流体力学复习资料

1.迹线:同一质点在不同时刻所占有的空间位置联成的空间曲线称为迹线。

2.定常流动:液体流动时,若流体中任何一点的压力,速度和密度都不随时间变化,则这种流动就称为定常流动。

3.沿程阻力:流体在均匀流段上产生的流动阻力,称为沿程阻力。

4.量纲:量纲是指物理量的性质和类别。

5.体积模量:

6.流动相似:两个流动相应点上的同名物理量具有各自固定的比例,则这两个流动就是相似的。

7.纲和谐原理:

8.湍流:流体质点的远动轨迹是极不规则的,各部分相互混杂,这种流动状态称为紊流。

9.局部阻力:由于流体速度或方向的变化,导致流体剧烈冲击,由于涡流和速度重新分布而产生的阻力。

10.层流:液体层间有规则的流动状态称为层流。

11.渐变流:流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。

12.淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间。

13.薄壁孔口:出流流股与孔口接触只有一条周线,这种条件的孔口称为薄壁孔口。

14.动能修正系数:

15.流管:在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流线组成的管状流面,称为流管。

简答题

1.什么是等压面等压面的条件是什么

等压面是指流体中压强相等的各点所组成的面。只有重力作用下的等压面应满足的条件是:静止、连通、连续均质流体、同一水平面。

2.流线的定义性质。

流线的定义:在某一时刻,个点的切线方向与通过该点的流体质点的流速方向重合的空间去曲线。

流线的性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线或直线。c、流线越密处,流速越大,流线越稀处,流速越小。

4.试简要回答缓变流的定义及其两个主要特性。

缓变流(渐变流):流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。

特性:

5.试简要阐述局部能量损失的定义及大致分类。

6.简述孔口出流的分类情况。

按孔口直径D和孔口形心在液面下深度H分为大孔口和小孔口;按水头随时间变化,分为恒定出流和非恒定出流;按壁厚,分为薄壁孔口和厚壁孔口;按出流空间状况,分为自由出流和淹没出流。

孔口出流分三类:①孔口自由出流:容器中的液体自孔口留到大气中;②孔口淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间;③管嘴出流:当圆孔壁厚δ等于3~4d时或在孔口接一段长l=3~4d的圆管时,此时的出流称为管嘴出流。

7.流体粘度的定义并说明温度对流体粘性的影响。

流体粘度:流体内部质点或流层间因相对运动而产生内摩擦里以反抗相对运动,此内摩擦力称为粘滞力,即为粘度。

液体的粘度随温度升高而减小;气体的粘度随温度升高而增大。

8.温度变化对流体的粘度有什么影响,并简要说明原因。

液体的粘度随温度升高而减小;气体的粘度随温度升高而增大。

原因:粘滞性是分子间的吸引力和分子不规则的热运动产生动量交换的结果。温度升高,分子间吸引力降低,动量增大;反之,温度降低,分子间吸引力

增大,动量减小。对于液体,分子间的吸引力是决定性因素。对于气体分子间的热运动产生动量交换是决定性因素。

9.迹线的定义及迹线方程。

同一质点在个各不同时刻所占有的空间位置联成的空间曲线称为迹线。

迹线方程:

11.相对平衡的流体的等压面是否为水平面为什么什么条件下的等压面是水平面

不一定,因为相对平衡的流体存在惯性力,质量力只有重力作用下平衡流体的等压面是水平面。

12.简述紊流的定义及特性。

紊流:液体质点的运动轨迹是极不规则的,各部分流体掺混剧烈,这种流动状态称为紊流。

特性:无序性、随机性、有旋性、混掺性。流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

13.简述层流的定义及特性。

层流:液体层间有规则的流动状态称为层流。

特性:有序性。水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

14.流体力学研究中为什么要引入连续介质假设。

?不考虑微观分子的影响,只考虑外力作用下的宏观机械运动。②能运用数学分析的连续函数工具。

15.简述粘性流体绕流物体时产生阻力的原因。如何减小阻力

16.什么是粘滞性什么是牛顿内摩擦定律不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体

粘滞性是当流体流动时,在流体内部显示出的内摩擦力性质

牛顿内摩擦定律是:

