. 5 C. 1 D.12.设函数,若存在f(x)的极值点x0满足,则m的取值范围是()A. B.C. D.二、填空题(本大题共4小题)13.已知曲线y=ax+ln x在点(1,a)处的切线过点(2,3),则a=______.14.已知函数f(x)=log a x+b(a>0,a≠1)的定义域、值域都是[1,2],则a+b= ______ .15.由曲线,直线y=2x,x=2所围成的封闭的图形面积为______.16.用g(n)表示自然数n的所有因数中最大的那个奇数,例如:6的因数有1,2,3,6,g(6)=3,9的因数有1,3,9,g(9)=9,那么g(1)+g(2)+g(3)+…+g (22019-1)=______.三、解答题(本大题共6小题)17.给定两个命题,p:对任意实数x都有x2+ax+1≥0恒成立;q:幂函数y=x a-1在(0,+∞)内单调递减;如果p与q中有且仅有一个为真命题,求实数a的取值范围.18.已知函数.(Ⅰ)求f(x)的最小正周期及单调递减区间;(Ⅱ)若f(x)在区间上的最小值为1,求m的最小值.19.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S4=16.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)当d>1时,记,求数列{c n}的前n项和T n.20.已知函数,,(Ⅰ)若函数f(x)有两个零点,求实数a的取值范围;(Ⅱ)若a=3,且对任意的x1∈[-1,2],总存在,使g(x1)-f(x2)=0成立,求实数m的取值范围.21.已知△ABC的内角A,B,C的对边分别为a,b,c,且,,.(Ⅰ)求角A的大小;(Ⅱ)若a=3,求△ABC的周长L的取值范围.22.已知函数,函数g(x)=-2x+3.(Ⅰ)当a=2时,求f(x)的极值;(Ⅱ)讨论函数的单调性;(Ⅲ)若-2≤a≤-1,对任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤t|g(x1)-g(x2)|恒成立,求实数t的最小值.答案和解析1.【答案】C【解析】解:∵集合A={x|-1<x<2},={x|x≥0},∴A∩B={x|0≤x<2}=[0,2).故选:C.分别求出集合A,B,由此能求出A∩B.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:命题的全称命题,则否定是特称命题,即∃x0∈N*,x02∉N*或x02<x0,故选:D.根据全称命题的否定是特称命题进行判断即可.本题主要考查含有量词的命题的否定,结合全称命题的否定是特称命题是解决本题的关键.比较基础.3.【答案】B【解析】解:若数列{a n}为等比数列,则满足a n+12=a n•a n+2,当数列a n=0时满足a n+12=a n•a n+2,但此时数列{a n}为等比数列不成立,即“a n+12=a n•a n+2”是“数列{a n}为等比数列”的必要不充分条件,故选:B.结合等比数列的性质,以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合等比数列的性质,利用特殊值法是解决本题的关键.比较基础.4.【答案】B【解析】解:根据题意,函数,则f()=4×-b=3-b,若b≤2,则3-b≥1,此时f(f())=f(3-b)=23-b=4,解可得b=1;若b>2,则3-b<1,此时f(f())=f(3-b)=4×(3-b)-b=12-5b=4,解可得b=,(舍)故b=1;故选:B.根据题意,由函数的解析式可得f()=4×-b=3-b,按b的范围分情况讨论,代入函数的解析式,求出b的值,综合可得答案.本题考查分段函数的解析式,涉及函数值的计算,属于基础题.5.【答案】A【解析】解:已知,所以,利用三角函数的定义,解得,故cos2α=1-2sin2α=.故选:A.本题考查的知识要点:三角函数关系式的恒等变换,同角三角函数关系式的变换,倍角公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.【答案】D【解析】解:,∴,∴=.故选:D.根据条件可求出,进而求出,并且,从而根据进行数量积的运算即可求出的值.本题考查了根据向量得到坐标求向量的长度的方法,向量数量积的运算及计算公式,向量长度的求法,考查了计算能力,属于基础题.7.【答案】C【解析】解:等差数列{a n}中,a3+a5=π,∴==,∴sin S7==sin(-)=-sin=-1.故选:C.由等差数列{a n}中,a3+a5=π,得==,由此能求出sin S7.本题考查等差数列中前7项和的正弦值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.8.【答案】A【解析】解:由于,所以,解得A=,由于a=,c=1,所以,解得,由于c<a,所以.故选:A.直接利用正弦定理余弦定理的应用求出结果.本题考查的知识要点:正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.【答案】A【解析】解:∵f(x+3)=f(x-1),∴f(x+4)=f(x),即函数f(x)是周期为4的周期函数,当x∈[-2,0]时,f(x)=2-x,则函数f(x)为减函数,即当x∈(0,2]时,f(x)为增函数,log2=-2,则=f(-2)=f(2),c=f(32)=f(9)=f(8+1)=f(1),∵1<<2,且当x∈(0,2]时,f(x)为增函数,∴f(1)<f()<f(2),∴a>b>c,故选:A.根据f(x+3)=f(x-1),得到函数是周期为4的周期函数,结合函数的奇偶性和单调性的关系进行转化求解即可.本题主要考查函数值的大小比较,结合条件求出函数的周期,结合函数的周期性,奇偶10.【答案】C【解析】解:函数f(x)=sin x-cos x,∴g(x)=f'(x)=cos x+sin x,对于A,f(x)=sin(x-),g(x)=sin(x+),两函数的值域相同,都是[-,],A正确;对于B,若x0是函数f(x)的极值点,则x0+=kπ,k∈Z;解得x0=kπ+,k∈Z;,g(x0)=sin(kπ+-)=0,∴x0也是函数g(x)的零点,B正确;对于C,把函数f(x)的图象向右平移个单位,得f(x-)=sin(x-)-cos(x-)=-cos x-sin x≠g(x),∴C错误;对于D,x∈,时,x-∈(-,0),f(x)是单调增函数,x+∈(0,),g(x)也是单调增函数,D正确.故选:C.求出函数f(x)的导函数g(x),再分别判断f(x)、g(x)的值域、极值点和零点,图象平移和单调性问题.本题考查了三角函数的图象与性质的应用问题,也考查了导数的应用问题,是中档题.11.【答案】D【解析】解:以A为原点,AB,AC所在直线分别为x轴、y轴建立直角坐标系,则A(0,0),B(2,0),C(0,1),,,∴,∴点M满足:(x-1)2+(y-2)2=1,设M(1+cosθ,2+sinθ),则由得:(1+cosθ,2+sinθ)=(2λ,μ),∴,2λ+μ的最小值是3-.故选:D.建系,分别表示出,,进而表示出,再用参数方程,结合三角函数求出范围.本题考查平面向量基本定理,结合三角函数求范围是关键,属于中档题.12.【答案】B【解析】解:函数,可得f′(x)=-,∵x0是f(x)的极值点,∴f′(x0)=0,即,得,k∈Z,即x0=mk,k∈Z,∴可转化为:,即k2m2+3<m2,k∈Z,即,要使原问题成立,只需存在k∈Z,使成立即可,又k2的最小值为0,∴,解得或,故选:B.求出导函数f′(x)=-,利用f′(x0)=0,得到x0=mk,k∈Z,可转化为:k2m2+3<m2,k∈Z,即要使原问题成立,只需存在k∈Z,使成立即可,转化求解表达式的最值即可.本题考查函数的导数的应用,函数的极值,以及成立条件的转化,考查计算能力,是中档题.13.【答案】1【解析】解:∵y=ax+ln x,∴y′=a+,则y′|x=1=a+1,∴曲线y=y=ax+ln x在点(1,a)处的切线方程为y-a=(a+1)(x-1),∵曲线y=ax+ln x在点(1,a)处的切线过点(2,3),解得:a=1.故答案为:1.求导函数,然后确定切线的斜率,可得切线方程,利用曲线y=ax+ln x在点(1,a)处的切线过点(2,3),建立等式,解之即可求出所求.本题考查了利用导数研究在曲线某点处的切线方程,考查导数的几何意义,考查学生的计算能力,属于基础题.14.【答案】或3【解析】【分析】本题考查对数函数的性质以及分类讨论的思想方法.分类讨论函数的单调性是正确解决本题关键.属于易错题.分类讨论a的取值范围,得到函数单调性,代入数据即可求解.【解答】解:当0<a<1时,易知函数f(x)为减函数,由题意有解得:a=,b=2,符合题意,此时a+b=;当a>1时,易知函数为增函数,由题意有,解得:a=2,b=1,符合题意,此时a+b=3.综上可得:a+b的值为或3.故答案为:或3.15.【答案】3-2ln2【解析】解:依题意,由解得,∴封闭的图形面积为=(x2-2ln x)=3-2ln2.故答案为:3-2n2.求出曲线,直线y=2x的交点坐标,根据定积分的几何意义列式求解即可.本题考查了定积分的几何意义,定积分的求法,主要考查分析解决问题的能力和计算能力,属于基础题.16.【答案】【解析】解:由g(n)的定义易知g(n)=g(2n),且若n为奇数,则g(n)=n,令f(n)=g(1)+g(2)+g(3)+…+g(2n-1),则f(n+1)=g(1)+g(2)+g(3)+…+g(2n+1-1)=1+3+…+(2n+1-1)+g(2)+g(4)+…+g(2n+1-2)==4n+f(n),即f(n+1)-f(n)=4n,分别取n为1,2,…n,并累加得:,又f(1)=g(1)=1,所以,从而,令n=2019,则所求为:.故答案为:.据题中对g(n)的定义,判断出g(n)=g(2n),且若n为奇数则g(n)=n,利用等差数列的前n项和公式及逐差累加的方法及等比数列的前n项和公式求出g(1)+g(2)+g(3)+…+g(22019-1).本题考查等差数列的前n项和公式、等比数列的前n项和公式、逐差累加的方法,是中档题.17.【答案】解:对任意实数x都有x2+ax+1≥0恒成立⇔△=a2-4≤0⇔-2≤a≤2,幂函数y=x a-1在(0,+∞)内单调递减⇔a-1<0⇔a<1,当p真q假时,有-2≤a≤2且a≥1,得1≤a≤2,当p假q真时,有a<-2或a>2且a<1,得a<-2,综上,所求实数a的取值范围是(-∞,-2)∪[1,2].【解析】通过两个命题是真命题求出a的范围,然后通过当p真q假时,当p假q真时,求解即可.本题考查命题的真假的判断与应用,函数恒成立条件的转化,是基本知识的考查.18.【答案】解:(Ⅰ)由已知,有,=,=,所以f(x)的最小正周期:.由得f(x)的单调递减区间是.(Ⅱ)由(1)知,因为,所以.要使f(x)在区间上的最小值为1,即在区间上的最小值为-1.所以,即.所以m的最小值为.【解析】(Ⅰ)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.(Ⅱ)利用正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.【答案】解:(Ⅰ)由题意有,即:,解得:或.故或.(Ⅱ)由d>1,知a n=2n-1,,故.于是:①,②①-②得:,故.【解析】(Ⅰ)直接利用已知条件建立方程组,求出数列的通项公式.(Ⅱ)利用(Ⅰ)的结论,进一步利用乘公比错位相减法在数列求和中的应用求出结果.本题考查的知识要点:数列的通项公式的求法及应用,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.20.【答案】解:(Ⅰ)令t=x2,则t∈[1,3],记,问题转化为函数y=h(t)与y=a有两个交点,∵,可知当t∈(1,2)时,h′(t)<0,可知当t∈(2,3)时,h′(t)>0,∴函数h(t)在(1,2)递减,(2,3)递增,从而h(t)min=h(2)=4,,h(1)=5,由图象可得,当时,y=h(t)与y=a有两个交点,∴函数f(x)有两个零点时实数a的范围为:.(Ⅱ)由(1)知f(x)∈[1,2],记A=[1,2],当m>0时,在[-1,2]上单调递增,∴,记,由题意得:B⊆A,∴且,解得:,当m<0时,在[-1,2]上单调递减,∴,∴且,得,综上,所求实数m的取值范围为.【解析】(Ⅰ)令t=x2,则t∈[1,3],记,问题转化为函数y=h(t)与y=a有两个交点,利用函数的导数判断函数的单调性求解函数的最小值然后求解实数a的范围.(Ⅱ)由(1)知f(x)∈[1,2],记A=[1,2],通过当m=0时,当m>0时,当m<0时,分类求实数m的取值范围,推出结果即可.本题考查函数的导数的应用,函数的最值的求法,考查转化思想以及计算能力,是中档题.21.【答案】解:(Ⅰ)由已知得:,再由正弦定理得:,∵B=π-(A+C),∴sin B=sin(A+C)=sin A cos C+cos A sin C②又C∈(0,π),由①②得,,又A∈(0,π),∴.(Ⅱ)法一:由余弦定理:a2=b2+c2-2bc cos A得b2+c2-bc=9即:(b+c)2-3bc=9,而(当且仅当b=c=3时等号成立)从而,得b+c≤6,又b+c>a=3,∴3<b+c≤6,从而周长L∈(6,9];法二:由正弦定理得:,∴,又,从而△ABC的周长L:=,,∴,∴,从而:L∈(6,9].【解析】(Ⅰ)由条件可得,再结合正弦定理及三个角之间的关系可得,进而求出A;(Ⅱ)利用余弦定理再结合基本不等式可得3<b+c≤6,则可求出周长L的范围.本题考查平面向量数量积的运算,设计到正、余弦定理,属于中档题.22.【答案】解:(Ⅰ)a=2时,f(x)=ln x-x2+x.∵.易知f(x)在(0,1)递增,(1,+∞)递减,∴f(x)极大值=f(1)=0,无极小值.(Ⅱ).∴.①a≤0时,F′(x)>0,恒成立,∴F(x)在(0,+∞)单调递增;②当a>0,由F′(x)>0得,F′(x)<0得,所以F(x)在单调递增,在单调递减.综上:当a≤0时,F(x)在(0,+∞)单调递增;当a>0时,F(x)在单调递增,在单调递减.(Ⅲ)由题知t≥0,.当-2≤a≤-1时,f′(x)>0,f(x)在(0,+∞)单调递增,不妨设1≤x1≤x2≤2.又g(x)单调递减,即f(x2)+tg(x2)≤f(x1)+tg(x1)对任意-2≤a≤-1,1≤x1≤x2≤2恒成立,记,则h(x)在[1,2]递减.对任意a∈[-2,-1],x∈[1,2]恒成立.令.则在[1,2]上恒成立,则,而在[1,2]单调递增,∴,∴.【解析】(Ⅰ)当a=2时,f(x)=ln x-x2+x,求导得到增减区间,进而得到极值.(Ⅱ)..①a≤0时,②当a>0,讨论增减区间.(Ⅲ)当-2≤a≤-1时,f′(x)>0,f(x)在(0,+∞)单调递增,不妨设1≤x1≤x2≤2.不等式等价于f(x2)-f(x1)≤t[g(x1)-g(x2)].即:f(x2)+tg(x2)≤f(x1)+tg(x1)对任意-2≤a≤-1,1≤x1≤x2≤2恒成立,记,则h(x)在[1,2]递减.对任意a∈[-2,-1],x∈[1,2]恒成立.转化变量研究H(a)最大值小于等于0,进而求出t的取值范围本题考查函数的单调性的判断,考查实数的最小值的求法,考查函数性质、导数性质、构造法等基础知识,考查运算求解能力,考查函数与方程思想,是难题.。
2020高考数学(理)必刷试题+参考答案+评分标准(55)
2020⾼考数学(理)必刷试题+参考答案+评分标准(55)2020⾼考数学模拟试题(理科)⼀、单项选择题:本题共8⼩題,每⼩题5分,共40分。
在每⼩题给出的四个选项中,只有⼀项是符合題⽬要求的。
1.⼰知集合A={X|X2-X-2≤0},B={x|y=,则A∪B=A.{x|-l≤x≤2}B. {x|0≤x≤2}C. {x|x≥-l}D. {x|x≥0}2.“x∈R,x2-x+l>0”的否定是A.x∈R, X2-X+1≤0B. x∈R, x2-x+1<0C. x∈R, x2-x+l<0D. x∈R, x2-x+l≤03.若双曲线(a>0,b>0)的离⼼率为,则其渐近线⽅程为A. 2x±3y=0B. 3x±2y=0C. x±2y=0D. 2x±y=04.设a=log0.53,b=0.53,c=,则a,b,c的⼤⼩关系为A.aB. aC. bD. b5.为弘扬我国古代的“六艺⽂化”,某夏令营主办单位计划利⽤暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周⼀门,连续开设六周.若课程“乐”不排在第⼀周,课程“御”不排在最后⼀周,则所有可能的排法种数为A. 216B. 480C. 504D. 6246.函数y=|x|+sinx的部分图象可能是7.若x=α时,函数f(x)=3sinx+4cosx取得最⼩值,则sinα=A. B. C. D.8.函数,若⽅程f(x)=-2x+m有且只有两个不相等的实数根,则实数m的取值范围是A. (-∞,4)B. (-∞,4]C. (-2,4)D. (-2,4]满意不满意⼆、多项选择题:本題共4⼩题,每⼩题5分,共20分。
在每⼩题给出的选项中,有多项符合題⽬要求,全部选对得5分,部分选对得3分,有选错的得0分.9.某⼤学为了解学⽣对学校⾷堂服务的满意度,随机调査了50名男⽣和50名⼥⽣,每位学⽣对⾷堂的服务给出满意或不满意的评价,得到如图所⽰的列联表.经计算K 2的观测值k ≈4.762,则可以推断出A. 该学校男⽣对⾷堂服务满意的概率的估计值为B. 调研结果显⽰,该学校男⽣⽐⼥⽣对⾷堂服务更满意C. 有95%的把握认为男、⼥⽣对该⾷堂服务的评价有差异D. 有99%的把握认为男、⼥⽣对该⾷堂服务的评价有差异10. 已知函数f(x)=sin(3x+)(-<<)的图象关于直线x=对称,则 A. 函数f(x+)为奇函数B. 函数f(x)在[,]上单调递増C. 若|f(x 1)-f(x 2)|=2,则|x 1-x 2\的最⼩值为D. 函数f(x)的图象向右平移个单位长度得到函数y=-cos3x 的图象11. 如图,在正⽅体ABCD-A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则A. 直线BD 1丄平⾯A 1C 1DB. 三棱锥P-A 1C 1D 的体积为定值C. 异⾯直线AP 与A 1D 所成⾓的取值范⽤是[45°,90°]D. 直线C 1P 与平⾯A 1C 1D 所成⾓的正弦值的最⼤值为12. 已知抛物线C:y 2=4x 的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点P(x 1,y 1),G(x 2,y 2),点P 在l 上的射影为P 1,则 A. 若X 1+X 2=6.则|PQ|=8B. 以PQ 为直径的圆与准线l 相切C. 设M (O,1),则|PM|+|PP 1|≥D. 过点M (0,1)与抛物线C 有且只有⼀个公共点的直线⾄多有2条三、填空題:本題共4⼩題,每⼩题5分,共20分。
2020年高考数学(理)必刷试卷3(解析版)