du

T A

dy

μ

=;不满足牛顿内摩擦定律的流体是非牛顿

流体。

17.在流体力学当中,三个主要的力学模型是指哪三个

(1)连续介质;(2)无粘性流体;(3)不可压缩流体。

18.什么是理想流体

理想流体即指无粘性流体,是不考虑流体的粘性的理想化的流体。

19.什么是实际流体

考虑流体的粘性的流体。

20.什么是不可压缩流体

不计流体的压缩性和热胀性的而对流体物理性质的简化。

21.为什么流体静压强的方向必垂直作用面的内法线

由于流体在静止时,不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向。

22.为什么水平面必是等压面

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。

23.什么是等压面满足等压面的三个条件是什么

等压面是指流体中压强相等的各点所组成的面。满足等压面的三个条件是同种液体连续液体静止液体。

24.什么是绝对压强和相对压强

绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。

p为零点起算的压强。

相对压强:当地同高程的大气压强

a

25.什么叫自由表面

和大气相通的表面叫自由表面。

26.什么是流线什么是迹线流线与迹线的区别是什么

流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。

区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流体质点在某一固定瞬间运动方向的曲线。而迹线则是在时间过程中表示同一流体质点运动的曲线。

27.什么是流场

我们把流体流动占据的空间称为流场,流体力学的主要任务就是研究流场中的流动。

28什么是欧拉法

通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。

29.什么是拉格朗日法

通过描述每一质点的运动达到了解流体运动的方法。

30.什么是恒定流动什么是非恒定流动

动平衡的流动,各点流速不随时间变化,由流速决定的压强、粘性力也不随时间变化,这种流动称之为恒定流动反之为非恒定流动。

31.什么是沿程损失

在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻力引起的能量损失为沿程损失。

32.什么是局部损失

在边壁急剧变化的区域,阻力主要地集中在该区域中及其附近,这种集中分布的阻力称为局部阻力。克服局部阻力的能量损失为局部损失。

33.什么叫孔口自由出流和淹没出流

在容器侧壁或底壁上开一孔口,容器中的液体自孔口出流到大气中,称为孔口自由出流。如出流到充满液体的空间,则称为淹没出流。

34.什么是有旋流动什么是无旋流动

流体微团的旋转角速度不完全为零的流动称为有旋流动,流场中各点旋转角速度等于零的运动,成为无旋运动。

35在流体力学中,拉格朗曰分析法和欧拉分析法有何区别

拉格朗曰法着眼于流体中各质点的流动情况跟踪每一个质点观察与分析该

质点的运动历程然后综合足够多的质点的运动情况以得到整个流体运动的规律。

欧拉法着眼于流体经过空间各固定点时的运动情况它不过问这些流体运动情况是哪些流体质点表现出来的也不管那些质点的运动历程因此拉格朗曰分析法和欧拉分析法是描述流体的运动形态和方式的两种不同的基本方法。

36.什么叫流管、流束、过流断面和元流

在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流线组成的管状流面,称为流管。流管以内的流体,称为流束。垂直于流束的断面称为流束的过流断面,当流束的过流断面无限小时,这根流束就称为元流。37.什么是单位压能

p

是断面压强作用使流体沿测压管所能上升的高度,水力学中称为压强水

头,表示压力作功所能提供给单位重量流体的能量,称为单位压能。

38.什么是几何相似、运动相似和动力相似

几何相似是指流动空间几何相似,即形成此空间任意相应两线段交角相同,任意相应线段长度保持一定的比例。

运动相似是指两流动的相应流线几何相似,即相应点的流速大小成比例,方向相同。

动力相似是指要求同名力作用,相应的同名力成比例。

39.要保证两个流动问题的力学相似所必须具备的条件是什么

如果两个同一类的物理现象,在对应的时空点上,各标量物理量的大小成比例,各向量物理量除大小成比例外,且方向相同,则称两个现象是相似的。要保证两个流动问题的力学相似,必须是两个流动几何相似,运动相似,动力相似,以及两个流动的边界条件和起始条件相似。