2020年高考必刷卷(新课标卷)03数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U R =,A {x |x 1}=<,B {x |x 2}=≥,则集合()U A B ⋃ð等于( ) A .{}x x 1 B .{x |x 2}≤ C .{x |1x 2}<≤ D .{x |1x 2}≤<【答案】D 【解析】 【分析】求出A 与B 的并集,根据全集U =R ,求出并集的补集即可. 【详解】Q 全集U R =,A {x |x 1}=<,B {x |x 2}=≥,A B {x |x 1∴⋃=<或x 2}≥,则()U A B {x |1x 2}⋃=≤<ð,故选:D . 【点睛】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.若复数11z i =+,21z i =-,则下列结论错误的是( ) A .12z z ⋅是实数 B .12z z 是纯虚数C .24122z z =D .22124z z i +=【答案】D 【解析】分析:根据题中所给的条件,将两个复数进行相应的运算,对选项中的结果一一对照,从而选出满足条件的项.详解:212(1)(1)12z z i i i ⋅=+-=-=,是实数,故A 正确,21211212z i i i i z i +++===-,是纯虚数,故B 正确, 442221(1)[(1)](2)4z i i i =+=+==,22222(1)224z i i =-=-=,故C 正确,222212(1)(1)220z z i i i i +=++-=-=,所以D 项不正确,故选D.点睛:该题考查的是复数的有关概念和运算,在做题的时候,需要对选项中的问题一一检验,从而找到正确的结果.3.已知55log log n m >,则下列结论中不正确的是( )A .m >n >1B .n >1>m >0C .1>n >m >0D .1>m >n >0【答案】C 【解析】 【分析】先化简原不等式为11lg lg n m>,再对,m n 分四种情况讨论即得解. 【详解】 由题得lg5lg5lg lg n m>, 所以11lg lg n m>, 当1,1m n >>时,lg lg ,m n >所以,1m n m n >∴>>,所以选项A 正确; 当01,01m n <<<<时,lg lg ,m n > 所以10m n >>>,所以选项D 正确;当1,01n m ><<时,不等式55log log n m >显然成立,所以选项B 正确; 当01,1n m <<>时,不等式55log log n m >显然不成立.所以选项C 不正确.故选:C 【点睛】本题主要考查对数的运算和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平. 4.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )A .6.25%B .7.5%C .10.25%D .31.25%【答案】A 【解析】 【分析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比. 【详解】水费开支占总开支的百分比为25020% 6.25%250450100⨯=++.故选:A 【点睛】本题考查折线图与柱形图,属于基础题.5.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1−x),若f(1)=1,则f(1)+f(2)+f(3)+...+f(2019)=()A.1B.0C.1D.2019【答案】B【解析】【分析】根据题意,由函数满足f(1﹣x)=f(x+1),分析可得f(﹣x)=f(x+2),结合函数为奇函数可得f(x)=f(x+2),则函数f(x)为周期为4的周期函数,又由f(1)、f(-1)与f(2)及f(0)的值分析可得f(1)=f(5)=……=f(2017)=1,f(3)=f(7)=……= f(2019)=-1,f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,将其相加即可得答案.【详解】根据题意,函数f(x)满足f(1﹣x)=f(x+1),则函数f(x)的图象关于直线x=1对称,则有f (﹣x)=f(x+2),又由函数f(x)为奇函数,则f(﹣x)=-f(x),则有f(x)=-f(x+2),则f(x+2)=- f(x+4),可得f(x)= f(x+4)则函数f(x)为周期为4的周期函数,又由f(1)=1,则f(1)=f(5)=……=f(2017)=1,f(-1)=- f(1)=-1,则f(3)=f(7)=……= f(2019)=-1,又f(-2)=f(2)=-f(2),则f(2)=0,且f(0)=0,所以f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,则f(1)+f(2)+f(3)+…+f(2019)=505-505+0=0;故选:B.【点睛】本题考查函数的奇偶性以及函数周期性的应用,注意分析与利用函数的周期,属于基础题.6.若实数x,y满足2x+2y=1,则x+y的最大值是()A.-4B.-2C.2D.4【答案】B【解析】【分析】利用基本不等式求x+y 的最大值得解. 【详解】由题得2x +2y ≥2√2x ⋅2y =2√2x+y ,(当且仅当x=y=-1时取等) 所以1≥2√2x+y ,∴14≥2x+y ,∴2−2≥2x+y , 所以x+y≤-2.所以x+y 的最大值为-2. 故选:B 【点睛】本题主要考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力. 7.等差数列{}n a 中2912142078a a a a a a ++-+-=,则9314a a -=( ) A .8 B .6C .4D .3【答案】D 【解析】 【分析】设等差数列的公差为d ,根据题意,求解1104a d +=,进而可求得93113(10)44a a a d -=+,即可得到答案. 【详解】由题意,设等差数列的公差为d ,则291214207112202(10)8a a a a a a a d a d ++-+-=+=+=,即1104a d +=, 又由931111138(2)(10)3444a a a d a d a d -=+-+=+=,故选D. 【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为d ,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.已知函数()()002f x Asin x A πωφωφ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则下列判断正确的是( )A .函数的图象关于点,03π⎛⎫-⎪⎝⎭对称 B .函数的图象关于直线6x π=-对称C .函数()2f x 的最小正周期为πD .当766x ππ≤≤时,函数()f x 的图象与直线2y =围成的封闭图形面积为2π 【答案】D 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得f (x )的解析式,再根据余弦函数的图象和性质,判断各个选项是否正确,从而得出结论. 【详解】解:函数()()002f x Asin x A πωφωφ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象,可得A =2,14•25126πππω=-,∴ω=2.再根据五点法作图可得2•6π+φ2π=,∴φ6π=,f (x )=2sin (2x 6π+). 令x 3π=-,求得f (x )=﹣2,为函数的最小值,故A 错误; 令x 6π=-,求得f (x )=﹣1,不是函数的最值,故B 错误;函数f (2x )=2sin (4x 6π+)的最小正周期为242ππ=,故C 错误; 当766x ππ≤≤时,2π≤2x 562ππ+≤,函数f (x )的图象与直线y =2围成的封闭图形为x 6π=、x 76π=、y =2、y =﹣2构成的矩形的面积的一半,矩形的面积为π•(2+2)=4π,故函数f (x )的图象与直线y =2围成的封闭图形面积为2π, 故D 正确, 故选:D . 【点睛】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,余弦函数的图象和性质,属于中档题.9.ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,S 表示三角形ABC ∆的面积,且满足222)S a c b =+-,则B ∠=( ) A .6π B .3π C .3π或23π D .23π【答案】B 【解析】在△ABC 中,∵)222a cb +-=12acsinB ,cosB=2222a c b ac +-.代入原式子得到12cos sin 2ac B ac B =,B ∈(0,π), ∴B=3π. 故答案为B .10.如图中共顶点的椭圆①②与双曲线③④的离心率分别为e 1,e 2,e 3,e 4,其大小关系为( )A .e 1<e 2<e 3<e 4B .e 2<e 1<e 3<e 4C .e 1<e 2<e 4<e 3D .e 2<e 1<e 4<e 3 【答案】C 【解析】试题分析:先根据椭圆越扁离心率越大判断a 1、a 2的大小,再由双曲线开口越大离心率越大判断a 3、a 4的大小,最后根据椭圆离心率大于0小于1并且抛物线离心率大于1可得到最后答案.解:根据椭圆越扁离心率越大可得到0<a 1<a 2<1 根据双曲线开口越大离心率越大得到1<a 3<a 4 ∴可得到a 1<a 2<a 3<a 4故选A . 考点:圆锥曲线的共同特征.11.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P ABC -中,PA ⊥平面ABC ,4PA =,2AB BC ==,鳌臑P ABC -的四个顶点都在同一个球上,则该球的表面积是( ) A .16π B .20π C .24π D .64π【答案】C 【解析】 【分析】四个面都是直角三角形,由AB BC =得AB BC ⊥,然后证明BC PB ⊥,这样PC 中点O ,就是P ABC -外接球球心,易求得其半径,得面积.【详解】四棱锥P ABC -的四个面都是直角三角形,∵2AB BC ==,∴AB BC ⊥,又PA ⊥平面ABC ,∴AB 是PB 在平面ABC 上的射影,PA CA ⊥,∴BC PB ⊥,取PC 中点O ,则O 是P ABC -外接球球心.由2AB BC ==得AC =4PA =,则PC ==,OP =,所以球表面积为224()424S OP πππ==⨯=. 故选:C . 【点睛】本题考查求球的表面积,解题关键是寻找外接球的球心:三棱锥的外接球的球心一定在过各面外心且与此面垂直的直线上.12.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x >时, ()()'0xf x f x -<,若()()()ln23,,ln23f e f f a b c e-===-,则,,a b c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<【答案】D 【解析】 【分析】 构造函数g (x )()f x x=,由g ′(x )()()2'xf x f x x-=,可得函数g (x )单调递减,再根据函数的奇偶性得到g (x )为偶函数,即可判断. 【详解】 构造函数g (x )()f x x=,∴g ′(x )()()2'xf x f x x-=,∵xf ′(x )﹣f (x )<0, ∴g ′(x )<0,∴函数g (x )在(0,+∞)单调递减. ∵函数f (x )为奇函数, ∴g (x )()f x x=是偶函数,∴c ()33f -==-g (﹣3)=g (3), ∵a ()f e e==g (e ),b ()22f ln ln ==g (ln 2), ∴g (3)<g (e )<g (ln 2), ∴c <a <b , 故选D .【点睛】本题考查了构造函数并利用导数研究函数的单调性,进行比较大小,考查了推理能力,属于中档题.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
2020年高考理科数学新课标必刷试卷三(含解析)
《2020年高考理科数学新课标必刷试卷三(含解析)》摘要:根据题由函数满足(﹣x)=(x+)分析可得(﹣x)=(x+)结合函数奇函数可得(x)=(x+)则函数(x)周期周期函数又由()、()与()及(0)值分析可得()(5)……=(07)=(3)(7)…… (09)()()=(6)=(8)=……=(08)=0 将其相加即可得答案.【详,根据题函数(x)满足(﹣x)=(x+)则函数(x)图象关直线x =对称则有(﹣x)=(x+)又由函数(x)奇函数则(﹣x)=(x)则有(x)=(x+)则(x+)(x+)可得(x)(x+)则函数(x)周期周期函数又由()=则()(5)……=(07)=()()则(3)(7)…… (09)又()()=()则()0且(0)0所以()()=(6)=(8)=……=(08)=0 则()+()+(3)+…+(09)=505505+00,∵x′(x)﹣(x)<0 ∴g′(x)<0 ∴函数g(x)(0+∞)单调递减.∵函数(x)奇函数∴g(x)是偶函数∴g(﹣3)=g(3)∵g()bg(l)∴g(3)<g()<g(l)∴<<b 故选.【睛00年高考必刷卷(新课标卷)03 数学(理)(试卷满分50分考试用0分钟)事项.答卷前考生必将己姓名、考生、考场和座位填写答题卡上用B铅笔将试卷类型(B)填涂答题卡相应位置上.作答选择题选出每题答案用B铅笔答题卡上对应题目选项答案信息涂黑;如改动用橡皮擦干净再选涂其它答案答案不能答试卷上3.非选择题必须用黑色迹钢笔或签笔作答答案必须写答题卡各题目指定区域相应位置上;如改动先划原答案然再写上新答案;不准使用铅笔和涂改液不按以上要作答无效.考生必须保证答题卡整洁考试结束将试卷和答题卡并交回Ⅰ卷(选择题) 、单选题题共题每题5分共60分每题给出四选项只有项是合题目要.已知全集则集合等. B...【答案】【析】【分析】出与B并集根据全集=R出并集补集即可.【详】全集或则故选.【睛】题考了交、并、补集混合运算熟练掌握各定义是题关键..若复数则下列结论错误是().是实数 B.是纯虚数..【答案】【析】分析根据题所给条件将两复数进行相应运算对选项结对照从而选出满足条件项详是实数故正确是纯虚数故B正确故正确所以项不正确故选睛该题考是复数有关概念和运算做题候要对选项问题检验从而到正确结 3.已知则下列结论不正确是().>> B.>>>0 .>>>0 .>>>0 【答案】【析】【分析】先化简原不等式再对分四种情况讨论即得【详】由题得所以当所以,所以选项正确;当所以所以选项正确;当不等式显然成立所以选项B正确;当不等式显然不成立所以选项不正确故选【睛】题主要考对数运算和对数函数图像和性质考学生对这些知识理掌握水平.某单位年开支分布折线图如图所示这年水、电、交通开支(单位万元)如图所示则该单位年水费开支占总开支分比(). B...【答案】【析】【分析】由折线图出水、电、交通开支占总开支比例再计算出水费开支占水、电、交通开支比例相乘即可出水费开支占总开支分比【详】水费开支占总开支分比故选【睛】题考折线图与柱形图属基础题 5.已知x是定义R上奇函数满足(+x)(x),若()则()+()+(3)++(09)(). B.0 ..09 【答案】B 【析】【分析】根据题由函数满足(﹣x)=(x+)分析可得(﹣x)=(x+)结合函数奇函数可得(x)=(x+)则函数(x)周期周期函数又由()、()与()及(0)值分析可得()(5)……=(07)=(3)(7)…… (09)()()=(6)=(8)=……=(08)=0 将其相加即可得答案.【详】根据题函数(x)满足(﹣x)=(x+)则函数(x)图象关直线x=对称则有(﹣x)=(x+)又由函数(x)奇函数则(﹣x)=(x)则有(x)=(x+)则(x+)(x+)可得(x)(x+)则函数(x)周期周期函数又由()=则()(5)……=(07)=()()则(3)(7)…… (09)又()()=()则()0且(0)0所以()()=(6)=(8)=……=(08)=0 则()+()+(3)+…+(09)=505505+00;故选B.【睛】题考函数奇偶性以及函数周期性应用分析与利用函数周期属基础题. 6.若实数x满足x+则x+值是(). B...【答案】B 【析】【分析】利用基不等式x+值得【详】由题得x+≥x⋅x+,(当且仅当x取等) 所以≥x+∴≥x+,∴≥x+ 所以x+≤ 所以x+值故选B 【睛】题主要考基不等式考学生对这些知识理掌握水平和分析推理能力 7.等差数列则().8B.6 ..3 【答案】【析】【分析】设等差数列公差根据题进而可得即可得到答案【详】由题设等差数列公差则即又由故选【睛】题主要考了等差数列通项公式应用其答设等差数列公差利用等差数列通项公式化简是答关键着重考了推理与运算能力属基础题 8.已知函数部分图象如图所示则下列判断正确是().函数图象关对称 B.函数图象关直线对称.函数正周期.当函数图象与直线围成封闭图形面积【答案】【析】【分析】由函数图象顶坐标出由周期出ω由五法作图出φ值可得(x)析式再根据余弦函数图象和性质判断各选项是否正确从而得出结论.【详】函数部分图象可得=•∴ω=.再根据五法作图可得•φ∴φ(x)=(x).令x得(x)=﹣函数值故错误;令x得(x)=﹣不是函数值故B错误;函数(x)=(x)正周期故错误;当x函数(x)图象与直线=围成封闭图形x、x、=、=﹣构成矩形面积半矩形面积π•(+)=π故函数(x)图象与直线=围成封闭图形面积π故正确故选.【睛】题主要考由函数(ωx+φ)部分图象析式由函数图象顶坐标出由周期出ω由五法作图出φ值余弦函数图象和性质属档题. 9.角所对应边分别表示三角形面积且满足则(). B..或.【答案】B 【析】△B∵BB.代入原式子得到B∵B∈(0π)∴B .故答案B. 0.如图共顶椭圆①②与双曲线③④离心率分别3其关系() .3 B.3 .3 .3 【答案】【析】试题分析先根据椭圆越扁离心率越判断、再由双曲线开口越离心率越判断3、根据椭圆离心率0并且抛物线离心率可得到答案.根据椭圆越扁离心率越可得到0<<<根据双曲线开口越离心率越得到<3<∴可得到<<3<故选.考圆锥曲线共特征..《九算术》将底面长方形且有条侧棱与底面垂直四棱锥称阳马将四面都直角三角形四面体称鳌臑鳌臑平面鳌臑四顶都球上则该球表面积是(). B...【答案】【析】【分析】四面都是直角三角形由得然证明这样就是外接球球心易得其半径得面积.【详】四棱锥四面都是直角三角形∵∴又平面∴B是B平面B上射影∴取则是外接球球心.由得又则所以球表面积.故选.【睛】题考球表面积题关键是寻外接球球心三棱锥外接球球心定各面外心且与面垂直直线上..已知定义域奇函数导函数当若则关系正确是(). B...【答案】【析】【分析】构造函数g(x)由g′(x)可得函数g(x)单调递减再根据函数奇偶性得到g(x)偶函数即可判断.【详】构造函数g(x)∴g′(x)∵x′(x)﹣(x)<0 ∴g′(x)<0 ∴函数g(x)(0+∞)单调递减.∵函数(x)奇函数∴g (x)是偶函数∴g(﹣3)=g(3)∵g()bg(l)∴g(3)<g()<g(l)∴<<b 故选.【睛】题考了构造函数并利用导数研究函数单调性进行比较考了推理能力属档题.Ⅱ卷(非选择题) 二、填空题题共题每题5分共0分把答案填题横线上3.已知向量满足夹角则__________.【答案】【析】【分析】先计算再由展开计算即可得【详】由夹角得所以故答案【睛】题主要考了利用向量数量积计算向量模长属基础题.已知程序框图如图所示其功能是数列前0项和则数列通项公式【答案】【析】试题分析程序执行程数据变化如下不成立输出是数列和因数列通项公式考.程序框图;.数列通项公式5.已知函数导函数且则集_______.【答案】【析】【分析】先构造函数设再分析得到上是减函数,且再不等式得【详】设因所以所以上是减函数,且所以集即是集所以故答案【睛】()题主要考利用导数研究函数单调性考单调性应用考学生对这些知识掌握水平和分析推理能力()答题关键是构造函数设再分析得到上是减函数,且 6.已知是椭圆()和双曲线()交是椭圆和双曲线公共焦分别椭圆和双曲线离心率若则值________.【答案】【析】【分析】根据题不妨设象限那么根据椭圆与双曲线定义得到根据余弦定理整理得到化根据基不等式即可出结【详】根据椭圆与双曲线对称性不妨设象限那么因椭圆与双曲线有公共焦设椭圆与双曲线半焦距根据椭圆与双曲线定义有得由余弦定理可得即整理得所以又所以故答案【睛】题主要考椭圆与双曲线离心率相关计算熟记椭圆与双曲线定义与简单性质结合基不等式即可属常考题型三、答题题共6题共70分答应写出必要说明、证明程或演算步骤7题必做题,每考生都必须作答3题选考题考生根据要作答()必考题共60分 7.记数列前项和且满足.()数列通项公式;()记满足等式正整数值.【答案】();()【析】【分析】()首先利用数列递推关系式出数列通项公式;()先出再利用裂项相消法出数列和出即可.【详】()由数列前项和且满足.当得.当得所以数列是以首项以公比等比数列则数列通项公式.()由得由得.【睛】题考了等比数列通项公式法裂项相消法数列和属基础题. 8.如图B是圆直径垂直圆所平面是圆上. ()证平面⊥平面B; ()若B===二面角-B-余弦值.【答案】()见析()6 【析】()由B是圆直径得⊥B 由⊥平面BB⊂平面B 得⊥B 又∩=⊂平面⊂平面所以B⊥平面因B⊂平面B 所以平面B⊥平面 ()作∥则⊥平面B 如图以坐标原分别以直线B、、x轴轴z轴建立空直角坐标系.R△B因B==所以B=3 因=所以(0,,0)B(30,0)(0,,).故B=(30,0)=(0,,).设平面B法向量=(xz)则⋅B0,⋅0所以+z=03x=0不妨令=则=(0,-).因=(0,0,)B=(3-,0) 设平面B法向量=(xz)则⋅0,⋅B0所以不妨令x=则=(30).是〈〉=3=6 由题图可判断二面角锐角所以二面角-B-余弦值6 9.从某市高学生随机抽取00名学体重进行统计得到如图所示频率分布直方图 ()估计从该市高学生随机抽取人体重超60kg概率; ()假设该市高学生体重X从正态分布(57σ) ①利用()结论估计该高某学生体重介5~57kg概率;②从该市高学生随机抽取3人记体重介5~57kg人数利用()结论分布列【答案】()()①②见析【析】【分析】()根据频率分布直方图长方形面积等对应区概率得体重超频率两矩形面积;()①;②因根据二项分布概率并列分布列【详】 () 这00名学生体重超频率由估计从该市高学生随机抽取人体重超概率()①∵∴ ∴∴ 即高某学生体重介5~57 kg概率②因该市高学生总体很所以从该市高学生随机抽取3人可以视独立重复实验其体重介人数所以分布列【睛】题考正态分布二项分布考分析问题和问题能力对类考题要认真审题从数学与实际生活两角理问题实质,将问题成功化古概型独立事件、斥事件等概率模型因对概率型应用性问题理是基础化是关键 0.已知动圆且和直线相切.()动轨迹方程;()已知若直线与轨迹交两证直线斜率和定值.【答案】();()详见析【析】【分析】()由抛物线定义知轨迹抛物线由能出动圆圆心轨迹方程;()设直线方程立直线与抛物线利用韦达定理、斜率公式即可证明结论.【详】由题得圆心到距离等它到直线距离圆心轨迹是以焦直线准线抛物线设圆心轨迹方程()∵ ∴.∴圆心轨迹方程;()证明设直线方程立直线与抛物线可得∴ ∴ 即直线斜率和定值.【睛】题考轨迹方程法以及直线与圆锥曲线位置关系轨迹方程常用方法有直接法、相关法等直线与圆锥曲线位置关系常用代数法属常考题.已知函数(x)x+(x3x)lx ()函数(x)x处切线方程()对任x)都存正实数使得方程(x)至少有实根, 值【答案】()(56)x3+30()【析】分析()出,由值可得切坐标由值可得切线斜率利用斜式可得曲线处切线方程;()首先可得是方程根只方程另外至少根即可利用导数研究函数单调性结合函数图象可得函数极值与值从而可得值详()(x)3x3+(x3)lx k()56切(,3) 切线方程 +3(56)(x) (56)x3+30 ()令(x)0 即3x3+(x3)lx0 显然x是方程根而(x)lx 易知(x)(0)上递增容易验证()33 (), 存x使得(x)0 所以当x)(x) (x)递减当x(x) (x)递增且(x)()0又()故存xx)使得(x) 0列出下表 x (0,x) x (x,) (,) (x) + 0 0 + (x) 增极值减极值增所以(x)xx处取极值;处取得极值因();x0(x) 作出(x)示图可知值睛题主要考利用导数曲线切线方程以及利用导数研究函数单调性与极值属难题曲线切线方程般步骤是()出处导数即出切线斜率(当曲线处切线与轴平行处导数不存切线方程);()由斜式得切线方程(二)选考题共0分请考生,3题任选题作答如多做,则按所做题计分.选修坐标系与参数方程以坐标原极以x轴非半轴极轴建立极坐标系已知曲线参数方程 (参数). ()若曲线(,)处切线ll极坐标方程; ()若极坐标且当参数∈[0π]直线与曲线有两不交试直线斜率取值围.【答案】(); () 【析】试题分析()根据极坐标与普通方程直角坐标化公式即可出切线极坐标方程;()画出图象根据数形结合可以看出切线与割线斜率分别是和值利用斜率坐标公式即可出.试题析()∵∴圆上故切线方程∴ l极坐标方程; ()直角坐标设与半圆 ()相切∴∴或 (舍).设B则故直线斜率取值围. 3.选修5不等式选讲已知函数()证明;()不等式集【答案】()见析;()【析】【分析】()利用绝对值不等式三角不等式可证明出结论成立;()分、、三种情况分别出不等式集再取并集即可得出答案【详】()由绝对值三角不等式可知即;()当由得该不等式集空集;当由得得;当由得得综上所述不等式集【睛】题考绝对值不等式证明、绝对值不等式法考利用绝对值三角不等式证明不等式利用零分段法绝对值不等式考分类讨论思想属等题以下容“高数学该怎么有效学习?” 、先把教材上知识、理论看明白买参考做些练习如没问题了就可以做些对应节试卷做练习要对答案把己错题记下平学习也是看到有比较题方法或者己做错题目做标记或者记错题上考前那出复习复习、首先从课概念开始要能举出例子说明概念要能举出反例要能用己话释概念(理概念)然由概念开始进行独立推理活动要能把课公式、定理己推导遍(搞清龙脉)课例题要己先试做尽量己能做出(依靠己才是可靠力量)主动挑战问题(兴趣是老师)要常攻关些问题(白天攻晚上钻梦还惦着它)先看笔记做作业有高学生感到老师讲己已听得明明白白了但是什么己做题就困难重重了呢?其原因学生对教师所讲容理还没能达到教师所要层次因每天做作业前定要把课有关容和当天课堂笔记先看看能否坚持如常常是学生与差学生区别尤其练习题不太配套作业往往没有老师刚刚讲题目类型因不能对比消化如己又不对落实天长日久就会造成极损失做题加强反思学生定要明确现正坐着题定不是考试题目而是要运用现正做着题目题思路与方法因要把己做每道题加以反思总结下己收获要总结出这是道什么容题用是什么方法做到知识成片问题成串日久天长构建起容与方法科学络系统主动复习总结提高进行节总结是非常重要初是教师替学生做总结做得细致深刻完整高是己给己做总结老师不但不给做而且是讲到哪考到哪不留复习也没有明确指出做总结积累随整理要积累复习把课堂笔记练习单元测试各种试卷都分门别类按顺序整理每次就上面标记出己下次重容这样复习才能越越精目了然精挑慎选课外物初学生学数学如不看课外物般地说不会有什么影响高则不相高数学考是学生新题能力作名高生如只是围着己老师不论老师水平有多高必然都会存着很局限性因要想学数学必须打开扇门看看外面世界当然也不要立门户另起炉灶旦脱离校教学和己老师教学体系也必将事半功倍配合老师主动学习高学生学习主动性要强学生常常是完成作业就尽情欢乐初生基也是如听话孩子就能学习高则不然作业虽多但是只知道做作业就绝对不够;老师话也不少但是谁该干些什么了老师并不具体指明因高学生必须提高己学习主动性准备向将学生学习方法渡合理规划步步营高学习是非常紧张每学生都要投入己几乎全部精力要想能迅速进步就要给己制定较长远切实可行学习目标和计划详细安排己零星事项我们学习高数学候除了上课认真听老师讲外学习方法学习习惯也很重要只要学生认真努力数学成绩提高是很容易数学学习程千万不要有心理包袱和顾虑任何学科也是样是慢慢学习和积累程但要记住这程我们是否能真正学初三数学课程(或者其他课程)除了以上方法我们终目是要养成良学习习惯要培养出己优质学习兴趣要掌握和形成套己学习方法。
【精编版】2020年高考数学(理)必刷试卷3(解析版)
2020年高考必刷卷(新课标卷)03数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U R =,A {x |x 1}=<,B {x |x 2}=≥,则集合()U A B ⋃ð等于( ) A .{}x x 1 B .{x |x 2}≤ C .{x |1x 2}<≤ D .{x |1x 2}≤<【答案】D 【解析】 【分析】求出A 与B 的并集,根据全集U =R ,求出并集的补集即可. 【详解】Q 全集U R =,A {x |x 1}=<,B {x |x 2}=≥,A B {x |x 1∴⋃=<或x 2}≥,则()U A B {x |1x 2}⋃=≤<ð,故选:D . 【点睛】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.若复数11z i =+,21z i =-,则下列结论错误的是( ) A .12z z ⋅是实数 B .12z z 是纯虚数C .24122z z =D .22124z z i +=【答案】D 【解析】分析:根据题中所给的条件,将两个复数进行相应的运算,对选项中的结果一一对照,从而选出满足条件的项.详解:212(1)(1)12z z i i i ⋅=+-=-=,是实数,故A 正确,21211212z i i i i z i +++===-,是纯虚数,故B 正确, 442221(1)[(1)](2)4z i i i =+=+==,22222(1)224z i i =-=-=,故C 正确,222212(1)(1)220z z i i i i +=++-=-=,所以D 项不正确,故选D.点睛:该题考查的是复数的有关概念和运算,在做题的时候,需要对选项中的问题一一检验,从而找到正确的结果.3.已知55log log n m >,则下列结论中不正确的是( )A .m >n >1B .n >1>m >0C .1>n >m >0D .1>m >n >0【答案】C 【解析】 【分析】先化简原不等式为11lg lg n m>,再对,m n 分四种情况讨论即得解. 【详解】 由题得lg5lg5lg lg n m>, 所以11lg lg n m>, 当1,1m n >>时,lg lg ,m n >所以,1m n m n >∴>>,所以选项A 正确; 当01,01m n <<<<时,lg lg ,m n > 所以10m n >>>,所以选项D 正确;当1,01n m ><<时,不等式55log log n m >显然成立,所以选项B 正确; 当01,1n m <<>时,不等式55log log n m >显然不成立.所以选项C 不正确.故选:C 【点睛】本题主要考查对数的运算和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平. 4.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )A .6.25%B .7.5%C .10.25%D .31.25%【答案】A 【解析】 【分析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比. 【详解】水费开支占总开支的百分比为25020% 6.25%250450100⨯=++.故选:A 【点睛】本题考查折线图与柱形图,属于基础题.5.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1−x),若f(1)=1,则f(1)+f(2)+f(3)+...+f(2019)=()A.1B.0C.1D.2019【答案】B【解析】【分析】根据题意,由函数满足f(1﹣x)=f(x+1),分析可得f(﹣x)=f(x+2),结合函数为奇函数可得f(x)=f(x+2),则函数f(x)为周期为4的周期函数,又由f(1)、f(-1)与f(2)及f(0)的值分析可得f(1)=f(5)=……=f(2017)=1,f(3)=f(7)=……= f(2019)=-1,f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,将其相加即可得答案.【详解】根据题意,函数f(x)满足f(1﹣x)=f(x+1),则函数f(x)的图象关于直线x=1对称,则有f (﹣x)=f(x+2),又由函数f(x)为奇函数,则f(﹣x)=-f(x),则有f(x)=-f(x+2),则f(x+2)=- f(x+4),可得f(x)= f(x+4)则函数f(x)为周期为4的周期函数,又由f(1)=1,则f(1)=f(5)=……=f(2017)=1,f(-1)=- f(1)=-1,则f(3)=f(7)=……= f(2019)=-1,又f(-2)=f(2)=-f(2),则f(2)=0,且f(0)=0,所以f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,则f(1)+f(2)+f(3)+…+f(2019)=505-505+0=0;故选:B.【点睛】本题考查函数的奇偶性以及函数周期性的应用,注意分析与利用函数的周期,属于基础题.6.若实数x,y满足2x+2y=1,则x+y的最大值是()A.-4B.-2C.2D.4【答案】B【解析】【分析】利用基本不等式求x+y 的最大值得解. 【详解】由题得2x +2y ≥2√2x ⋅2y =2√2x+y ,(当且仅当x=y=-1时取等) 所以1≥2√2x+y ,∴14≥2x+y ,∴2−2≥2x+y , 所以x+y≤-2.所以x+y 的最大值为-2. 故选:B 【点睛】本题主要考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力. 7.等差数列{}n a 中2912142078a a a a a a ++-+-=,则9314a a -=( ) A .8 B .6C .4D .3【答案】D 【解析】 【分析】设等差数列的公差为d ,根据题意,求解1104a d +=,进而可求得93113(10)44a a a d -=+,即可得到答案. 【详解】由题意,设等差数列的公差为d ,则291214207112202(10)8a a a a a a a d a d ++-+-=+=+=,即1104a d +=, 又由931111138(2)(10)3444a a a d a d a d -=+-+=+=,故选D. 【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为d ,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.已知函数()()002f x Asin x A πωφωφ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则下列判断正确的是( )A .函数的图象关于点,03π⎛⎫-⎪⎝⎭对称 B .函数的图象关于直线6x π=-对称C .函数()2f x 的最小正周期为πD .当766x ππ≤≤时,函数()f x 的图象与直线2y =围成的封闭图形面积为2π 【答案】D 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得f (x )的解析式,再根据余弦函数的图象和性质,判断各个选项是否正确,从而得出结论. 【详解】解:函数()()002f x Asin x A πωφωφ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象,可得A =2,14•25126πππω=-,∴ω=2.再根据五点法作图可得2•6π+φ2π=,∴φ6π=,f (x )=2sin (2x 6π+). 令x 3π=-,求得f (x )=﹣2,为函数的最小值,故A 错误; 令x 6π=-,求得f (x )=﹣1,不是函数的最值,故B 错误;函数f (2x )=2sin (4x 6π+)的最小正周期为242ππ=,故C 错误; 当766x ππ≤≤时,2π≤2x 562ππ+≤,函数f (x )的图象与直线y =2围成的封闭图形为x 6π=、x 76π=、y =2、y =﹣2构成的矩形的面积的一半,矩形的面积为π•(2+2)=4π,故函数f (x )的图象与直线y =2围成的封闭图形面积为2π, 故D 正确, 故选:D . 【点睛】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,余弦函数的图象和性质,属于中档题.9.ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,S 表示三角形ABC ∆的面积,且满足2223()4S a c b =+-,则B ∠=( ) A .6π B .3π C .3π或23π D .23π【答案】B 【解析】在△ABC 中,∵S=()22234a cb +-=12acsinB ,cosB=2222a c b ac +-.代入原式子得到312cos *sin 42ac B ac B =,tanB=3,∵B ∈(0,π), ∴B=3π. 故答案为B .10.如图中共顶点的椭圆①②与双曲线③④的离心率分别为e 1,e 2,e 3,e 4,其大小关系为( )A .e 1<e 2<e 3<e 4B .e 2<e 1<e 3<e 4C .e 1<e 2<e 4<e 3D .e 2<e 1<e 4<e 3 【答案】C 【解析】试题分析:先根据椭圆越扁离心率越大判断a 1、a 2的大小,再由双曲线开口越大离心率越大判断a 3、a 4的大小,最后根据椭圆离心率大于0小于1并且抛物线离心率大于1可得到最后答案.解:根据椭圆越扁离心率越大可得到0<a 1<a 2<1 根据双曲线开口越大离心率越大得到1<a 3<a 4 ∴可得到a 1<a 2<a 3<a 4故选A . 考点:圆锥曲线的共同特征.11.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P ABC -中,PA ⊥平面ABC ,4PA =,2AB BC ==,鳌臑P ABC -的四个顶点都在同一个球上,则该球的表面积是( ) A .16π B .20π C .24π D .64π【答案】C 【解析】 【分析】四个面都是直角三角形,由AB BC =得AB BC ⊥,然后证明BC PB ⊥,这样PC 中点O ,就是P ABC -外接球球心,易求得其半径,得面积.【详解】四棱锥P ABC -的四个面都是直角三角形,∵2AB BC ==,∴AB BC ⊥,又PA ⊥平面ABC ,∴AB 是PB 在平面ABC 上的射影,PA CA ⊥,∴BC PB ⊥,取PC 中点O ,则O 是P ABC -外接球球心.由2AB BC ==得22AC =,又4PA =,则81626PC =+=,6OP =,所以球表面积为224()4(6)24S OP πππ==⨯=. 故选:C . 【点睛】本题考查求球的表面积,解题关键是寻找外接球的球心:三棱锥的外接球的球心一定在过各面外心且与此面垂直的直线上.12.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x >时, ()()'0xf x f x -<,若()()()ln23,,ln23f e f f a b c e-===-,则,,a b c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<【答案】D 【解析】 【分析】 构造函数g (x )()f x x=,由g ′(x )()()2'xf x f x x-=,可得函数g (x )单调递减,再根据函数的奇偶性得到g (x )为偶函数,即可判断. 【详解】 构造函数g (x )()f x x=,∴g ′(x )()()2'xf x f x x-=,∵xf ′(x )﹣f (x )<0, ∴g ′(x )<0,∴函数g (x )在(0,+∞)单调递减. ∵函数f (x )为奇函数, ∴g (x )()f x x=是偶函数,∴c ()33f -==-g (﹣3)=g (3), ∵a ()f e e==g (e ),b ()22f ln ln ==g (ln 2), ∴g (3)<g (e )<g (ln 2), ∴c <a <b , 故选D .【点睛】本题考查了构造函数并利用导数研究函数的单调性,进行比较大小,考查了推理能力,属于中档题.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
2020高考数学(理)必刷试题+参考答案+评分标准 (47)
2020高考数学模拟试题(理科)第Ⅰ卷(选择题部分,共60分)一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设m =(﹣2,2,t ),n =(6,﹣4,5)分别是平面α,β的法向量.若α⊥β,则实数t 的值是( ) A .6B .5C .4D .32.若两个向量)1,2,3(),3,2,1(==AC AB ,则平面ABC 的一个法向量为( ) A .(﹣1,2,﹣1) B .(﹣1,2,1)C .(1,2,﹣1)D .(1,2,1)3.如图是甲、乙、丙、丁四组人数的扇形统计图的部分结果,根据扇形统计图可以知道丙、丁两组人数之和为( )A.150B.250C. 300D. 4004.盒子中有若干个红球和黄球,已知从盒中取出2个球都是红球的概率为328,从盒中取出2个球都是黄球的概率是514,则从盒中任意取出2个球恰好是同一颜色的概率是( )A. 1328B. 57C. 1528D. 375.若向量))(3,0,(R x x a ∈=,则“x =4”5=a 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.把12人平均分成两组,再从每组里任意指定正、副组长各一人,其中甲被指定为正组长的概率是( )A .112B .16C .14D .137.下列命题中正确的是( )A .对于任意两个事件A 和B ,都有P (A +B )= P (A )+ P (B ) B .若随机事件A 发生的概率为P (A ),则0≤ P (A ) ≤1C .命题“若平面向量b a ,共线,则b a ,方向相同”的逆否命题为真命题D .命题“若a +b ≥4,则a 、b 中至少有一个大于2”的逆命题是真命题.8.设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是( ) A .若a ∥b ,a ∥α,则b ∥α B .若α⊥β,a ∥α,则a ⊥β C .若α⊥β,a ⊥β,则a ∥α D .若a ⊥b ,a ⊥α,b ⊥β,则α⊥β9.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,则它飞入几何体F AMCD -内的概率为( )A.34 B. 23 C. 12D. 1310.如图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果, 则图中空白框内应填入( )A .1000MP = B .10004MP =C .1000NP =D .10004NP =11.已知A 、B 、C 、D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD =2AB =2,则该球的表面积为( ) A .348π B .332π C .324π D .316π12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点M ,N 分别是棱A 1D 1,CD 的中点,若P 在平面ABCD 内,点Q 在线段BN 上,若5=PM ,则PQ 长度的最小值为( )A .12- B.2 C .5553- D .553第Ⅱ卷(非选择题部分,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量n m ,分别是直线l 和平面α的方向向量和法向量,若cos 〈n m ,〉=-12,则l与α所成的角为 .14. 已知5个正整数,它们的平均数是4,众数是3,5,则这5个数的方差为 . 15.如图,在棱长为1的正四面体PABC 中,点A 在侧面PBC 内的投影为O ,则O 到底面ABC 的距离为_________.16.如图,四边形ABCD 和ADPQ 均为正方形,他们所在的平面互相垂直, 动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点,设异面直线EM 与AF 所成的角为θ,则cosθ的最大值为 .三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)设命题p :实数x 满足(x ﹣a )(x ﹣2a )<0,其中a >0; 命题q :实数x 满足(2x ﹣16)(2x ﹣2)≤0.(1)若a =1,p ,q 都是真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.18. (本小题满分12分)题图第15题图第16一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a、b、c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a、b、c不完全相同”的概率.19.