40.什么是因次分析法

因次分析法就是通过对现象中物理量的因次以及因次之间相互联系的各种性质的分析来研究现象相似性的方法。

41.什么是水力半径什么是当量直径

水力半径R 的定义为过流断面面积A 和湿周χ之比,即χA

R =;当量直径

R de 4=。

流体力学基础知识

流体力学基础知识 第一节流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母T表示,单位为kg/m3。流体单位体积内所具有的重量称为重度,重度用表示,单位为N/m?,两者之间的关系为 =「g , g 为重力加速度,通常g = 9. 806m/s2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用」来表示。 所谓运动粘度是指动力粘度」与相应的流体密度「之比,用、来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升咼而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60C时,由于粘滞性下 降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60C下。 第二节液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△卩,当厶F逐渐趋近于零时作用在厶F面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示 某点的实际液体静压力就需要引出点静压力的概念。

第1章流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 连续介质与流体物理量 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

《工程流体力学》考试试卷及答案解析

《工程流体力学》复习题及参考答案 整理人:郭冠中内蒙古科技大学能源与环境学院热能与动力工程09级1班 使用专业:热能与动力工程 一、名词解释。 1、雷诺数 2、流线 3、压力体 4、牛顿流体 5、欧拉法 6、拉格朗日法 7、湿周 8、恒定流动 9、附面层 10、卡门涡街11、自由紊流射流 12、流场 13、无旋流动14、贴附现象15、有旋流动16、自由射流 17、浓差或温差射流 18、音速19、稳定流动20、不可压缩流体21、驻点22、 自动模型区 二、就是非题。 1.流体静止或相对静止状态的等压面一定就是水平面。 ( ) 2.平面无旋流动既存在流函数又存在势函数。 ( ) 3.附面层分离只能发生在增压减速区。 ( ) 4.等温管流摩阻随管长增加而增加,速度与压力都减少。 ( ) 5.相对静止状态的等压面一定也就是水平面。 ( ) 6.平面流只存在流函数,无旋流动存在势函数。 ( ) 7.流体的静压就是指流体的点静压。 ( ) 8.流线与等势线一定正交。 ( ) 9.附面层内的流体流动就是粘性有旋流动。 ( ) 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。( ) 11.相对静止状态的等压面可以就是斜面或曲面。 ( ) 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。( ) 13.壁面静压力的压力中心总就是低于受压壁面的形心。 ( ) 14.相邻两流线的函数值之差,就是此两流线间的单宽流量。 ( ) 15.附面层外的流体流动时理想无旋流动。 ( ) 16.处于静止或相对平衡液体的水平面就是等压面。 ( ) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 ( ) 18.流体流动时切应力与流体的粘性有关,与其她无关。 ( ) 三、填空题。 1、1mmH2O= Pa 2、描述流体运动的方法有与。 3、流体的主要力学模型就是指、与不可压缩性。 4、雷诺数就是反映流体流动状态的准数,它反映了流体流动时 与的对比关系。 5、流量Q1与Q2,阻抗为S1与S2的两管路并联,则并联后总管路的流量Q