(本小题满分12分)某班20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示:(1)求频率分布直方图中实数a的值;(2)估计20名学生成绩的平均数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩不都在[60,70)中的概率.20.(本小题满分12分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC=AD,点E是PC的中点.(1)求证:P A∥平面BDE;(2)求直线BD与平面PBC所成角的大小.21. (本小题满分12分)2015年12月,华中地区多个城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与 2.5PM 的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与 2.5PM 的数据如表:(1)由散点图知y 与x 具有线性相关关系,求y 关于x 的线性回归方程;(提示数据:711372i ii x y==∑)(2)(I )利用(1)所求的回归方程,预测该市车流量为12万辆时 2.5PM 的浓度; (II )规定:当一天内 2.5PM 的浓度平均值在(]0,50内,空气质量等级为优;当一天内2.5PM 的浓度平均值在(]50,100内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是ˆˆˆybx a =+,其中()()()1122211ˆ•n ni iiii i nniii i x y nx y x x y y b xnx x x ====---==--∑∑∑∑,ˆˆay bx =-.22. (本小题满分12分)已知正方体1111ABCD A B C D -中,点P 是四边形11BB D D 内(含边界)任意一点,Q 是11B C 中点.(1)求证:AC ⊥BP ;(2)当CQ ⊥AP 且AP 与平面ABCD 所成角的正弦值为73时, 求二面角P -AD -C 的余弦值.答案1-12:C A B A A B B D C B D C13.30° 14.5415.96 16.52 12解:如图,取AD 中点O ,则MO ⊥面ABCD ,即MO ⊥OP , ∵PM =,∴OP ==1,∴点P 在以O 为圆心,1以半径的位于平面ABCD 内的半圆上.可得O 到BN 的距离减去半径即为PQ 长度的最小值,作OH ⊥BN 于H ,△BON 的面积为:S △BON =2×2﹣=, ∴==,解得OH =,∴PQ 长度的最小值为:OH ﹣OP ==.故选:C .17.解:(1)当a =1时,(x ﹣1)(x ﹣2)<0解得1<x <2,………………1分 (2x ﹣16)(2x ﹣2)≤0解得2≤2x ≤16,即1≤x ≤4,………………2分 所以当p ,q 都是真命题时,解得1<x <2,………………4分 故实数x 的取值范围为(1,2);………………5分(2)命题p :a <x <2a ,因为p 是q 的充分不必要条件,所以(a ,2a )⫋[1,4],………………7分,解得1≤a ≤2,………………9分故实数a 的取值范围为[1,2].………………10分18.【解答】解:(Ⅰ)所有的可能结果(a ,b ,c )共有27种,而满足a +b =c 的(a ,b ,c )有(1,1,2)、(1,2,3)、(2,1,3),共计3个, 故“抽取的卡片上的数字满足a +b =c ”的概率为=.………………6分(Ⅱ)满足“抽取的卡片上的数字a ,b ,c 完全相同”的(a ,b ,c )有: (1,1,1)、(2,2,2)、(3,3,3),共计三个,故“抽取的卡片上的数字a,b,c完全相同”的概率为=,∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.………………12分19.解:(1)由(0.2a+0.3a+0.7a+0.6a+0.2a)×10=1,解得a=;………………2分(2)20名学生的平均成绩估计为:(0.2×55+0.3×65+0.7×75+0.6×85+0.2×95)×10×=76.5分;………………………………………………………………………………………………………………6分(3)成绩在[50,70]内的学生共有(0.2+0.3)×10××20=5人,设为a、b、C、D、E,其中成绩在[60,70]内的有3人,即C、D、E,………………………………8分从这5人中任选2人,共有(a,b)、(a,C)、(a,D)、(a,E)、(b,C)、(b,D)、(b,E)、(C,D)、(C,E)、(D,E)10种,其中都在[60,70]内的有3种,不都在[60,70]内的有10﹣3=7种,……………………10分根据古典概型概率公式得:………………………………12分20.解:(1)证明:连结AC,BD,交于点O,连结OE,∵底面ABCD是矩形,∴O是AC的中点,∵点E是PC的中点,∴OE∥P A,……………………………2分∵OE⊂平面BDE,P A⊄平面BDE,∴P A∥平面BDE.……………………………4分(2)解:∵在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,∴以D为原点,DA,DC,DP所在直线分别为x,y,z轴,建立空间直角坐标系,设PD=DC=AD=2,则B(2,2,0),D(0,0,0),P(0,0,2),C(0,2,0),=(﹣2,﹣2,0),=(2,2,﹣2),=(0,2,﹣2), (7)分设平面PBC的法向量=(x,y,z),由0{0n PB n PC ⋅=⋅=u u ur r u u u rr 有2220{220x y z y z +-=-=取()0,1,1n =r ……………………………9分 设直线BD 与平面PBC 所成角为θ,∴·1sin cos ,2BD n BD n BD nθ=〈〉===⋅u u u r r u u u r r u u u r r ,……………………………11分 所以直线BD 与平面PBC 所成角为30° ……………………………12分 21.解(1)由数据可得: ()1123456747x =++++++=……………………………1分 ()128303541495662437y =++++++= ……………………………2分 772111372,140i ii i i x yx ====∑∑,1221137212041ˆ614012ni i i n i i x y nx y b x nx==-⋅-===--∑∑……………………………4分 4ˆˆ34619ay bx =-=-⨯=,(注:用另一个公式求运算量小些)……………………………5分故y 关于的线性回归方程为ˆ619yx =+. ……………………………6分 (2)(ⅰ)当车流量为12万辆时,即12x =时,612199ˆ1y=⨯+=.……………………………8分 故车流量为12万辆时, 2.5PM 的浓度为91微克/立方米.……………………………9分 (ⅱ)根据题意信息得: 619100x +≤,即13.5x ≤, …………………………11分故要使该市某日空气质量为优或为良,则应控制当天车流量在13万辆以内.…………………12分22. (1)证明:在正方体中,AC ⊥BD ,DD 1⊥平面ABCD ,则DD 1⊥AC 又BD ∩DD 1=D ,则AC ⊥平面11BB D DBP ⫋11BB D D∴AC ⊥BP ……………………………4分(2)如图以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系 设AB=2,则A(2,0,0),C(0,2,0),Q (1,2,2)()2,0,1=设P (x,y,z ),显然x 、y 、z>0则()z y x ,,2-=∵CQ ⊥AP ∴022=+-z x ∴x=2z-2………………5分易知,平面ABCD 的法向量为()0,0,1n =r………………6分 222·3cos ,7(2)z n AP n AP n x y z AP 〈〉===-++⋅u u u r r u u u r r u u u r r化简得z y 32=,故⎪⎭⎫ ⎝⎛=z z z AP ,32,2………………8分 设平面PAD 的法向量为(),,m a b c =u r由0{0m AP m DA ⋅=⋅=u u u r u r u u u r u r 有220{320za zb zc x ++==取()0,3,2m =-u r ………………10分 ·13cos ,213n m n nm m 〈〉===⋅u r r u r r u r r 11分∵二面角P-AD-C为锐二面角,∴二面角P-AD-C.………………12分。
2020高考数学(理)必刷试题+参考答案+评分标准 (86)
2020高考数学模拟试题(理科)满分150分,考试时间120分钟一、选择题:(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P={x|x2≤1},M={a},若P∪M=P,则a的取值范围是( ) A. (-∞,-1] B. [1,+∞) C. [-1,1] D. (-∞,-1]∪[1,+∞)2.下列命题错误的是( )A.命题“若xy=0,则x,y中至少有一个为零”的否定是:“若xy≠0,则x,y都不为零”。
B.对于命题p:∃x 0∈R,使得+x0+1<0,则p:∀x∈R,均有x2+x+1≥0。
C.命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为“若方程x2+x -m=0无实根,则m≤0”。
D.“x=1”是“x2-3x+2=0”的充分不必要条件。
3.平面向量a与b的夹角为60°,a=(2,0),|b|=1,则|a+2b|等于( ) A. 2 B. 2 C. 12 D.4.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f的值是( )A.- B. C.1 D.5.已知m,n是两条不同直线,α,β是两个不同平面.以下命题中正确命题的个数是()①m,n相交且都在平面α,β外,m∥α, m∥β , n∥α, n∥β ,则α∥β;②若m∥α, m∥β , 则α∥β;③若m∥α, n∥β , m∥n, 则α∥β.A.0 B.1 C.2 D.36.函数cosxxye的图像大致是()A .B .C .D .7.已知椭圆22221(0)x y a b a b +=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,1223F F =,则椭圆方程为( )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=8.在各棱长均相等的直三棱柱111ABC A B C -中,已知M 是棱1BB 的中点,N 是棱AC 的中点,则异面直线1A M 与NB 所成角的正切值为( ) A .3 B .1 C .6D .2 9.已知奇函数在R 上是增函数,.若,,,则a ,b ,c 的大小关系为( ) A.B.C .D.10.设函数f (x )=cos(2x +ϕ)+sin(2x +ϕ),且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在上为增函数B .y =f (x )的最小正周期为π,且在上为减函数C .y =f (x )的最小正周期为,且在上为增函数D .y =f (x )的最小正周期为,且在上为减函数11.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别|为1F 、2F ,点P 在C 上,且123PF PF b +=,1294PF PF ab ⋅=,则双曲线的离心率为( ) A .103B .10C .43 D .5312.定义在R 上的偶函数()f x 满足(2)()f x f x -=,且当[]1,2x ∈时,2()41814f x x x =-+-,若函数()()g x f x mx =-有三个零点,则正实数m 的取值范围为( )A .3,184142⎛⎫- ⎪⎝⎭B .()2,18414- C .()2,3 D .3,32⎛⎫ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分) 13.计算=________.14.已知命题p :2,20x R x x m ∃∈++≤,命题q :幂函数113()m f x x+-=在()0,∞+是减函数,若“p q ∨”为真命题,“p q ∧”为假命题,则实数m 的取值范围是_________.15.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为_________.16.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为_______.三、解答题:(共70分。
2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析
2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}解析:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.答案:C2.(1+i)(2﹣i)=( )A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i解析:(1+i)(2﹣i)=3+i.答案:D3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.B.C.D.解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.答案:A4.若sinα=13,则cos2α=( ) A.89 B.79C.﹣79D.﹣89解析:∵sinα=13,∴cos2α=1﹣2sin 2α=192719-⨯=. 答案:B5.(x 2+2x )5的展开式中x 4的系数为( )A.10B.20C.40D.80解析:由二项式定理得(x 2+2x )5的展开式的通项为:()()5210315522rrr rr rr xT Cx C x--+==,由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为5222C =40.答案:C6.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]232,D.[2232,] 解析:∵直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),4+4=22∵点P 在圆(x ﹣2)2+y 2=2上,∴设P ()2co 2s sin 2θθ+,,∴点P 到直线x+y+2=0的距离:()2sin 42cos sin 242222d πθθθ+++++==,∵()sin 4πθ+∈[﹣1,1],∴d= ()22sin 44πθ++∈[232,], ∴△ABP 面积的取值范围是:[11222223222⨯⨯⨯⨯,,6].答案:A7.函数y=﹣x 4+x 2+2的图象大致为( )A.B.C.D.解析:函数过定点(0,2),排除A ,B.函数的导数f′(x)=﹣4x 3+2x=﹣2x(2x 2﹣1),由f′(x)>0得2x(2x 2﹣1)<0,得x <﹣或0<x <,此时函数单调递增,排除C.答案:D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 解析:某群体中的每位成员使用移动支付的概率都为p ,看做是独立重复事件,满足X ~B(10,p),P(x=4)<P(X=6),可得()()644466101011C p p C p p --<,可得1﹣2p <0.即12p >. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 答案:B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为2224a b c +-,则C=( )A.2πB.3πC.4πD.6π解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.△ABC 的面积为2224a b c +-,∴S △ABC =222s 1in 42a b c ab C +-=,∴sinC=2222a b c bc +-=cosC ,∵0<C <π,∴C=4π.答案:C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为则三棱锥D ﹣ABC 体积的最大值为( )A.B.C.D.543解析:△ABC 为等边三角形且面积为93,可得2393AB ⨯=,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:()222362342323O C OO '=='=-=,,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:31361833=答案:B11.设F 1,F 2是双曲线C :22221y x a b -=(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=6|OP|,则C 的离心率为( )A.5B.2C.3D.2解析:双曲线C :22221y x a b -=(a >0.b >0)的一条渐近线方程为b y x a =, ∴点F 2到渐近线的距离22bcd b a b ==+,即|PF 2|=b ,∴2222222cos bOP OF PF c b a PF O c =-=-=∠=,, ∵|PF 16|OP|,∴|PF 16a ,在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|·|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×bc =4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2),即3a 2=c 2, 即3a=c ,∴3c e a ==.答案:C12.设a=log 0.20.3,b=log 20.3,则( ) A.a+b <ab <0 B.ab <a+b <0 C.a+b <0<ab D.ab <0<a+b解析:∵a=log 0.20.3=lg 0.3lg 5-,b=log 20.3=lg 0.3lg 2,∴()5lg 0.3lg lg 0.3lg 5lg 2lg 0.3lg 0.32lg 2lg 5lg 2lg 5lg 2lg 5a b -+-===,10lg 0.3lg lg 0.3lg 0.33lg 2lg 5lg 2lg 5ab ⋅-⋅==,∵105lg lg 32>,lg 0.3lg 2lg 5<,∴ab <a+b <0.答案:B二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,﹣2),c =(1,λ).若c ∥(2a b +),则λ=____. 解析:∵向量a =(1,2),b =(2,﹣2), ∴2a b +=(4,2),∵c =(1,λ),c ∥(2a b +),∴142λ=, 解得λ=12.答案: 1214.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=____.解析:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 答案:﹣315.函数f(x)=cos(3x+6π)在[0,π]的零点个数为____.解析:∵f(x)=cos(3x+6π)=0, ∴362x k πππ+=+,k ∈Z ,∴x=193k ππ+,k ∈Z ,当k=0时,x=9π,当k=1时,x=49π,当k=2时,x=79π,当k=3时,x=109π,∵x ∈[0,π],∴x=9π,或x=49π,或x=79π,故零点的个数为3. 答案:316.已知点M(﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k=____.解析:∵抛物线C :y 2=4x 的焦点F(1,0), ∴过A ,B 两点的直线方程为y=k(x ﹣1),联立()241y x y k x ⎪-⎧⎪⎨⎩==可得,k 2x 2﹣2(2+k 2)x+k 2=0, 设A(x 1,y 1),B(x 2,y 2),则212242k x x k ++=,x 1x 2=1, ∴y 1+y 2=k(x 1+x 2﹣2)=4k ,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵M(﹣1,1),∴MA =(x 1+1,y 1﹣1),MB =(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴0MA MB ⋅= ∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0,∴24124420k k ++--+=,即k 2﹣4k+4=0,∴k=2. 答案:2三、解答题:共70分。
2020高考数学(理)必刷试题+参考答案+评分标准 (63)