流体力学基本概念和基础知识..知识分享

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

西工大流体力学试卷及答案

一.填空题(共30分,每小题2分) 1.均质不可压缩流体的定义为 ρ=c 。 2.在常压下,液体的动力粘度随温度的升高而 降低 。 3.在渐变流过流断面上,动压强分布规律的表达式为P/ρg +z=0 。 5.只要比较总流中两个渐变流断面上单位重量流体的 总机械能 大小,就能判别出流动方向。 6.产生紊流附加切应力的原因是 脉动 。 7.在静止流体中,表面力的方向是沿作用面的 内法线 方向。 8.圆管紊流粗糙区的沿程阻力系数λ与 速度梯度 有关。 9.渐变流流线的特征是 近似为平行直线 。 10.任意空间点上的运动参数都不随时间变化的流动称为 恒定流 。 11.局部水头损失产生的主要原因是 漩涡 。 12.直径为d 的半满管流的水力半径R = d/4 。 13.平面不可压缩流体的流动存在流函数的条件是流速x u 和y u 满足 方程 ?U x / ?t + ?U y / ?t =0 。 14.弗劳德数F r 表征惯性力与 重力 之比。 15.在相同的作用水头下,同样口径管嘴的出流量比孔口的出流量 大 。 二.(14分)如图所示,一箱形容器,高 1.5h m =,宽(垂直于纸面)2b m =,箱内充满水,压力表的读数为220/kN m ,用一半径1r m =的园柱封住箱的一角,求作用在园柱面上的静水总压力的大小与方向。 解: 22 20p ()( )()82.05() 2 p 31(0.50.5)8220 2.04 4.64p 4 5.53c x z z h gh hb g hb kN g gv v r H b H g v kN ρρρπ= = =+ =??→=+?+?= === 三.(14分)如图所示,一水平放置的管道在某混凝土建筑物中分叉。已知主管直径3D m =,主管流量335/Q m s =,分叉管直径2d m =,两分叉管流量均为2Q ,

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

工程流体力学试卷(有答案)

中国计量学院200 ~ 200 学年第 学期 《工程流体力学》课程 试卷(A)参考答案及评分标准 开课二级学院:计量技术工程学院,学生专业: ,教师: 一、解释名词或写出公式(每题2分,共20分) (1) 流体质点:流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实 体。 (2) 迹线: 流体质点的运动轨迹叫做迹线。 (3) 理想流体:理想流体是流体力学中的一个重要假设模型。假定不存在粘性,即其粘度μ = 0的流体为理想流体或无粘性流体。 (4) 毛细升高值公式:gd h ρθ σcos 4= (5) 欧拉(Euler )平衡方程式:z p f y p f x p f z y x ??=??=??=ρρρ1,1,1 (6) 水力直径: S A d H 4 =,A 过流断面面积,S 过流断面上流体的周长。 (7) 边界层厚度: 从边界层的外边界到固体表面的垂直距离δ称为边界层厚度。实际上边界 层没有明显的外边界,一般规定边界层外边界处的速度为外部势流速度的99%。 (8) 帕斯卡(Pascal )原理:如果通过加压的办法改变液面上的p ,则各点压强均发生同样大 小的变化,即施加于平衡流体中的压强以等值向各个方向传递,这就是液压机械传递动力所遵循的帕斯卡(Pascal )原理 (9) 马赫(Mach )锥: 当处于超声速流动时,扰动波传播范围只能充满一个锥形空间,这个 锥形空间叫马赫锥。 (10) 卡门(Karman )动量积分关系式: 2022)2(∞ ∞ ∞=??++??U x U U H x ρτδδ,式中21/δδ=H 。 二、简算题(每题5分,共20分) (1) 一平板在有液体层的第二块平板上以速度u = 4m /s ,两板相距d = 0.05m ,液体的动力粘性 系数μ=O.0005Pa ?s ,上板面积为A = 50m 2,求上板所受阻力F =___2N________。 (2)不可压缩流体从截面为A 1= 100cm 2的管道突然扩大到从截面为A 2= 150cm 2的管道,求局部阻力系数ζ2 =____1.25__________。 (3)气体在管道中作等熵流动,已知马赫数 M = 0.5,比热比k = 1.4,滞止温度 T 0 = 315K ,求流动温度T =___300 K________。 (4)流体在光滑管道中流动,已知摩擦系数λ= 0.1,运动粘性系数ν=1×10-4m 2/s ,管道直径d = 0.02 m ,求管流平均流动速度 u =_____3.2 m/s___________。 第 1 页共 6 页三.计算题:(每题12分,共60分)

流体力学基础知识

第一章流体力学基本知识 学习本章的目的与意义:流体力学基础知识就是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容与要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点与重点: 难点:流体的粘滞性与粘滞力 重点:牛顿运动定律的理解。 2.教学内容与知识要点: 2、1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动 性。 流体也被认为就是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度与重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ = V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13、6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ = V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9、8×103kg/ m3 γ水银=133、28×103kg/ m3 密度与重度随外界压强与温度的变化而变化 液体的密度随压强与温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2、、3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体阻抗

工程流体力学试卷答案

工程流体力学考试试卷 一. 解答下列概念或问题 (15分) 1. 恒定流动 2. 水力粗糙管 3. 压强的表示方法 4. 两流动力学相似条件 5. 减弱水击强度的措施 二. 填空 (10分) 1.流体粘度的表示方法有( )粘度、( )粘度和( )粘度。 2.断面平均流速表达式V =( );时均流速表达式υ=( )。 3.一两维流动y 方向的速度为),,(y x t f y =υ,在欧拉法中y 方向的加速度为y a =( )。 4.动量修正因数(系数)的定义式0α=( )。 5.雷诺数e R =( ),其物理意义为( )。 三. 试推求直角坐标系下流体的连续性微分方程。 (15分) 四. 已知平面不可压缩流体流动的流速为y x x x 422-+=υ, y xy y 22--=υ (20分) 1. 检查流动是否连续; 2. 检查流动是否有旋;

3.求流场驻点位置; 4.求流函数。 五.水射流以20s m/的速度从直径mm d100 =的喷口射出,冲击一对称叶片,叶片角度 θ,求:(20分) 45 = 1.当叶片不动时射流对叶片的冲击力; 2.当叶片以12s m/的速度后退而喷口固定不动时,射流对叶片的冲击力。 第(五)题图

六. 求如图所示管路系统中的输水流量V q ,已知H =24, m l l l l 1004321====, mm d d d 100421===, mm d 2003=, 025.0421===λλλ,02.03=λ,30=阀ξ。(20分) 第(六)题图 参考答案 一.1.流动参数不随时间变化的流动; 2.粘性底层小于壁面的绝对粗糙度(?<δ); 3.绝对压强、计示压强(相对压强、表压强)、真空度; 4.几何相似、运动相似、动力相似; 5.a)在水击发生处安放蓄能器;b)原管中速度0V 设计的尽量小些;c)缓慢关闭;d)采用弹性管。 二.1.动力粘度,运动粘度,相对粘度; 第2 页 共2 页

工程流体力学试题与答案3

一、判断题( 对的打“√”,错的打“×”,每题1分,共12分) 1.无黏性流体的特征是黏度为常数。 2.流体的“连续介质模型”使流体的分布在时间上和空间上都是连续的。 3.静止流场中的压强分布规律仅适用于不可压缩流体。 4.连通管中的任一水平面都是等压面。 5. 实际流体圆管湍流的断面流速分布符合对数曲线规律。 6. 湍流附加切应力是由于湍流元脉动速度引起的动量交换。 7. 尼古拉茨试验的水力粗糙管区阻力系数λ与雷诺数Re 和管长l 有关。 8. 并联管路中总流量等于各支管流量之和。 9. 声速的大小是声音传播速度大小的标志。 10.在平行平面缝隙流动中,使泄漏量最小的缝隙叫最佳缝隙。 11.力学相似包括几何相似、运动相似和动力相似三个方面。 12.亚声速加速管也是超声速扩压管。 二、选择题(每题2分,共18分) 1.如图所示,一平板在油面上作水平运动。已知平板运动速度V=1m/s ,平板与固定边界的距离δ=5mm ,油的动力粘度μ=0.1Pa ·s ,则作用在平板单位面积上的粘滞阻力 为( ) A .10Pa ; B .15Pa ; C .20Pa ; D .25Pa ; 2. 在同一瞬时,位于流线上各个流体质点的速度方向 总是在该点与此流线( ) A .相切; B .重合; C .平行; D .相交。 3. 实际流体总水头线的沿程变化是: A .保持水平; B .沿程上升; C .沿程下降; D .前三种情况都有可能。 4.圆管层流,实测管轴上流速为0.4m/s ,则断面平均流速为( ) A .0.4m/s B .0.32m/s C .0.2m/s D .0.1m/s 5.绝对压强abs p ,相对压强p ,真空度v p ,当地大气压a p 之间的关系是: A .v abs p p p +=; B .abs a v p p p -=; C .a abs p p p +=; D .a v p p p +=。 6.下列说法正确的是: A .水一定从高处向低处流动; B .水一定从压强大的地方向压强小的地方流动;

流体力学基础.