2020高考数学模拟试题(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合,则A∩B=()A.{x|﹣3≤x≤1}B.{x|0≤x≤1}C.{x|﹣3≤x<1}D.{x|﹣1≤x≤0} 2.设复数z=,则|z|=()A.B.C.D.3.在等差数列{a n}中,若a3=5,S4=24,则a9=()A.﹣5B.﹣7C.﹣9D.﹣114.已知幂函数f(x)=xα的图象经过点(3,5),且a=()α,b=,c=logα,则a,b,c的大小关系为()A.c<a<b B.a<c<b C.a<b<c D.c<b<a5.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000 户低收入家庭B.在该市从业人员中,低收入家庭共有1800 户C.在该市无业人员中,低收入家庭有4350 户D.在该市大于18 岁在读学生中,低收入家庭有800 户6.平面内不共线的三点O,A,B,满足||=1,||=2,点C为线段AB的中点,若||=,则∠AOB=()A.B.C.D.7.(1+2x﹣)8的展开式中x2y2项的系数是()A.420B.﹣420C.1680D.﹣16808.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍薨.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为()A.B.C.27D.189.函数f(x)=6|sin x|﹣的图象大致为()A.B.C.D.10.太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗……,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为A={(x,y)},设点(x,y)∈A,则z=x+2y的取值范围是()A.[﹣2﹣,2]B.[﹣2,2]C.[﹣2,2+]D.[﹣4,2+] 11.关于函数f(x)=|cos x|+cos|2x|有下列四个结论:①f(x)是偶函数;②π是f(x)的最小正周期;③f(x)在[π,π]上单调递增;④f(x)的值域为[﹣2,2].上述结论中,正确的个数为()A.1B.2C.3D.412.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推,若该数列前n项和N 满足:①N>80②N是2的整数次幂,则满足条件的最小的n为()A.21B.91C.95D.101二、填空题(本大题共4小题,每小题5分,共20分.)13.椭圆=1的离心率是.14.设某总体是由编号为01,02,……,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为.1818 0792 4544 1716 5809 7983 8617第1行6206 7650 0310 5523 6405 0526 6238第2行15.已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,若|FM|:|MN|=1:2,则实数a的值为.16.已知四棱锥S﹣ABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点E.若SA=AB=3,则△SED面积的最小值为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每道试题考试必须作答,第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.在△ABC中,内角A,B,C的对边分别是a,b,c,且(a﹣b)2=c2﹣ab.(1)求角C;(2)若4c cos(A+)+b sin C=0,且a=1,求△ABC的面积.18.如图,在三棱锥P﹣ABC中,AC=BC,AB=2BC,D为线段AB上一点,且AD=3DB,PD⊥平面ABC,PA与平面ABC所成的角为45°.(1)求证:平面PAB⊥平面PCD;(2)求二面角P﹣AC﹣D的平面角的余弦值.19.已知椭圆C:+y2=1,不与坐标轴垂直的直线l与椭圆C相交于M,N两点.(1)若线段MN的中点坐标为(1,),求直线l的方程;(2)若直线l过点P(p,0),点Q(q,0)满足k QM+k QN=0,求pq的值.20.某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为x A x B x C x D,家长猜测的序号依次为y A y B y C y D,其中x A x B x C x D和y A y B y C y D都是1,2,3,4四个数字的一种排列.定义随机变量X=(x A﹣y A)2+(x B﹣y B)2+(x C﹣y C)2+(x D﹣y D)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.21.已知函数f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).(1)讨论f(x)的单调性;(2)若f(x)≤0恒成立,求e a(b﹣1)的最大值.四、(二)选考题:请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.[选修4-5:不等式选讲]23.已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合,则A∩B=()A.{x|﹣3≤x≤1}B.{x|0≤x≤1}C.{x|﹣3≤x<1}D.{x|﹣1≤x≤0}【解答】解:解一元二次不等式x2+2x﹣3≤0得:﹣3≤x≤1,即A={x|﹣3≤x≤1},解根式不等式<2得:0≤x<4,即B={x|0≤x<4},即A∩B=,故选:B.2.设复数z=,则|z|=()A.B.C.D.【解答】解:z====﹣﹣i,则|z|====,故选:D.3.在等差数列{a n}中,若a3=5,S4=24,则a9=()A.﹣5B.﹣7C.﹣9D.﹣11【解答】解:数列{a n}为等差数列,设首项为a1,公差为d,∵a3=5,S4=24,∴a1+2d=5,4a1+d=24,联立解得a1=9,d=﹣2,则a9=9﹣2×8=﹣7.故选:B.4.已知幂函数f(x)=xα的图象经过点(3,5),且a=()α,b=,c=logα,则a,b,c的大小关系为()A.c<a<b B.a<c<b C.a<b<c D.c<b<a【解答】解:∵幂函数f(x)=xα的图象经过点(3,5),∴3α=5,∴α=log35∈(1,2),∴0<a=()α<1,b=>1,c=logα<logα1=0,∴c<a<b.故选:A.5.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000 户低收入家庭B.在该市从业人员中,低收入家庭共有1800 户C.在该市无业人员中,低收入家庭有4350 户D.在该市大于18 岁在读学生中,低收入家庭有800 户【解答】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确;该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确;该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确;该市大于18 岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.6.平面内不共线的三点O,A,B,满足||=1,||=2,点C为线段AB的中点,若||=,则∠AOB=()A.B.C.D.【解答】解:延长OC到E,使得CE=OC=,连AE,BE,则四边形OAEB为平行四边形,∴BE=1,∴cos∠OBE==,∴∠OBE=,∴∠AOB=π﹣∠OBE=π﹣=.故选:C.7.(1+2x﹣)8的展开式中x2y2项的系数是()A.420B.﹣420C.1680D.﹣1680【解答】解:(1+2x﹣)8的展表示8个因式(1+2x﹣)的乘积,故其中有2个因式取2x,有2个因式取﹣,其余的4个因式都取1,可得含x2y2的项.故展开式中x2y2项的系数是•22•••=420,故选:A.8.我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍薨.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为()A.B.C.27D.18【解答】解:原图为正四棱台,两底的长分别为2和6,高为2,该刍薨的体积为,故选:B.9.函数f(x)=6|sin x|﹣的图象大致为()A.B.C.D.【解答】解:f(﹣x)=f(x),则f(x)为偶函数,图象关于y轴对称,排除C,f(π)=1﹣<0,排除B,f()=6﹣≈6﹣>4,排除D,故选:A.10.太极图被称为“中华第一图”.从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗……,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为A={(x,y)},设点(x,y)∈A,则z=x+2y的取值范围是()A.[﹣2﹣,2]B.[﹣2,2]C.[﹣2,2+]D.[﹣4,2+]【解答】解:如图,作直线x+2y=0,当直线上移与圆x2+(y﹣1)2=1相切时,z=x+2y 取最大值,此时,圆心(0,1)到直线z=x+2y的距离等于1,即,解得z的最大值为:2+,当下移与圆x2+y2=4相切时,x+2y取最小值,同理,即z的最小值为:﹣2,所以z∈.故选:C.11.关于函数f(x)=|cos x|+cos|2x|有下列四个结论:①f(x)是偶函数;②π是f(x)的最小正周期;③f(x)在[π,π]上单调递增;④f(x)的值域为[﹣2,2].上述结论中,正确的个数为()A.1B.2C.3D.4【解答】解:f(x)=|cos x|+cos|2x|=|cos x|+2cos2|x|﹣1,由cos|x|=cos x,可得f(x)=|cos x|+2cos2x﹣1=2|cos x|2+|cos x|﹣1,由f(﹣x)=2|cos(﹣x)|2+|cos(﹣x)|﹣1=f(x),则f(x)为偶函数,故①正确;可令t=|cos x|,可得g(t)=2t2+t﹣1,由y=|cos x|的最小正周期π,可得f(x)的最小正周期为π,故②正确;由y=cos x在[﹣,0]递增,在[0,]递减,可得f(x)在[,π]递增,在[π,]递减,故③错误;由t∈[0,1],g(t)=2(t+)2﹣,可得g(t)在[0,1]递增,则g(t)的值域为[﹣1,2],故④错误.故选:B.12.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推,若该数列前n项和N 满足:①N>80②N是2的整数次幂,则满足条件的最小的n为()A.21B.91C.95D.101【解答】解:依题意,因为N满足条件①N>80②N是2的整数次幂,所以S n=N=2k,(k∈N*,且k≥7)如图:第m行各项的和为2m﹣1,前m行之和=(21﹣1)+(22﹣1)+……+(2m﹣1)=(2+22+23+……+2m)﹣m=2m+1﹣m﹣2,设满足条件的n在第m+1行,则前m行之和为2m+1﹣m﹣2≤2m+1,故N=2m+1,则m+2=1+2+4+……+2s,则满足条件的m的最小值为13,且N为第14行的第4项.所以n=+4=95.故选:C.二、填空题(本大题共4小题,每小题5分,共20分.)13.椭圆=1的离心率是.【解答】解:由椭圆的标准方程可知,a=2,b=,∴c==1∴e==.故答案为:.14.设某总体是由编号为01,02,……,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为06.1818 0792 4544 1716 5809 7983 8617第1行6206 7650 0310 5523 6405 0526 6238第2行【解答】解:由题意依次选取的样本编号为:18,07,17,16,09,(17重复,舍去)06;所以选出来的第6个个体编号为06.故答案为:06.15.已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,若|FM|:|MN|=1:2,则实数a的值为.【解答】解:抛物线C:y2=ax(a>0)的焦点为F(,0),准线方程为x=﹣,可得直线AF的方程为y=1﹣x,设M(x1,y1),N(﹣,y2),可得y2=1﹣•(﹣)=2,由|FM|:|MN|=1:2,可得=,可得y1=,代入直线方程可得x1=,代入抛物线方程可得=a•,可得a=.故答案为:.16.已知四棱锥S﹣ABCD的底面为矩形,SA⊥底面ABCD,点E在线段BC上,以AD为直径的圆过点E.若SA=AB=3,则△SED面积的最小值为.【解答】解:设BE=x,EC=y,则BC=AD=x+y,∵SA⊥平面ABCD,ED⊂平面ABCD,∴SA⊥ED,∵AE⊥ED,SA∩AE=A,∴ED⊥平面SAE,∴ED⊥SE,由题意得AE=,ED=,在Rt△AED中,AE2+ED2=AD2,∴x2+3+y2+3=(x+y)2,化简,得xy=3,在Rt△SED中,SE=,ED==,∴S△SED==,∵3x2+≥2=36,当且仅当x=,时,等号成立,∴=.∴△SED面积的最小值为.故答案为:.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每道试题考试必须作答,第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分17.在△ABC中,内角A,B,C的对边分别是a,b,c,且(a﹣b)2=c2﹣ab.(1)求角C;(2)若4c cos(A+)+b sin C=0,且a=1,求△ABC的面积.【解答】(1)由(a﹣b)2=c2﹣ab,得a2+b2﹣c2=ab,所以由余弦定理,得,又因为C∈(0,π),所以;(2)由,得,得﹣4c sin A+b sin C=0,由正弦定理,得4ca=bc.因为c≠0,所以4a=b,又因a=1,所以b=4,所以△ABC的面积.18.如图,在三棱锥P﹣ABC中,AC=BC,AB=2BC,D为线段AB上一点,且AD=3DB,PD⊥平面ABC,PA与平面ABC所成的角为45°.(1)求证:平面PAB⊥平面PCD;(2)求二面角P﹣AC﹣D的平面角的余弦值.【解答】解:(1)证明:∵AC=BC,AB=2BC,∴,∴AB2=AC2+BC2,∴AC⊥BC,在Rt△ABC中,由AC=BC,得∠CAB=30°,设BD=1,由AD=3BD,得AD=3,BC=2,AC=2,在△ACD中,由余弦定理得CD2=AD2+AC2﹣2AD•AC cos30°=3,∴CD=,∴CD2+AD2=AC2,∴CD⊥AD,∵PD⊥平面ABC,CD⊂平面ABC,∴PD⊥CD,又PD∩AD=D,∴CD⊥平面PAB,又CD⊂平面PCD,∴平面PAB⊥平面PCD.(2)解:∵PD⊥平面ABC,∴PA与平面ABC所成角为∠PAD,即∠PAD=45°,∴△PAD为等腰直角三角形,PD=AD,由(1)得PD=AD=3,以D为坐标原点,分别以DC,DB,DP所在直线为x,y,z轴,建立空间直角坐标系,则D(0,0,0),C(,0,0),A(0,﹣3,0),P(0,0,3),=(0,﹣3,﹣3),=(),则==(0,0,3)是平面ACD的一个法向量,设平面PAC的一个法向量=(x,y,z),则,取x=,得=(,﹣1,1),设二面角P﹣AC﹣D的平面角为θ,则cosθ==,∴二面角P﹣AC﹣D的平面角的余弦值为.19.已知椭圆C:+y2=1,不与坐标轴垂直的直线l与椭圆C相交于M,N两点.(1)若线段MN的中点坐标为(1,),求直线l的方程;(2)若直线l过点P(p,0),点Q(q,0)满足k QM+k QN=0,求pq的值.【解答】解:(1)设M(x1,y1),N(x2,y2),则,两式相减,可得,①由题意可知x1+x2=2,y1+y2=1,代入①可得直线MN的斜率k==﹣,所以直线MN的方程y﹣=﹣(x﹣1),即x+2y﹣2=0,所以直线MN的方程x+2y﹣2=0;(2)由题意可知设直线MN的方程y=k(x﹣p),M(x1,y1),N(x2,y2),联立,整理得(1+4k2)x2﹣8k2px+4k2p2﹣4=0,则x1+x2=,,x1x2=,由k QM+k QN=0,则+=0,即y1(x2﹣q)+y2(x1﹣q)=0,∴k(x1﹣p)(x2﹣q)+k(x2﹣p)(x1﹣q)=0,化简得2x1x2﹣(p+q)(x1+x2)+2pq =0,∴﹣﹣+2pq=0,化简得:2pq﹣8=0,∴pq=4.20.某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为x A x B x C x D,家长猜测的序号依次为y A y B y C y D,其中x A x B x C x D和y A y B y C y D都是1,2,3,4四个数字的一种排列.定义随机变量X=(x A﹣y A)2+(x B﹣y B)2+(x C﹣y C)2+(x D﹣y D)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.【解答】解:(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为x A,x B,x C,x D为1234的情况,家长的排序有=24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家长的排序与对应位置的数字完全不同的概率P=.基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序x A,x B,x C,x D为1423的情况,四种食物按1234的排列为ACDB,再研究y A y B y C y D的情况即可,其实这样处理后与第一种情况的计算结果是一致的,∴他们在一轮游戏中,对四种食物排出的序号完全不同的概率为.(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表:X02468101214161820 P(2)这位家长对小孩的饮食习惯比较了解.理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为()3=,这个结果发生的可能性很小,∴这位家长对小孩饮食习惯比较了解.21.已知函数f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).(1)讨论f(x)的单调性;(2)若f(x)≤0恒成立,求e a(b﹣1)的最大值.【解答】解:(1)①当a>0时,则f(x)的定义域为(﹣,+∞),=,由f′(x)=0,得x=1﹣>﹣,所以f(x)在(﹣,1﹣)单调递增,在(1﹣,+∞)单调递减,②当a<0时,则f(x)的定义域为(﹣∞,﹣),由f′(x)=0得x=1﹣>﹣,所以f(x)在(﹣∞,﹣)单调递减,(也可由符合函数单调性得出).(2)由(1)知:当a<0时,取x0<且x0<0时,f(x0)>ln(a×+b)﹣x0>0,与题意不合,当a>0时,f(x)max=f(1﹣)=lna﹣1+≤0,即b﹣1≤a﹣alna﹣1,所以e a(b﹣1)≤(a﹣alna﹣1)e a,令h(x)=(x﹣xlnx﹣1)e x,则h′(x)=(x﹣xlnx﹣lnx﹣1)e x,令u(x)=x﹣xlnx﹣lnx﹣1,则u′(x)=﹣lnx﹣,则u″(x)=,u′(x)在(0,1)上单调递增,在(1,+∞)上单调递减.则u′(x)max=u′(1)<0,从而u(x)在(0,+∞)单调递减,又因为u(1)=0.所以当x∈(0,1)时,u(x)>0,即h′(x)>0;当x∈(1,+∞)时,u(x)<0,即h′(x)<0,则h(x)在(0,1)单调递增,在(1,+∞)单调递减,所以h(x)max=h(1)=0.四、(二)选考题:请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.【解答】解:(1)曲线C的参数方程为(m为参数),两式相加得到m,进一步转换为.直线l的极坐标方程为ρcos(θ+)=1,转换为直角坐标方程为.(2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,,所以=.[选修4-5:不等式选讲]23.已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.【解答】解:(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,∴.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥8,∴2xy⋅2yz⋅2xz的最小值为8.。
2020年高考数学全国卷2-理科数学试题参考答案
,y
2 0
= 4cx
0
,
故x 4c
2 0
2
+
4x 3c
0
=1
.
①
由于C 2
的准线为x
=
-c
, 所以|
MF |
= x 0 +c
, 而|
MF |
=5 , 故x 0 =5 -
c
,
代
入
①
得
(5 4c
c
2
)2
+
4
(5 3c
c
) =1,
1
2020年普通高等学校招生全国统一考试 ( 理科) 数 学 试题参考答案
2n
所以si n2x si n22x …si n22nx ≤ 3 3 8
3
=
3 4
n n
.
22 . 解: (1 )C 1 的普通方程为x + y = 4 (0 ≤x ≤4 ) .
由C 2
的参数方程得x2=t2Fra bibliotek+
1 t2
+2
,y
2
=t
2
+
1 t2
-
2 , 所以x 2 -
y 2 =4 .
故C 2 的普通方程为x 2 - y 2 =4 .