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

工程流体力学历年试卷及标准答案

一、判断题 1、根据牛顿内摩擦左律,当流体流动时,流体内部内摩擦力大小与该处的流速大小成正比。 2、一个接触液体的平而壁上形心处的水静压强正好等于整个受压壁而上所有各点水静压强的平均 值。 3、流体流动时,只有当流速大小发生改变的情况下才有动量的变化。 4、在相同条件下,管嘴岀流流量系数大于孔口岀流流量系数。 5、稳定(定常)流一定是缓变流动。 6、水击产生的根本原因是液体具有粘性。 7、长管是指运算过程中流速水头不能略去的流动管路。 8、所谓水力光滑管是指内壁而粗糙度很小的管道。 D-J 9、外径为D,内径为d的环形过流有效断而,英水力半径为——。 10、凡是满管流流动,任何断面上的压强均大于大气的压强。 二、填空题 1、某输水安装的文丘利管流疑计,当英汞-水压差计上读数ΔΛ=4

CFD 基 础(流体力学)解析

第1章 CFD 基 础 计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、 热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。 本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。 1.1 流体力学的基本概念 1.1.1 流体的连续介质模型 流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。 连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。 连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。 1.1.2 流体的性质 1. 惯性 惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。惯性与质量有关,质量越大,惯性就越大。单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。对于均质流体,设其体积为V ,质量为m ,则其密度为 m V ρ= (1-1) 对于非均质流体,密度随点而异。若取包含某点在内的体积V ?,其中质量m ?,则该点密度需要用极限方式表示,即 0lim V m V ρ?→?=? (1-2) 2. 压缩性 作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。压缩性(compressibility)可用体积压缩率k 来量度

工程流体力学历年试卷及答案

一、判断题 1、 根据牛顿内摩擦定律,当流体流动时,流体内部内摩擦力大小与该处的流速大小成正比。 2、 一个接触液体的平面壁上形心处的水静压强正好等于整个受压壁面上所有各点水静压强的平均 值。 3、 流体流动时,只有当流速大小发生改变的情况下才有动量的变化。 4、 在相同条件下,管嘴出流流量系数大于孔口出流流量系数。 5、 稳定(定常)流一定是缓变流动。 6、 水击产生的根本原因是液体具有粘性。 7、 长管是指运算过程中流速水头不能略去的流动管路。 8、 所谓水力光滑管是指内壁面粗糙度很小的管道。 9、 外径为D ,内径为d 的环形过流有效断面,其水力半径为4 d D -。 10、 凡是满管流流动,任何断面上的压强均大于大气的压强。 二、填空题 1、某输水安装的文丘利管流量计,当其汞-水压差计上读数cm h 4=?,通过的流量为s L /2,分析 当汞水压差计读数cm h 9=?,通过流量为 L/s 。 2、运动粘度与动力粘度的关系是 ,其国际单位是 。 3、因次分析的基本原理是: ;具体计算方法分为两种 。 4、断面平均流速V 与实际流速u 的区别是 。 5、实际流体总流的伯诺利方程表达式为 , 其适用条件是 。 6、泵的扬程H 是指 。 7、稳定流的动量方程表达式为 。 8、计算水头损失的公式为 与 。 9、牛顿内摩擦定律的表达式 ,其适用范围是 。 10、压力中心是指 。 一、判断题 ×√×√× ×××√× 二、填空题 1、 3 L/s 2、 ρμν=,斯(s m /2 ) 3、 因次和谐的原理,п定理 4、 过流断面上各点的实际流速是不相同的,而平均流速在过流断面上是相等的 5、 22222212111 122z g v a p h g v a p z +++=++-γγ,稳定流,不可压缩流体,作用于流体上的质量力只有重力,所取断面为缓变流动 6、 单位重量液体所增加的机械能 7、 ∑?=F dA uu cs n ρ

流体力学基本概念和基础知识

流体力学基本概念和基础知识

————————————————————————————————作者:————————————————————————————————日期: ?