设 Q (a ,0 ,0 ) , 则 N Q =
4-
23 3
-
a
2
,B 1 a ,1 ,
4-
23 3
-
a
2
,故
B 1E→=
23 3
-
a
,
-
2 3
,-
4-
23 3
2020高考数学(理)必刷试题+参考答案+评分标准 (6)
2020高考数学模拟试题(理科)一.选择题:(本大题共10小题,每小题4分,共40分.)1.若2')1(2)(x xf x f +=,则(0)f '等于( )A. 2B.0C.-4D.-22.若,a b R ∈,则复数22(610)(45)a a b b i -++-+-在复平面上对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.设某中学的女生体重y (单位:kg )与身高x (单位cm )具有线性相关关系,根据一组样本数据(,)(1,2,...)i i x y i n =用最小二乘法建立回归方程为ˆ0.8585.71y x =-,则下列结论中不正确的是()A. 具有正的线性相关关系B.回归直线过样本的中心(,)x yC.若该中学某女生身高增加1cm ,则其体重约增加0.85kgD. 若该中学某女生身高增加160cm ,则可断定其体重必为50.29 kg4.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x = 5.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设A 表示事件“4个人去的景点不相同”,B 表示事件“小赵独自去一个景点”,则(/)P A B () A.29 B. 13 C. 49 D. 596.设P 是60°的二面角α—l —β内一点,PA ⊥平面α,PB ⊥平面β,A 、B 分别为垂足,PA =4,PB =2,则AB 的长是( )A .2 3B .2 5C .27D .4 2 7.数学40名数学教师,按年龄从小到大编号为1,2,…40。
现从中任意选取6人分成两组分配到A,B 两所学校从事支教工作,其中三名编号较小的教师在一组,三名编号较大的教师在另一组,那么编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是() A. 220 B.440 C. 255 D.5108.函数x x x x f cos sin )(+=的导函数原点处的部分图象大致为 ( )9.若X 是离散型随机变量,12()3P X x ==,21()3P X x ==,又已知4()3E X =,2()9D X =,则12x x -的值为( ) A .53 B .23C .3D .110.已知函数()(ln )()xe f x k x x k R x=-+∈,如果函数()f x 在定义域为(0, +∞)只有一个极值点,则实数k 的取值范围是() A. (]0,1B. (],1-∞C.(],e -∞ D.[),e +∞二.多项选择题(本小题共3小题,满分12分)11.已知函数()f x 与()fx '的图象如图所示,则函数()xf x y e=( ) A .在区间(1,2)-上是减函数 B .在区间31(,)22-上是减函数C. 在区间1(,3)2上是增函数 D .在区间(1,1)-上是减函数12. 对于函数()y f x =,若存在区间[,]a b ,当[,]x a b ∈时,()f x 的值域为[,](0)ka kb k >,则称()y f x =为k 倍值函数.下列函数为2倍值函数的是( )A.2()f x x = B.32()22f x x x x =++ C.()ln f x x x =+ D.()x x f x e=13.如图,矩形ABCD ,M 为BC 的中点,将ABM ∆沿直线AM 翻折成1AB M ∆,连接B 1D ,N 为B 1D 的中点,则在翻折过程中,下列说法中所有正确的是( ) A.存在某个位置,使得CN ⊥AB 1;B.翻折过程中,CN 的长是定值; C.若AB=BM ,则AM ⊥B 1D ;D.若AB=BM=1,当三棱锥B 1-AMD 的体积最大时,三棱锥B 1-AMD 的外接球的表面积是4π.二、填空题(本大题共4小题,每小题4分,共16分)14. 己知随机变量X 服从正态分布(4,1)N ,且(5)0.1587P x >=,则(34)P x << .15.已知7270127()x m a a x a x a x -=++++L 的展开式中4x 的系数是-35,则=m . 1237a a a a ++++L = .16.点P 是棱长为1的正方体1111D C B A ABCD - 的底面ABCD 上一点,则 →→⋅1PC PA 的取值范围是 .17.设函数()f x 是定义在()0,+∞上的可导函数,其导函数为()f x ',且有()()2f x xf x x '+>,则不等式()()()220182018420x f x f --->的解集为 .三、解答题 (共82分)18.(本题 12 分)已知复数Z 满足23Z i Z i -=++(其中i 为虚数单位) (1)求Z ; (2)若2a iZ+为纯虚数,求实数a 的值。
2020年高考理科数学新课标必刷试卷十(含解析)
《2020年高考理科数学新课标必刷试卷十(含解析)》摘要:题考根据循环框图输出结填写判断框容问题关键是能够准确判断出输出结取值属常考题型.已知棱长正方体被平面截所得几何体三视图如图所示则该几何体体积是().6 B...【答案,()由正弦定理得得【睛,所以(3)由()可得所以估计96~00这段通车辆数也就是通车辆数由得所以估计96~00这段通车辆数(辆)【睛00年高考必刷卷0 数学(理)(试卷满分50分考试用0分钟)事项.答卷前考生必将己姓名、考生、考场和座位填写答题卡上用B铅笔将试卷类型(B)填涂答题卡相应位置上.作答选择题选出每题答案用B铅笔答题卡上对应题目选项答案信息涂黑;如改动用橡皮擦干净再选涂其它答案答案不能答试卷上3.非选择题必须用黑色迹钢笔或签笔作答答案必须写答题卡各题目指定区域相应位置上;如改动先划原答案然再写上新答案;不准使用铅笔和涂改液不按以上要作答无效.考生必须保证答题卡整洁考试结束将试卷和答题卡并交回Ⅰ卷(选择题) 、单选题题共题每题5分共60分每题给出四选项只有项是合题目要.已知集合则集合元素数.6 B.7 .8 .9 【答案】【析】【分析】先根据题出集合再根据题分析元素子集可出.【详】因集合所以因所以元素子集数即有故选.【睛】题考集合集合子集数属基础题..已知实数若复数z=(-)+(+)纯虚数则=() . B.0 .+.-【答案】【析】因纯虚数所以得则有故选 3.已知实数满足则(). B...【答案】【析】综上所述故故选.如图折线图是某公司08年月至月份收入与支出数据若从6月至月这6月任选月数据进行分析则这月利润(利润=收入﹣支出)都不高0万概率(). B...【答案】B 【析】【分析】从7月至月这6月任选月数据进行分析基事件总数由折线图得6月至月这6月利润(利润收入支出)低0万有6月9月0月由即可得到所.【详】如图折线图是某公司07年月至月份收入与支出数据从6月至月这6月任选月数据进行分析基事件总数由折线图得6月至月这6月利润(利润收入支出)不高0万有6月8月9月0月这月利润(利润收入支出)都不高0万包含基事件数这月利润(利润收入支出)都低0万概率故选【睛】题主要考了古概型考了运算能力属档题. 5.函数致图象是(). B...【答案】【析】【分析】用排除B;用排除;可得正确答案【详】当所以故可排除B;当故可排除.故选.【睛】题考了函数图象属基础题. 6.安徽怀远石榴(gr)古就有“九州奇树天下名”美称今年又喜获丰收怀远数学兴趣组进行社会调了到某石榴合作社了实现万元利润目标准备制定激励销售人员奖励方案销售利润超万元按销售利润进行奖励且奖金(单位万元)随销售利润(单位万元)增加而增加但奖金总数不超万元奖金不能超利润学们利用函数知识设计了如下函数模型其合合作社要是()(参考数据). B...【答案】【析】【分析】根据奖励规则函数必须满足增函数【详】对函数当不合题;对函数当不合题;对函数不满足递增不合题;对函数满足增函数且结合图象合题.故选【睛】题考函数模型应用关键弄清题目给定规则依次用四函数逐检验 7.已知正项等差数列若若成等比数列则等(). B...【答案】【析】正项等差数列构成等比数列即构成等比数列依题有得或(舍)故选 8.如图若用表示(). B...【答案】【析】【分析】根据向量加减法运算和数乘运算表示即可得到结【详】题正确选项【睛】题考根据向量线性运算利用已知向量表示所向量;关键是能够熟练应用向量加减法运算和数乘运算法则 9.如图分别是双曲线左、右焦直线与双曲线分别交若等边三角形则双曲线方程(). B...【答案】【析】根据双曲线定义可得|||| ∵△B 是等边三角形即|||B| ∴|B| 又∵|B||B| ∴|B||B|+ ∵△B|B||B|∠B0° ∴|||B|+|B||B|•|B|0° 即+6×××())8 得7又所以方程故选睛题主要考双曲线定义和简单几何性质考了余弦定理三角形根据条件出b关系是题关键. 0.《九算术》卷七——盈不足有如下问题“今有共买羊人出五不足四十五;人出七不足三问人数、羊价各几何?”翻译“现有几人起买羊若每人出五钱还差四十五钱若每人出七钱还差三钱问人数、羊价分别是多少”了研究该问题设置了如图所示程序框图若要输出人数和羊价则判断框应该填(). B...【答案】【析】【分析】根据程序框图确定表示含义从而可利用方程组得到输出值从而得到输出取值到合题判断条件【详】由程序框图可知表示人数表示养价该程序必须输出是方程组则输出结判断框应填题正确选项【睛】题考根据循环框图输出结填写判断框容问题关键是能够准确判断出输出结取值属常考题型.已知棱长正方体被平面截所得几何体三视图如图所示则该几何体体积是().6 B...【答案】【析】该几何体是正方体截三棱台所得体积故选..已知函数若方程恰有三不实数根则实数取值围. B...【答案】【析】【分析】等价或由有唯可得有两不根化图象有两交利用数形结合可得结【详】可变形即或由题可知函数定义域当函数单调递增;当函数单调递减画出函数致图象如图所示当且仅当因方程恰有三不实数根所以恰有两不实数根即图象有两交由图可知图象有两交所以实数取值围故选.【睛】题主要考分段函数析式、方程根与函数图象交关系考了数形结合思想应用属难题函数零几种等价形式函数零函数轴交方程根函数与交Ⅱ卷(非选择题) 二、填空题题共题每题5分共0分把答案填题横线上3.数列前项和则_______________【答案】【析】由题可得故数列{}等比数列且公比q 故故答案.设则值_____ 【答案】【析】【分析】已知直接利用基不等式化值即可.【详】即两边平方整理得当且仅当取值;故答案【睛】题考基不等式应用考化思想以及计算能力基不等式成立条件. 5.设曲线处切线与曲线处切线垂直则坐标______ 【答案】【析】【分析】分别出导数结合导数几何义及切线垂直可【详】设因导数所以曲线处切线斜率;因导数曲线处切线斜率所以得代入可得故【睛】题主要考导数几何义利用导数曲线切线问题般是考虑导数几何义侧重考数学抽象和数学运算核心素养 6.已知抛物线焦是抛物线上以圆心圆与线段相交且被直线截得弦长若则_______.【答案】【析】将坐标代入抛物线方程得得即由圆半径而所以故即两边平方化简得得故【睛】题主要考直线和椭圆位置关系考圆和直线位置关系考特殊等腰三角形三角形方法首先是抛物线上坐标满足抛物线方程由得坐标然根据直线截圆所得弦长得到横坐标和圆半径关系由列方程出值三、答题题共6题共70分答应写出必要说明、证明程或演算步骤7题必做题,每考生都必须作答3题选考题考生根据要作答()必考题共60分 7.锐角三角形B ()值;()值【答案】()()【析】【分析】 ()由三角形B锐角三角形,根据诱导公式化简,即可出值,再利用角三角函数基关系出值,由B,B及值,利用余弦定理即可出长; ()由B,及值,利用正弦定理出值,利用角三角函数基关系出值,然利用两角差正弦函数公式化简,把各值代入即可出值【详】()锐角三角形由余弦定理得()由正弦定理得得【睛】题考了三角函数恒等变形,正弦定理及余弦定理,熟练掌握公式及定理是题关键 8.如图四棱锥平面底面是菱形.(Ⅰ)证直线平面;(Ⅱ)直线与平面所成角正切值;(Ⅲ)设线段上且二面角余弦值到底面距离.【答案】(Ⅰ)证明见析;(Ⅱ);(Ⅲ) 【析】【分析】(Ⅰ)由题利用线面垂直判定定理即可证得题结论;(Ⅱ)建立空直角坐标系分别得直线方向向量和平面法向量然线面角正切值即可;(Ⅲ)设由题结合空直角坐标系得值即可确定到底面距离.【详】(Ⅰ)由菱形性质可知由线面垂直定义可知且由线面垂直判定定理可得直线平面;(Ⅱ)以坐标原,方向轴,z轴正方向如图所示平面B与垂直方向x轴正方向建立如图所示空直角坐标系则则直线B方向向量很明显平面法向量设直线与平面所成角则(Ⅲ)设且由故据可得即坐标设平面B法向量则据可得平面B法向量设平面B法向量则据可得平面B法向量二面角余弦值故整理得得由坐标易知到底面距离或者【睛】题主要考线面垂直判定定理空向量立体几何应用立体几何探问题等知识考学生化能力和计算能力 9.设椭圆左、右焦分别直线交椭圆两若椭圆离心率周长8 (Ⅰ)椭圆方程;(Ⅱ)已知直线与椭圆交两是否存实数k使得以直径圆恰坐标原?若存出k值;若不存请说明理由【答案】(Ⅰ)(Ⅱ)存【析】【分析】()根据椭圆离心率、椭圆定义列方程组方程组得值进而得椭圆标准方程()设出两坐标立直线方程和椭圆方程计算判别式得取值围并写出根与系数关系根据圆几何性质得到由得到由列方程方程得值【详】()由题知所以所椭圆标准方程是()假设存这样实数使得以直径圆恰原设立方程组消得由题知是方程两实数所以得或所以又因以直径圆原所以所以而即得故存这样直线使得以直径圆原【睛】题主要考椭圆标准方程法考直线和椭圆位置关系考圆几何性质考运算能力考化归与化数学思想方法属档题 0.设函数()当处切线方程;()当判断函数区是否存零?并证明【答案】();()函数上存零证明见析【析】【分析】()导出即可;()根据正判断单调性结合零存性定理即可【详】函数定义域()当又切坐标切线斜率所以切线方程;()当所以上单调递减当又所以函数上存零【睛】题考导数几何义考导数函数应用用导数判断函数单调性考函数零存性判断属档题.09年春节期我国高速公路继续执行“节假日高速免费政策”某路桥公司掌握春节期车辆出行高峰情况某高速收费处记录了年初三上午90~00这段通车辆数统计发现这段共有600辆车通该收费它们通该收费刻频率分布直方图如图所示其段90~90记作区90~000记作000~00记作00~00记作比方00分记作刻6 ()估计这600辆车90~00段通该收费刻平值(组数据用该组区值代表);()了对数据进行分析现采用分层抽样方法从这600辆车抽取0辆再从这0辆车随机抽取辆记90~000通车辆数分布列与数学期望;(3)由数据分析可知车辆春节期每天通该收费刻从正态分布其可用这600辆车90~00通该收费刻平值近似代替可用样方差近似代替(组数据用该组区值代表)已知年初五全天共有000辆车通该收费估计96~00通车辆数(结保留到整数)参考数据若则【答案】()00分;()详见析;(3)89辆【析】【分析】()用每组值乘以频率然相加得到平值()先用分层抽样知识计算出量车位车辆数然利用超几何分布知识计算出分布列并得数学期望(3)由()可知计算出方差和标准差利用正态分布对称性计算出96~00这段通车辆概率乘以得到所车辆数【详】()这600辆车90~00段通该收费刻平值即00分()结合频率分布直方图和分层抽样方法可知抽取0辆车000前通车辆数就是位分组这区车辆数即所以可能取值03所以所以分布列 0 3 所以(3)由()可得所以估计96~00这段通车辆数也就是通车辆数由得所以估计96~00这段通车辆数(辆)【睛】题主要考根据频率分布直方图估计平数和方差考超几何分布概率计算以及数学期望计算考正态分布计算属档题(二)选考题共0分请考生,3题任选题作答如多做,则按所做题计分.选修坐标系与参数方程直角坐标系曲线参数方程(参数)直线参数方程(参数)(Ⅰ)曲线直角坐标系普通方程;(Ⅱ)以坐标原极轴正半轴极轴建立极坐标系当曲线截直线所得线段极坐标直线倾斜角【答案】(Ⅰ);(Ⅱ)【析】【分析】(Ⅰ)利用可将曲线参数方程化普通方程;(Ⅱ)法可直线曲线截直线所得线段坐标设弦端分别利用差法可出直线斜率即得值;法二写出直线参数方程将直线参数方程与曲线普通方程立由可出角值【详】(Ⅰ)由曲线参数方程(参数)得曲线参数方程化普通方程;(Ⅱ)法极坐标化成直角坐标设直线与曲线相交两则则②①得化简得即又直线倾斜角;法二极坐标化成直角坐标将分别代入得即即又直线倾斜角【睛】题考参数方程与普通方程化也考了弦问题可利用差法也可以利用韦达定理法考计算能力属等题 3.选修5不等式选讲已知函数值.()若.证;()若.值.【答案】() 证明见析 () 【析】【分析】()运用绝对值不等式性质可得值再由分析法证明不等式平方法和因式分法;()由条件运用基不等式可得再由基不等式和不等式性质传递性即可得到所值.【详】()证明函数当取得等即值即可得即有由上式显然成立故;()由可得当且仅当取得等则当且仅当取得值.【睛】题考绝对值函数值以及不等式证明运用分析法考基不等式运用等成立条件考运算能力属档题.以下容“高数学该怎么有效学习?” 、先把教材上知识、理论看明白买参考做些练习如没问题了就可以做些对应节试卷做练习要对答案把己错题记下平学习也是看到有比较题方法或者己做错题目做标记或者记错题上考前那出复习复习、首先从课概念开始要能举出例子说明概念要能举出反例要能用己话释概念(理概念)然由概念开始进行独立推理活动要能把课公式、定理己推导遍(搞清龙脉)课例题要己先试做尽量己能做出(依靠己才是可靠力量)主动挑战问题(兴趣是老师)要常攻关些问题(白天攻晚上钻梦还惦着它)先看笔记做作业有高学生感到老师讲己已听得明明白白了但是什么己做题就困难重重了呢?其原因学生对教师所讲容理还没能达到教师所要层次因每天做作业前定要把课有关容和当天课堂笔记先看看能否坚持如常常是学生与差学生区别尤其练习题不太配套作业往往没有老师刚刚讲题目类型因不能对比消化如己又不对落实天长日久就会造成极损失做题加强反思学生定要明确现正坐着题定不是考试题目而是要运用现正做着题目题思路与方法因要把己做每道题加以反思总结下己收获要总结出这是道什么容题用是什么方法做到知识成片问题成串日久天长构建起容与方法科学络系统主动复习总结提高进行节总结是非常重要初是教师替学生做总结做得细致深刻完整高是己给己做总结老师不但不给做而且是讲到哪考到哪不留复习也没有明确指出做总结积累随整理要积累复习把课堂笔记练习单元测试各种试卷都分门别类按顺序整理每次就上面标记出己下次重容这样复习才能越越精目了然精挑慎选课外物初学生学数学如不看课外物般地说不会有什么影响高则不相高数学考是学生新题能力作名高生如只是围着己老师不论老师水平有多高必然都会存着很局限性因要想学数学必须打开扇门看看外面世界当然也不要立门户另起炉灶旦脱离校教学和己老师教学体系也必将事半功倍配合老师主动学习高学生学习主动性要强学生常常是完成作业就尽情欢乐初生基也是如听话孩子就能学习高则不然作业虽多但是只知道做作业就绝对不够;老师话也不少但是谁该干些什么了老师并不具体指明因高学生必须提高己学习主动性准备向将学生学习方法渡合理规划步步营高学习是非常紧张每学生都要投入己几乎全部精力要想能迅速进步就要给己制定较长远切实可行学习目标和计划详细安排己零星事项我们学习高数学候除了上课认真听老师讲外学习方法学习习惯也很重要只要学生认真努力数学成绩提高是很容易数学学习程千万不要有心理包袱和顾虑任何学科也是样是慢慢学习和积累程但要记住这程我们是否能真正学初三数学课程(或者其他课程)除了以上方法我们终目是要养成良学习习惯要培养出己优质学习兴趣要掌握和形成套己学习方法。
2020高考数学(理)必刷试题+参考答案+评分标准 (8)
2020高考数学模拟试题(理科)一、选择题(本大题共12小题)1.设集合A={x|x2+2x-3=0},B={-3,-1,1,3},则A∩B=()A. B. C. D.2.=()A. B. C. i D. 2i3.“0<x<1”是“log2(x+1)<1”的()A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分也非必要条件4.已知tanα=,且α∈(π,),则cos(α-)=()A. B. C. D.5.已知非零向量,满足|+|=||,且(-)•=0,则,的夹角为()A. B. C. D.6.将函数图象上所有的点向右平移个单位长度,得到函数y=g(x)的图象,则=()A. B. C. D.7.已知数列{a n}是等比数列,数列{b n}是等差数列,若,b1+b6+b11=7π,则的值是()A. 1B.C.D.8.在《九章算术》方田章圆田术(刘徽注)中指出,“割之弥细,所失弥少,制之又割,以至于不可割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程确定出来x=2,类比上述结论可得log2[2+log2(2+log2(2+…))]的正值为()A. 1B.C. 2D. 49.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为()A. B. C. D.10.函数的大致图象是( )A. B.C. D.11.△ABC中,A(-5,0),B(5,0),点C在双曲线上,则=()A. B. C. D.12.已知函数f(x)=e x-ax有两个零点x1,x2,则下列判断:①a<e;②x1+x2<2;③x1•x2>1;④有极小值点x0,且x1+x2<2x0.则正确判断的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共4小题,共20.0分)13.已知向量=(x,x-2),=(3,4),若,则向量的模为______.14.已知α,β均为锐角且tanα=7,,则α+β=______.15.设D为△ABC所在平面内一点,=-+,若=λ(λ∈R),则λ=______.16.已知函数,g(x)=mx+1,若f(x)与g(x)的图象上存在关于直线y=1对称的点,则实数m的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}的前n项和为S n,若S2=4,S5=25.(1)求数列{a n}的通项公式;(2)记b n=,求数列{b n}的前n项和T n.18.在△ABC中,内角A、B、C的对边分别为a、b、c,且.(1)求∠B的值;(2)若a=4,,求△ABC的面积.19.如图,在四棱锥S-ABCD中,底面ABCD是菱形,SB=SD.(1)证明:BD⊥SA;(2)若面SBD⊥面ABCD,SB⊥SD,∠BAD=60°,AB=1,求B到平面SAD的距离.20.已知函数f(x)=ax-sin x-1,x∈[0,π].(1)若,求f(x)的最大值;(2)当时,求证:f(x)+cos x≤0.21.已知抛物线C1的方程为x2=2y,其焦点为F,AB为过焦点F的抛物线C1的弦,过A,B分别作抛物线的切线l1,l2,设l1,l2相交于点P.(1)求的值;(2)如果圆C2的方程为x2+y2=8,且点P在圆C2内部,设直线AB与C2相交于C,D两点,求|AB|•|CD|的最小值.22.在极坐标系中,已知两点O(0,0),B(2,).(1)求以OB为直径的圆C的极坐标方程,然后化成直角方程;(2)以极点O为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求△MNC的面积.23.已知函数f(x)=|x+1|-m|x-2|(m∈R).(1)当m=3时,求不等式f(x)>1的解集;(2)当x∈[-1,2]时,不等式f(x)<2x+1恒成立,求m的取值范围.答案和解析1.【答案】A【解析】解:∵A={-3,1},B={-3,-1,1,3},∴A∩B={-3,1}.故选:A.可以求出集合A,然后进行交集的运算即可.本题考查描述法、列举法的定义,以及交集的运算,属于基础题.2.【答案】C【解析】解:===i,故选:C.将分子和分母同时乘以分母的共轭复数,再利用复数的乘法法则进行化简.本题考查两个复数相除的方法,两个复数相除,分子和分母同时乘以分母的共轭复数.3.【答案】A【解析】解:由log2(x+1)<1得0<x+1<2,解得-1<x<1,则“0<x<1”是“log2(x+1)<1”的充分不必要条件,故选:A.根据不等式之间的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.4.【答案】A【解析】解:因为t a na==,所以cos a=2sin a,所以cos2a=4sin2a,因为sin2a+cos2a=1,所以sin2a=,因为α∈(π,),所以sin a<0sin a=-.故选:A.利用同角三角函数关系解答.本题主要考察了同角三角函数关系式的应用,属于基本知识的考查.5.【答案】C【解析】解:由|+|=||,得,由(-)•=0,得,两式联立得,所以===,又∈[0°,180°],所以=60°,故选:C.把|+|=||平方展开,又(-)•=0,联立解出,再利用向量的夹角公式,求出角.考查了向量数量积的运算,向量的夹角公式,联立解方程组,中档题.【解析】解:将函数f(x)=cos(3x+)图象上所有的点向右平移个单位长度后,得到函数g(x)=cos[3(x-)+]=cos(3x-)的图象,则=cos(3×-)=cos=-.故选:D.利用y=A sin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用特殊角的三角函数值求解即可.本题主要考查y=A sin(ωx+φ)的图象变换规律,三角函数求值,属于基础题.7.【答案】D【解析】【分析】本题考查等差数列和等比数列的中项性质和特殊角的正切函数值,考查运算能力,属于基础题.由等差数列和等比数列的中项性质,以及特殊角的正切函数值,可得所求值.【解答】解:数列{a n}是等比数列,数列{b n}是等差数列,若,b1+b6+b11=7π,可得(a6)3=3,3b6=7π,即有a6=,b6=π,则=tan=tan=tan=,故选D.8.【答案】C【解析】解:由题意可得x=log2(2+x),x>0,∴2x=x+2,解得x=2.故选:C.通过类比推理的方法,得到求值的方法:列方程,求解即可.类比推理方法的前提是两种对象部分有共同属性,由特殊点向特殊点推理.通过类比推理考核研究问题的深度、思维发散情况和观察的仔细程度.属于中档题.9.【答案】C【解析】解:依题意,设A表示“从中任选2名学生去参加活动,恰好选中2名女生”,则事件A包含的基本事件个数为=3种,而基本事件的总数为=10,所以P(A)=,故选:C.根据计数原理以及排列组合求出“恰好选中2名女生”包含的基本事件个数和基本事件的总数,即可得到所求.本题考查了古典概型的概率,考查了计数原理和排列组合.考查分析解决问题的能力,属于基础题.10.【答案】B【解析】【分析】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力,属于中档题.先研究函数的奇偶性知它是非奇非偶函数,从而排除A、C两个选项,再看此函数与直线y=x的交点情况,即可作出正确的判断.解:由于f(x)=x+cos x,∴f(-x)=-x+cos x,∴f(-x)≠f(x),且f(-x)≠-f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cos x=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.11.【答案】D【解析】解:△ABC中,A(-5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC-BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.根据题意,求出△ABC的三边关系,再利用正弦定理化简,求出它的值即可.本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.12.【答案】B【解析】【分析】本题考查了利用导数求函数的极值,研究函数的零点问题,利用导数研究函数的单调性,是难题.利用函数的导数,判断函数的单调性,对四个选项分别进行判断,即可得出结论【解答】解:对于①,∵f(x)=e x-ax,∴f'(x)=e x-a,令f'(x)=e x-a>0,当a≤0时,f'(x)=e x-a>0在x∈R上恒成立,∴f(x)在R上单调递增.当a>0时,∵f'(x)=e x-a>0,∴e x-a>0,解得x>ln a,∴f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.∵函数f(x)=e x-ax有两个零点x1、x2,∴a>0,f(ln a)<0,∴e ln a-a lna<0,∴a>e,所以①正确;对于②,x1+x2=ln(a2x1x2)=2ln a+ln(x1x2)>2+ln(x1x2),取a=,f(2)=e2-2a=0,∴x2=2,f(0)=1>0,∴0<x1<1,∴x1+x2>2,所以②正确;对于③,f(0)=1>0,∴0<x1<1,x1x2>1不一定,∴所以③不正确;对于④,f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增,∴有极小值点x0=ln a,且x1+x2<2x0=2ln a,所以④正确.综上,正确的命题序号是①②④.故选B.13.【答案】10【解析】解:∵∥,∴4x-3(x-2)=0,解得x=-6,∴=(-6,-8),∴||==10故答案为:10根据向量平行的坐标表示得到x=-6,然后根据向量模的定义求出向量的模,本题考查了向量的概念与向量的模,属基础题.【解析】解:∵tanα=7,,∴tan(α+β)===-1.又0<α<,0<β<,∴0<α+β<π,则α+β=.故答案为:.由已知结合两角和的正切求得tan(α+β),再由角的范围求解α+β的值.本题考查两角和的正切,考查由已知三角函数值求角,是基础题.15.【答案】-3【解析】解:D为△ABC所在平面内一点,=-+,则:,整理得:,则:,解得:,若=λ,则:λ=-3;故答案为:-3.直接利用向量的线性运算求出结果.本题考查的知识要点:向量的线性运算及相关的恒等变换问题.16.【答案】[-,3e]【解析】解:g(x)=mx+1关于直线y=1对称的直线为y=h(x)=1-mx,∴直线y=1-mx与y=2ln x在[,e2]上有交点.作出y=1-mx与y=2ln x的函数图象,如图所示:若直线y=1-mx经过点(,-2),则m=3e,若直线y=1-mx与y=2ln x相切,设切点为(x,y).则,解得.∴-≤m≤3e.故答案为:[-,3e].求出g(x)关于直线y=1的对称函数h(x),令f(x)与h(x)的图象有交点得出m 的范围.本题考查了函数的对称问题解法,注意运用转化思想,以及零点与函数图象的关系,导数的几何意义,属于中档题.17.【答案】解:(1)设首项为a1,公差为d的等差数列{a n}的前n项和为S n,若S2=4,S5=25.则:,解得,所以a n=1+2(n-1)=2n-1.(2)由于a n=2n-1,所以b n===.则==.【解析】(1)直接利用等差数列的定义求出数列的通项公式.(2)利用数列的通项公式的求法及应用,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.18.【答案】解:(1)法一:由正弦定理得,∵,∴sin B cos C+cos B sin C-sin C=sin B cos C,∴;∵sin C≠0,∴,∵B∈(0,π),∴.(1)法二:由余弦定理得化简得,∴.∵B∈(0,π),∴.(2)由,得sin C==,在△ABC中,∵,由正弦定理,得,.【解析】本题主要考查解三角形的应用,结合正弦定理余弦定理以及三角形的面积公式是解决本题的关键.考查学生的计算能力.(1)结合正弦定理或余弦定理进行化简,进行求解即可.(2)求出sin C的值,结合正弦定理以及三角形的面积公式进行计算即可.19.【答案】(本小题满分12分)证明:(1)连接AC交BD于O,连接SO.…………(1分)在菱形ABCD中,BD⊥AC,O是BD的中点,又因为SB=SD,所以BD⊥SO,又AC∩SO=O,所以BD⊥面SAC…………(4分)又SA⊂面SAC,所以BD⊥SA.…………(5分)解:(2)因为面SBD⊥面ABCD,面SBD∩面ABCD=BD,SO⊥BD,SO⊂面SBD,所以SO⊥面ABCD,即SO是三棱锥S-ABD的高.…………(7分)依题意可得,△ABD是等边三角形,所以BD=AD=1,,在等腰Rt△SBD,,…………(9分)经计算得,SA=1,等腰三角形ASD的面积为…………(10分)设B到平面SAD的距离为h,则由V B-SAD=V S-ABD,得,解得,所以B到平面SAD的距离为.…………(12分)【解析】(1)连接AC交BD于O,连接SO,推导出BD⊥SO,BD⊥面SAC,由此能证明BD⊥SA.(2)推导出SO是三棱锥S-ABD的高,设B到平面SAD的距离为h,由V B-SAD=V S-ABD,由此能求出B到平面SAD的距离.本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】(1)解:当时,,由f′(x)=0,得,∴时,f′(x)<0;时,f′(x)>0,因此f(x)的单调递减区间为,单调递增区间为,∴f(x)的最大值为=;(2)证明:先证,令,则=,由,x∈[0,π]与的图象易知,存在x0∈[0,π],使得g'(x0)=0,故x∈(0,x0)时,g'(x)<0;x∈(x0,π)时,g'(x)>0,∴g(x)的单调递减区间为(0,x0),单调递增区间为(x0,π),∴g(x)的最大值为max{g(0),g(π)},而g(0)=0,g(π)=0.又由,x≥0,∴,当且仅当,取“=”成立,即f(x)+cos x≤0.【解析】本题考查利用导数求函数的最值,考查函数恒等式的证明,考查数学转化思想方法,属难题.(1)当时,,求出导函数的零点,由导函数的零点对定义域分段,根据导函数在不同区间段内的符号确定函数单调性,求得函数极值点,进一步求得函数最值;(2)利用导数证明,再由且x≥0时,,可得当时,f(x)+cos x≤0.21.【答案】解:(1)设A(x1,y1),B(x2,y2),因为,所以设AB的方程为,代入抛物线方程得x2-2kx-1=0,所以x1,x2为方程的解,从而x1+x2=2k,x1x2=-1,又因为,,因此k PA•k PB=x1x2=-1,即PA⊥PB,所以.(2)由(1)知x1x2=-1,联立C1在点A,B处的切线方程分别为,,得到交点.由点P在圆x2+y2=8内得,又因为,,其中d为O到直线AB的距离.所以.又AB的方程为,所以d=,令,由得m<33.又由,所以m∈[2,33),从而.所以,当m=2时,.【解析】(1)设A(x1,y1),B(x2,y2),设AB的方程为,代入抛物线方程得x2-2kx-1=0,所以x1,x2为方程的解,从而x1x2=-1,利用函数的导数求解切线的斜率,然后求解.(2)由(1)知x1x2=-1,联立C1在点A,B处的切线方程分别为,,得到交点.判断点P在圆内,求出弦长AB,求出O到直线AB的距离的表达式d=,利用构造法结合基本不等式求解最小值即可.本题考查直线与抛物线的位置关系的综合应用,直线与圆的位置关系的应用,考查转化思想以及计算能力,是难题.22.【答案】解:(1)设P(ρ,θ)为圆上任意一点,则|OP|=ρ,∠POB=θ-,在Rt△POB中,cos(θ-)=,即,∴ρ2=2ρcosθ+2ρsinθ⋅,化为x2+y2=2x+2y,∴圆C的直角坐标方程为(x-1)2+(y-1)2=2.(2)由直线l的参数方程消去参数t化为普通方程y=2x+1,圆心C(1,1)到直线l的距离为d==,弦长|MN|=2=,∴S==.【解析】(1)设出点P的坐标,利用Rt△OPB中的边角关系即可求出;(2)求出圆心到直线的距离和弦长即可得出面积.熟练掌握求圆的极坐标方程及与直角坐标方程的互化、直线与圆的相交弦长问题及点到直线的距离是解题的关键.23.【答案】解:(1)当m=3时,f(x)=|x+1|-3|x-2|,由f(x)>1,得或或,解得:<x≤2或2<x<3,故不等式的解集是(,3);(2)当x∈[-1,2]时,f(x)=x+1-m(2-x),f(x)<2x+1恒成立,即x+1-m(2-x)<2x+1恒成立,整理得:(2-x)m>-x,当x=2时,0>-2成立,当x∈[-1,2]时,m>=1-,令g(x)=1-,∵-1≤x<2,∴0<2-x≤3,∴≥,∴1-≤,故g(x)max=,故m>.【解析】(1)代入m的值,得到关于x的不等式组,解出即可;(2)问题转化为x+1-m(2-x)<2x+1恒成立,当x∈[-1,2]时,m>=1-,令g(x)=1-,求出g(x)的最大值,求出m的范围即可.本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,是一道常规题.。
2020高考数学(理)必刷试题(解析版)
2020高考模拟考试数学(理)试题、单选题1,设集合A x 1 x 2 , B 1,0,1,2,3,则AI B ()A. {-1,0,1,2} B, 0,1,2C. 0,1D. x 1 x 2,或x 3【答案】B【解析】直接根据交集的概念进行运算即可.【详解】因为A x 1 x 2 , B 1,0,1,2,3 ,所以AI B {0,1,2}.故选:B【点睛】本题考查了交集的运算,属于基础题.2.若向量a 4,2 , b 6,k ,则a//b的充要条件是()A. k 12B. k 12C. k 3D. k 3【答案】D【解析】直接根据向量共线的坐标表示即可得到.【详解】因为向量a 4,2 , b 6,k ,所以a//b 4k 2 6 0 k 3.故选:D,【点睛】本题考查了向量共线的坐标表示,充要条件,属于基础题.向量共线的坐标表示应该熟练掌握.3.在30名运动员和6名教练员中用分层抽样的方法共抽取n人参加新闻发布会,若抽取的n人中教练员只有1人,则n ()A. 5B. 6C. 7D. 8【答案】B【解析】先求得抽样比,再用总体中教练员人数乘以抽样比得样本中教练员人数列方程可解得.【详解】依题意可得抽样比为-------- --- ,30 6 36所以有6 — 1,解得n 6.36故选:B【点睛】本题考查了分层抽样,利用抽样比解决是解题关键,属于基础题.4.己知直线a , b , l ,平面,,下列结论中正确的是()A.若a,b ,l a,l b,则lB.若a ,b//a,则b//C.若,a ,则aD.若// ,l ,则l【答案】D【解析】根据直线与平面垂直,直线与平面平行,平面与平面平行和垂直的的判定,性质逐个分析可得答案.【详解】对于A,根据直线与平面垂直的判定定理,还差直线a与直线b相交这个条件,故A不正确;对于B,直线b也有可能在平面内,故B不正确;对于C ,直线a可能在平面内,可能与平面平行,可能与平面相交但不垂直;故C不正确;对于D在平面内取两条相交直线m,n ,则l m,l n ,过m, n分别作平面与平面相交于m',n',则m'//m,n'//n,且m',n'必相交,所以l m',l n',所以l ,故D正确.故选:D【点睛】本题考查了直线与平面平行,垂直,平面与平面平行,垂直的判定,性质,熟练掌握线面,面面平行与垂直的判定与性质是解题关键,属于基础题.5.若a 0.30.2, b log 0.1 2 , c 0.3 0.1,则a , b, c的大小关系为()A. cabB. bacC. acbD. bca【答案】A【解析】根据对数的性质可得b 0,根据指数函数y 0.3x的单调性可得c a 0,由此可得答案.【详解】因为0 0.1 1,2>1,所以b log o.i2 0 ,因为0 0.3 1,所以指数函数y 0.3x为递减函数又-0.1<0.2,所以0.3 0.10.30.20,即c a 0,综上所述,c a b.故选:A【点睛】本题考查了利用对数的性质指数函数的单调性比较大小属于基础题61 ... ......... .6.二项式x 1的展开式中,常数项是( )xA. 20B. 120C. 15D. 30【答案】A【解析】写出二项展开式的通项公式后,令x=0,解得r 3,再根据通项公式可求得常数项. 【详解】6因为二项式X - 的展开式的通项公式为T r1 C6x6 r (1)r C6x6 2r x x(r 0,123,4,5,6)令6 2r 0,解得r 3,1 6......... o 6 5 4所以二项式x - 的展开式中的常数项为C;-------------------- 20.x 3 2 1故选:A【点睛】本题考查了利用二项展开式的通项公式求指定项,利用通项公式是解题关键,属于基础题.7 .