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体)? 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流体质

流体力学基础

第 二章 流 体 力 学 基础 ξ 1 流体的主要性质 1.1 流体的主要物理性质 1、 流体的流动性 ——流体的易变形性 流体的基本属性 流体的力学定义:不能抵抗任何剪切力作用下的剪切变形趋势的物质 2、流体的连续性 ? 连续介质模型 ? 流体质点:含有大量分子的流体微团 3、质量和重力特性 – 密度( kg/ m 3)、 比容: ( m 3/kg )、比重:无量纲量 – 浓度:质量浓度(kg/m3)、摩尔浓度(mol/m3) 4、流体的可压缩性与热膨胀性 ? 等温压缩系数( m 2/N ): ? 热膨胀系数(1/K ) ? 液体的压缩系数和膨胀系数都很小 ? 压强和温度的变化对气体密度和体积的变化影响较大 ? 可压缩流体与不可压缩流体 5. 流体的粘滞性 (1) 粘滞性: ? ——由于相对运动而产生内摩擦力以反抗自身的相对运动的性质。 ? 一切流体都具有粘性,这是流体固有的特性。 ? 粘性的物理本质:分子间引力、分子的热运动,动量交换 (2) 牛顿粘性定律 ? 粘性力(内摩擦力): ? ? 粘性切应力: (3) 粘性系数 动力粘滞系数或动力粘度(μ)(Pa·S ) 运动粘度 (m2/s ) : 理想流体(无粘性流体,μ=0)与实际流体(粘性流体μ≠0) )/(2m N dy u d μτ-=) (N A dy u d F μ-=ρμν=

1.3 作用于流体上的力 1、 质量力 表征:单位质量力:----单位质量流体所受到的质量力 当质量力仅为重力:F bx =0,F by =0,F bz = -g 2 表面力 表征: 切向应力(剪切应力):τ =T/(N/m 2) 法向应力(压应力):p=P/A (N/m 2) ξ 2 流体运动的微分方程 1、 流体运动的描述 (1)描述流体运动的数学方法——拉格朗日法和欧拉法 拉格朗日法—— – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体质点的物理量表示为:f =f (a ,b ,c ,τ) – 欧拉法——空间描述 – 着眼于流体质点,设法描述每个流体质点自始至终的运动过程 – 描述流体物理量表示为:f =F (x ,y ,z ,τ) (2) 迹线与流线 迹线: – 同一流体质点在连续时间内的运动轨迹线 – 是拉格朗日法对流体运动的描述 流线: – 某一时刻流场中不同位置的连续流体质点的流动方向线 – 是欧拉法对流体运动的描述 – 流线的性质:流线不能相交,也不能是折线,流线只能是一条光滑的曲线;对于稳定流动,流线与迹线相重合; – (3)系统与控制体 系统 ——某一确定的流体质点集合的总体,与外界无质量交换 流体系统的描述是与拉格朗日描述相对应 控制体 ——流场中确定的空间区域 可与外界进行质量交换和能量交换 控制体描述则是与欧拉描述相对应 2、质量守恒定律——连续性方程 m F F m F F m F F z bz y by x bx ===,,