已知直线y x 3与圆x2y22x 2y 0相交于A, B两点,则AB ()A . B. 33 C. 6B D . 2【答案】C【解析】由圆的方程可得圆心坐标和半径,根据点到直线的距离求得圆心到直线的距离根据勾股定理可求得答案.【详解】由x 2 y 2 2x 2y 0得(x 1)2 (y 1)2 2 ,所以圆心为(1,1),半径为J2, 由 y x3 得 x y 3 0,由圆心到直线的距离公式得|11 3|二.1 12 '由勾股定理可得 §(2)2(22)2 /,所以| AB | 6 .故选:C. 【点睛】本题考查了根据圆的方程求圆心坐标和半径 ,点到直线的距离公式,圆中的勾股定理 利用圆中的勾股定理是解题关键.8 .斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有,图一图二是斗拱实 物图,图三是斗拱构件之一的 斗”的几何体,本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体) 组成.若棱台两底面面积分别是 400cm2, 900cm 2,高为9cm, 长方体形凹槽的体积为 4300cm 3,斗的密度是0.70g/cm 3 .那么这个斗的质量是 () 注:台体体积公式是 V 1 S SS S h .3S-图二图三A. 3990gB. 3010gC. 7000gD. 6300g【答案】C【解析】根据台体的体积公式求得台体体积,再加上长方体形凹槽的体积得这个斗的体积,然后乘以这个斗的密度可得这个斗的质量 【详解】1C-(400400 900 900) 9 5700 cm 33所以这个斗的质量为 5700 4300 10000 cm 3, 所以这个斗的质量为10000 0.70 7000 g . 故选:C.本题考查了棱台的体积公式,属于基础题x 0,9,若实数x, y 满足y 1, ,则2x y 的最大值为()x 5y 1 0.【解析】作出可行域,根据斜率关系找到最优解,代入最优解的坐标可得答案 【详解】所以 M(4, 1),故选:D根据棱台的体积公式可得棱台的体积为A . 2B. 0C. 7D. 9将目标函数化为斜截式为y 2x z ,由图可知最优解为M ,联立 x 5y 1 y 1,得 x 4, y 1 ,将 x 4, y1代入z 2x y ,得4所2 4 ( 1) 9.作出可行域如图所示1 210 .已知函数f x —ax 2ax In x 在区间0,上为增函数,则实数 a 的取值2范围是( )A. 0,1B.0,C.1,D. 1,1【答案】B1【解析】将问题转化为f'(x ) 0,即a ----------- ------ 在区间(0,)上恒成立,再根据x 2 2x二 ---- 0可得答案.x 2 2x【详解】1 2 _ 因为 f x ax 2ax In x , 2“一 1 所以 f '(x) ax 2a —, x1 2因为函数f x -ax 2ax In x 在区间 0, 上为增函数 2所以a 0. 故选:B. 【点睛】本题考查了利用导数研究函数的单调性 ,考查了不等式恒成立问题,考查了转化划归思想属于中档题211 .已知A 是双曲线D : x 2— 1右支上一点,B 、C 分别是双曲线 D 的左、右焦 35 ...... 一 一 sin 2B点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学模拟试题(理科)一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.已知集合M={x|x>2},集合N={x|x≤1},则M∪N=.2.向量在向量方向上的投影为.3.二项式(3x﹣1)11的二项展开式中第3项的二项式系数为.4.复数的共轭复数为.5.已知y=f(x)是定义在R上的偶函数,且它在[0,+∞)上单调递增,那么使得f(﹣2)≤f(a)成立的实数a的取值范围是.6.已知函数f(x)=arcsin(2x+1),则f﹣1()=.7.已知x∈R,条件p:x2<x,条件q:≥a(a>0),若p是q的充分不必要条件,则实数a的取值范围是.8.已知等差数列{a n}的公差d=3,S n表示{a n}的前n项和,若数列{S n}是递增数列,则a1的取值范围是.9.数字不重复,且个位数字与千位数字之差的绝对值等于2的四位数的个数为.10.过抛物线C:y2=2x的焦点F,且斜率为的直线交抛物线C于点M(M在x轴的上方),l为抛物线C的准线,点N在l上且MN⊥l,则M到直线NF的距离为.11.已知数列{a n}的前n项和为S n,对任意n∈N*,S n=(﹣1)n a n++n﹣3且(a1﹣p)(a2﹣p)<0,则实数p的取值范围是.12.已知函数f(x)=关于x的不等式f(x)﹣mx﹣2m﹣2<0的解集是(x1,x2)∪(x3,+∞),若x1x2x3>0,则x1+x2+x3的取值范围是.二.选择题(本大题共4题,每题5分,共20分)13.过点(﹣1,0),且与直线=有相同方向向量的直线的方程为()A.3x+5y﹣3=0B.3x+5y+3=0C.3x+5y﹣1=0D.5x﹣3y+5=0 14.一个棱锥被平行于底面的平面所截截面面积恰好是棱锥底面面积的一半,则截得的小棱锥与原棱锥的高之比是()A.1:2B.1:8C.:2D.:415.若圆C1:x2+y2=1和圆C2:x2+y2﹣6x﹣8y﹣k=0没有公共点,则实数k的取值范围是()A.(﹣9,11)B.(﹣25,﹣9)C.(﹣∞,﹣9)∪(11,+∞)D.(﹣25,﹣9)∪(11,+∞)16.设H是△ABC的垂心,且3+4+5=,则cos∠BHC的值为()A.﹣B.﹣C.﹣D.﹣三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图所示,圆锥SO的底面圆半径|OA|=1,母线SA=3.(1)求此圆锥的体积和侧面展开图扇形的面积;(2)过点O在圆锥底面作OA的垂线交底面圆圆弧于点P,设线段SO中点为M,求异面直线AM与PS所成角的大小.18.设函数f(x)=x2+|x﹣a|(x∈R,a为实数).(1)若f(x)为偶函数,求实数a的值;(2)设a>,求函数f(x)的最小值(用a表示).19.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B 的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到0.1km)20.(16分)给正有理数、(i≠j,i,j∈N*,m i,n i,m j,n j∈N*,且m i=m j和n i=n j不同时成立),按以下规则P排列:①若m i+n i<m j+n j,则排在前面;②若m i+n i =m j+n j,且n i<n j,则排在的前面,按此规则排列得到数列{a n}.(例如:,,,……).(1)依次写出数列{a n}的前10项;(2)对数列{a n}中小于1的各项,按以下规则Q排列:①各项不做化简运算;②分母小的项排在前面;③分母相同的两项,分子小的项排在前面,得到数列{b n},求数列{b n}的前10项的和S10,前2019项的和S2019;(3)对数列{a n}中所有整数项,由小到大取前2019个互不相等的整数项构成集合A={c1,c2,c3,…,c2019},A的子集B满足:对任意的x,y∈B,有x+y∉B,求集合B中元素个数的最大值.21.(18分)已知椭圆Γ:+=1(a>b>0),点A为椭圆短轴的上端点,P为椭圆上异于A点的任一点,若P点到A点距离的最大值仅在P点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知b=2.(1)若a=,判断椭圆Γ是否为“圆椭圆”;(2)若椭圆Γ是“圆椭圆”,求a的取值范围;(3)若椭圆Γ是“圆椭圆”,且a取最大值,Q为P关于原点O的对称点,Q也异于A 点,直线AP、AQ分别与x轴交于M、N两点,试问以线段MN为直径的圆是否过定点?证明你的结论.参考答案与试题解析一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.已知集合M={x|x>2},集合N={x|x≤1},则M∪N={x|x≤1或x>2}.【解答】解:∵M={x|x>2},N={x|x≤1},∴M∪N={x|x≤1或x>2}.故答案为:{x|x≤1或x>2}.2.向量在向量方向上的投影为3.【解答】解:∵向量在向量,∴cos(,)===,∴向量在向量方向上的投影为:cos(,)=5×=3,故答案为3;3.二项式(3x﹣1)11的二项展开式中第3项的二项式系数为55.【解答】解:二项式(3x﹣1)11的二项展开式的通项公式T r+1=•(3x)11﹣r•(﹣1)r,令r=2,可得中第3项的二项式系数为==55,故答案为:55.4.复数的共轭复数为.【解答】解:∵=,∴.故答案为:.5.已知y=f(x)是定义在R上的偶函数,且它在[0,+∞)上单调递增,那么使得f(﹣2)≤f(a)成立的实数a的取值范围是a≤﹣2或a≥2.【解答】解:∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.∴不等式f(﹣2)≤f(a)等价为f(2)≤f(|a|),即2≤|a|,∴a≤﹣2或a≥2,故答案为:a≤﹣2或a≥2.6.已知函数f(x)=arcsin(2x+1),则f﹣1()=.【解答】解:令arcsin(2x+1)=即sin=2x+1=解得x=故答案为:7.已知x∈R,条件p:x2<x,条件q:≥a(a>0),若p是q的充分不必要条件,则实数a的取值范围是(0,1].【解答】解:因为x∈R,条件p:x2<x,所以p对应的集合为A=(0,1);因为条件q:≥a(a>0),所以q对应的集合为B=(0,];因为p是q的充分不必要条件,所以A⫋B,所以,所以0<a≤1,故答案为:(0,1].8.已知等差数列{a n}的公差d=3,S n表示{a n}的前n项和,若数列{S n}是递增数列,则a1的取值范围是(﹣3,+∞).【解答】解:S n=na1+.∵数列{S n}是递增数列,∴S n+1>S n,∴(n+1)a1+×3>na1+.化为:a1>﹣3n,对于∀n∈N*都成立.∴a1>﹣3.故答案为:(﹣3,+∞).9.数字不重复,且个位数字与千位数字之差的绝对值等于2的四位数的个数为840.【解答】解:根据题意,0到9十个数字中之差的绝对值等于2的情况有8种:0与2,1与3,2与4,3与5,4与6,5与7,6与8,7与9分2种情况讨论:①当个位与千位数字为0,2时,只能千位为2,个位为0,有A82=56种,②当个位与千位数字为1与3,2与4,3与5,4与6,5与7,6与8,7与9时,先排千位数字,再排十位数字,最后排个位与百位,有7×A82×A22=784种,共784+56=840;故答案为:840.10.过抛物线C:y2=2x的焦点F,且斜率为的直线交抛物线C于点M(M在x轴的上方),l为抛物线C的准线,点N在l上且MN⊥l,则M到直线NF的距离为.【解答】解:抛物线C:y2=2x的焦点F(,0),且斜率为的直线方程为,所以,整理得9x2﹣15x+4=0,解得,当x=时,解得y=,设点M(),l为抛物线C的准线,点N在l上且MN⊥l,所以N(,).所以NF的直线方程为,所以当M()到直线的距离d==.故答案为:11.已知数列{a n}的前n项和为S n,对任意n∈N*,S n=(﹣1)n a n++n﹣3且(a1﹣p)(a2﹣p)<0,则实数p的取值范围是().【解答】解:数列{a n}的前n项和为S n,对任意n∈N*,S n=(﹣1)n a n++n﹣3,当n=1时,,解得,当n=3时,,整理得,①当n=4时,,整理得,②由①②得:,所以,整理得,解得,所以:实数p的取值范围是(),故答案为:().12.已知函数f(x)=关于x的不等式f(x)﹣mx﹣2m﹣2<0的解集是(x1,x2)∪(x3,+∞),若x1x2x3>0,则x1+x2+x3的取值范围是[2﹣12,+∞).【解答】解:画出函数y=f(x)的图象,x的不等式f(x)﹣mx﹣2m﹣2<0,即为f(x)<m(x+2)+2,作出直线y=m(x+2)+2,其恒过定点(﹣2,2),由解集是(x1,x2)∪(x3,+∞),若x1x2x3>0,可得x1<0,x2<0,x3>0,当x≤﹣1时,x1,x2,是方程x2+6x+10﹣mx﹣2m﹣2=0的两个实根;即x2+(6﹣m)x+8﹣2m=0的两个实根,∴x1+x2=m﹣6;当x>﹣1时,x3是方程﹣4x+1﹣mx﹣2m﹣2=0的实根;∴x3=;∴结合图象可得m<0,当直线y=m(x+2)+2经过(0,1)时,可得2m+2=1,解得m=﹣;当直线y=m(x+2)+2与直线y=1﹣4x平行时,m=﹣4.由直线y=m(x+2)+2在y=f(x)的上方,可得﹣4<m<﹣.∴m+4>0,∴x1+x2+x3=m﹣6+=m+4+﹣12≥2﹣12=2﹣12;当且仅当m+4=时,即m=﹣4+时取等号;故答案为:[2﹣12,+∞).二.选择题(本大题共4题,每题5分,共20分)13.过点(﹣1,0),且与直线=有相同方向向量的直线的方程为()A.3x+5y﹣3=0B.3x+5y+3=0C.3x+5y﹣1=0D.5x﹣3y+5=0【解答】解:由=可得,3x+5y+8=0,即直线的斜率﹣,由题意可知所求直线的斜率率k=﹣,故所求的直线方程为y=﹣(x﹣1)即3x+5y+3=0.故选:B.14.一个棱锥被平行于底面的平面所截截面面积恰好是棱锥底面面积的一半,则截得的小棱锥与原棱锥的高之比是()A.1:2B.1:8C.:2D.:4【解答】解:∵在棱锥中,平行于底面的平面截棱锥所得的截面与底面相似,相似比等于截得的小棱锥与原棱锥对应棱长之比.又∵一个棱锥被平行于底面的平面所截截面面积恰好是棱锥底面面积的一半,∴相似比为1:=:2.则截得的小棱锥与原棱锥的高之比是:2.故选:C.15.若圆C1:x2+y2=1和圆C2:x2+y2﹣6x﹣8y﹣k=0没有公共点,则实数k的取值范围是()A.(﹣9,11)B.(﹣25,﹣9)C.(﹣∞,﹣9)∪(11,+∞)D.(﹣25,﹣9)∪(11,+∞)【解答】解:化圆C2:x2+y2﹣6x﹣8y﹣k=0为(x﹣3)2+(y﹣4)2=25+k,则k>﹣25,圆心坐标为(3,4),半径为,圆C1:x2+y2=1的圆心坐标为(0,0),半径为1.要使圆C1:x2+y2=1和圆C2:x2+y2﹣6x﹣8y﹣k=0没有公共点,则|C1C2|或|C1C2|<,即5>或5,解得﹣25<k<﹣9或k>11.∴实数k的取值范围是(﹣25,﹣9)∪(11,+∞).故选:D.16.设H是△ABC的垂心,且3+4+5=,则cos∠BHC的值为()A.﹣B.﹣C.﹣D.﹣【解答】解:由三角形垂心性质可得,,不妨设=x,∵3+4+5=,∴,∴,同理可求得,∴.故选:D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图所示,圆锥SO的底面圆半径|OA|=1,母线SA=3.(1)求此圆锥的体积和侧面展开图扇形的面积;(2)过点O在圆锥底面作OA的垂线交底面圆圆弧于点P,设线段SO中点为M,求异面直线AM与PS所成角的大小.【解答】解:(1)圆锥SO的底面圆半径|OA|=1,母线SA=3.所以圆锥的高为h=.所以,S圆锥侧=π•1•3=3π.(2)如图所示:在圆锥中,作MN∥SP,交OP于N,则异面直线AM与PS所成的角为∠AMN.依题意:AM=,MN=,AN=,所以=,所以面直线AM与PS所成角的大小.18.设函数f(x)=x2+|x﹣a|(x∈R,a为实数).(1)若f(x)为偶函数,求实数a的值;(2)设a>,求函数f(x)的最小值(用a表示).【解答】解:(1)若函数f(x)为偶函数,则f(﹣x)=f(x)对于任意实数恒成立.即:x2+|﹣x﹣a|=x2+|x﹣a|,所以|x+a|=|x﹣a|恒成立,即a=0.(2)在的基础上,讨论x﹣a的符号,①当x≥a时,f(x)=x2+x﹣a,所以函数f(x)的对称轴为x=,此时.②当x<a时,f(x)=x2+x﹣a,所以函数f(x)的对称轴为x=,此时.又由于a时,,所以函数f(x)的最小值为.19.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B 的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到0.1km)【解答】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=;在Rt△ABF中,BF==3,∴BD=DF﹣BF=4﹣3sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km)∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°在Rt△DCE中,sin∠DCE=,∴DC=≈4(km)∴景点C与景点D之间的距离约为4km.20.(16分)给正有理数、(i≠j,i,j∈N*,m i,n i,m j,n j∈N*,且m i=m j和n i=n j不同时成立),按以下规则P排列:①若m i+n i<m j+n j,则排在前面;②若m i+n i =m j+n j,且n i<n j,则排在的前面,按此规则排列得到数列{a n}.(例如:,,,……).(1)依次写出数列{a n}的前10项;(2)对数列{a n}中小于1的各项,按以下规则Q排列:①各项不做化简运算;②分母小的项排在前面;③分母相同的两项,分子小的项排在前面,得到数列{b n},求数列{b n}的前10项的和S10,前2019项的和S2019;(3)对数列{a n}中所有整数项,由小到大取前2019个互不相等的整数项构成集合A={c1,c2,c3,…,c2019},A的子集B满足:对任意的x,y∈B,有x+y∉B,求集合B中元素个数的最大值.【解答】解:(1)依题意,数列{a n}的前10项为:,,,,,,,,,;(2)依题意按规则Q排列后得:{,,,,,,,,,,…},∴前10项和为:S10=+++=5;求前2019项的和S2019时,先确定最后一个分数的值,令2019=1+2+3+…+n即=2019,∴n∈(63,64),数列分母取慢2﹣64时,共有=2016项,所有分母为65的还有3项,即:,,,∴数列{b n}前2019项为:{,,,,,,,,,,…,,,,},当n∈[2,64]时,对分母为n的小段求和:S=+++…+=,∴当n∈[2,64]时,对63个小段相加求和:S′=+++…+=•=1008,S2019=S′+=1008,(3)依题意:A={1,2,3,…,2019},B={2019,2018,2107,2016,…,1010}共1010项,这种情况B中的元素最多.21.(18分)已知椭圆Γ:+=1(a>b>0),点A为椭圆短轴的上端点,P为椭圆上异于A点的任一点,若P点到A点距离的最大值仅在P点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知b=2.(1)若a=,判断椭圆Γ是否为“圆椭圆”;(2)若椭圆Γ是“圆椭圆”,求a的取值范围;(3)若椭圆Γ是“圆椭圆”,且a取最大值,Q为P关于原点O的对称点,Q也异于A 点,直线AP、AQ分别与x轴交于M、N两点,试问以线段MN为直径的圆是否过定点?证明你的结论.【解答】解:(1)由题意得椭圆方程:=1,所以A(0,2),设P(x,y)则|PA|2=x2++(y﹣2)2=5•(1﹣)+(y﹣2)2=﹣y2﹣4y+9,y∈[﹣2,2],二次函数开口向下,对称轴y=﹣8,y∈[﹣2,2]上函数单调递减,所以y=﹣2时,函数值最大,此时P为椭圆的短轴的另一个端点,∴椭圆是“圆椭圆”;(2)由(1)的方法:椭圆方程:+=1,A(0,2)设P((x,y),则|PA|2=x2+(y﹣2)2=a2•(1﹣)+(y﹣2)2=(﹣+1)y2﹣4y+4+a2,y∈[﹣2,2],由题意得,当且仅当y=﹣2时,函数值达到最大,讨论:①当开口向上时,满足:⇒⇒﹣2<a<2(舍);②当开口向下时,满足⇒2<a≤2,综上a的范围:(2,2].(3)a=2,椭圆方程:+=1,由题意:设P(2cosθ,sinθ),θ∈[0,2π],且,则Q(﹣2cosθ,﹣sinθ),则直线AP:y=x+2⇒M (,0)则直线AQ:y=+2⇒N(,0),MN为直径的圆过定点C(m,n)则,=0,所以得定点(0,2).。