工程流体力学期末考试试题

《流体力学》试题 一、单项选择题(本大题共20小题,每小题1分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.流体在叶轮内的流动是轴对称流动,即认为在同一半径的圆周上() A.流体质点有越来越大的速度 B.流体质点有越来越小的速度 C.流体质点有不均匀的速度 D.流体质点有相同大小的速度 2.流体的比容表示() A.单位流体的质量 B.单位质量流体所占据的体积 C.单位温度的压强 D.单位压强的温度 3.对于不可压缩流体,可认为其密度在流场中() A.随压强增加而增加 B.随压强减小而增加 C.随体积增加而减小 D.与压强变化无关 4.流管是在流场里取作管状假想表面,流体流动应是() A.流体能穿过管侧壁由管内向管外流动 B.流体能穿过管侧壁由管外向管内流动 C.不能穿过侧壁流动 D.不确定 5.在同一瞬时,位于流线上各个流体质点的速度方向总是在该点,与此流线()A.相切 B.重合 C.平行 D.相交 6.判定流体流动是有旋流动的关键是看() A.流体微团运动轨迹的形状是圆周曲线 B.流体微团运动轨迹是曲线 C.流体微团运动轨迹是直线 D.流体微团自身有旋转运动 7.工程计算流体在圆管内流动时,由层流变为紊流采用的临界雷诺数取为()A.13800 B.2320 C.2000 D.1000 8.动量方程是个矢量方程,要考虑力和速度的方向,与所选坐标方向一致为正,反之为负。如果力的计算结果为负值时() A.说明方程列错了 B.说明力的实际方向与假设方向相反 C.说明力的实际方向与假设方向相同 D.说明计算结果一定是错误的 9.动量方程() A.仅适用于理想流体的流动 B.仅适用于粘性流体的流动 C.理想流体与粘性流体的流动均适用 D.仅适用于紊流 10.如图所示,有一沿垂直设置的等截面弯管,截面积为A,弯头转角为90°,进口截面1-1与出口截面在2-2之间的轴线长度为L,两截面之间的高度差为△Z,水的密度为ρ,则作用在弯管中水流的合外力分别为() A. B. C.

流体力学知识点总结

流体力学 11.1 流体的基本性质 1)压缩性 流体是液体与气体的总称。从宏观上看,流体也可看成一种连续媒质。与弹性 体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律 v v k p ?-=? 描述。大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。同样的条件下,水银的体积减少量不到原体积的百万分之四。因为液体的压缩量很小,通常可以不计液体的压缩性。气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得及改变就已快速地流动并迅速达到密度均匀。物理上常用 马赫数M 来判定可流动气体的压缩性,其定义为M=流速/声速,若M 2<<1,可视气体为不可压缩的。由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。 2)粘滞性 为了解流动时流体内部的力学性 质,设想如图10.1.1所示的实验。在 两个靠得很近的大平板之间放入流 体,下板固定,在上板面施加一个沿 流体表面切向的力F 。此时上板面下

的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。 实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的一种分布,流体内各层之间形成流速差或速度梯度。实验结果表明,作用在流体上的切向力F 正比与板的面积和流体上表面的速度u 反比与板间流体的厚度l ,所以F 可写成 l u A F μ=, 因而流体上表面的剪应力可以写成 l u ?μ=τ。 式中l u 是线段ab 绕a 点的角速度或者说是单位时间内流体的角形变。若用微分形式表示更具有普遍性,这时上式可以改写成 dl du ?μ=τ, 或 dA dl du dF ? μ=。 上式就是剪应力所引起的一维流体角形变关系式,比例系数μ称为流体的粘滞系数,上式叫做牛顿粘滞性定律。μ为常数的流体称为牛顿流体,它反映了切应力与角形变是线性关系,μ不是常数的流体称为非牛顿流体。 流体的粘滞系数μ是反映流体粘滞性的大小的物理量,在国际单位制中,粘滞系数的单位是牛顿?秒/米2。所谓粘滞性是指当流体流动时,由于流体内各流动层之间的流速不同,引起各流动层之间有障碍相对运动的内“摩擦”,而这个内摩擦力就是上式中的切向力,物理学中把它称为粘滞阻力。因此上式实际上是流体内部各流动层之间的粘滞阻力。 实验表明,任何流体流动时其内部或多或少的存在粘滞阻力。例如河流中心的

相关文档
最新文档