直流电动机闭环调速实验
双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验魏小景张晓娇刘姣(自动化0602班)摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。
关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真1.引言双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。
由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。
调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。
本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。
2.基本原理和系统建模为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、图1 直流电机双闭环调速系统的动态结构图3.系统设计调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统, 系统参数:直流电动机:220,13.6,1480/m in,0.131/(/m in)e V A r C V r =,允许过载倍数1.5λ=;晶闸管装置:76s K =;电枢回路总电阻: 6.58R =Ω;时间常数:0.018l T s =,0.25m T s =;反馈系数:0.00337/(/min)V r α=,0.4/V A β=;反馈滤波时间常数:0.005oi T s =,0.005on T s =。
实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

《运动控制系统》实验报告姓名: 专业班级: 学号: 同组人:实验一 不可逆单闭环直流调速系统静特性的研究一、实验目的1、了解转速单闭环直流调速系统的组成。
2、加深理解转速负反馈在系统中的作用。
3、研究直流调速系统中速度调节器ASR 的工作原理及其对系统静特性的影响。
4、测定晶闸管--电动机调速系统的机械特性和转速单闭环调速系统的静特性。
二、实验系统组成及工作原理采用闭环调速系统,可以提高系统的动静态性能指标。
转速单闭环直流调速系统是常用的一种形式。
图1-1所示是不可逆转速单闭环直流调速系统的实验原理图。
图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V 供电,通过与电动机同轴刚性联接的测速发电机TG 检测电动机的转速,并经转速反馈环节FBS 分压后取出合适的转速反馈信号U n ,此电压与转速给定信号U n *经速度调节器ASR 综合调节,ASR 的输出作为移相触发器GT 的控制电压U ct ,由此组成转速单闭环直流调速系统。
在本系统中ASR 采用比例—积分调节器,属于无静差调速系统。
图中DZS 为零速封锁器,当转速给定电压U n *和转速反馈电压U n 均为零时,DZS 的输出信号使转速调节器ASR 锁零,以防止调节器零漂而使电动机产生爬行。
RP 给定图1-1 不可逆转速单闭环直流调速系统三、实验注意事项1. 直流电动机M03参数为:P N=185W,U N=220V,I N=1.1A,n=1500r/min。
2. 直流电动机工作前,必须先加上直流激励。
3. 系统开环以及单闭环起动时,必须空载,且不允许突加给定信号U g起动电机,每次起动时必须慢慢增加给定,以免产生过大的冲击电流,更不允许通过突合主回路电源开关SW起动电机。
4. 测定系统开环机械特性和闭环静特性时,须注意电枢电流不能超过电机额定值1A。
5. 单闭环连接时,一定要注意给定和反馈电压极性。
四、实验内容1、晶闸管--电动机系统开环机械特性及控制特性的测定(1)连接晶闸管—电动机系统为开环控制,不必使用转速调节器ASR,可将给定电压U g(开环时给定电压称为U g,闭环后给定电压称为U n*)直接接到触发单元GT的输入端(U ct),电动机和测功机分别加额定励磁。
转速单闭环可逆直流脉宽调速系统实验报告

转速单闭环可逆直流脉宽调速系统实验报告成都信息工程大学课程实验报告课程名称所在学院专业指导教师实验小组小组成员姓名成绩总评学号签名 2021年 2 月《电机拖动及运动控制系统I》课程实验报告实验名称实验地点指导老师一、实验目的 1. 掌握转速单闭环可逆直流脉宽调速系统的组成及主要单元部件的工作原理。
2. 掌握转速单闭环可逆直流脉宽调速系统的调试步骤、方法及参数的整定。
二、实验项目 1、各控制单元的仿真调试。
2、开环机械特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定 3、闭环静特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定三、实验线路简图及基本操作步骤(一)基本单元特性仿真测试 1、三相桥式晶闸管整流单元转速单闭环可逆直流脉宽调速系统实验实验日期实验小组教师评阅 A B C D 22、ASR调节器的调整(调零和正负限幅值的调整)(二)开环机械特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定四、数据记录及处理结果3n=1000r/min T2=200N.m alpha_deg=125 n=500r/min4(三)闭环静特性n=f(Id)(n=1000r/min,n=500r/min) 的仿真测定四、数据记录及处理结果 1、开环系统调试,观测电动机在全电压起动和起动后加额定负载时电动机的转速、转矩和电流变化,系统(正转)开环机械特性测 n=1000r/minT2=200N.m alpha_deg=125 实验资料 Ia(A) n(r/min) T2(N.m) 1.75 -0.36 2.17 25.83 -5.13 31.97 54.20 -13.3 67.07 56.54 -17.6 69.97 1299 -12.7 1264.4 1259.6 46.37 53.07 1607.6 1654.7 1558.8 n=500r/min 实验资料 Ia(A) n(r/min)T2(N.m) 1.75 -0.36 2.17 25.83 -5.13 31.96 54.20 -13.3 67.07 55.54 -19.4 68.73 1193.8 1172.6 1154.9 -14.6 20.87 43.96 1477.3 1451.1 1429.2 2、闭环系统调试,系统(正转)闭环机械特性测 T2=200N.m n=500r/min 或n=1000r/min 5实验资料 Ia(A) n(r/min) T2(N.m) 1.75 -0.36 2.17 25.75 -5.11 31.86 28.33-5.64 35.06 54.15 -13.3 67.01 54.87 -13.7 67.90 56.67 -17.2 70.13 53.09 -24.1 65.69 五、思考题及考察为了防止上、下桥臂的直通,有人把上、下桥臂驱动信号死区时间调得很大,这样做行不行?为什么?您认为死区时间长短由哪些参数决定?答:不行。
实验四双闭环可逆直流脉宽调速系统

实验报告题目学院专业班级学号学生姓名指导教师完成日期年月日实验四双闭环可逆直流脉宽调速系统一.实验目的1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理. 2.熟悉直流PWM 专用集成电路SG3525 的组成、功能与工作原理。
3.熟悉H 型PWM 变换器的各种控制方式的原理与特点。
4.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数的整定。
二.实验内容1.PWM 控制器SG3525 性能测试。
2.控制单元调试。
3.系统开环调试。
4.系统闭环调试5.系统稳态、动态特性测试。
6.H 型PWM 变换器不同控制方式时的性能测试。
三.实验系统的组成和工作原理在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。
双闭环脉宽调速系统的原理框图如图6—10 所示。
图中可逆PWM 变换器主电路系采用MOSFET 所构成的H 型结构形式,UPW 为脉宽调制器,DLD 为逻辑延时环节,GD 为MOS 管的栅极驱动电路,FA 为瞬时动作的过流保护。
脉宽调制器UPW 采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM 控制器。
由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。
四.实验设备及仪器1.教学实验台主控制屏。
2.NMCL—10A 组件。
4.NMEL-03组件。
5.NMEL—18D组件。
6.电机导轨及测功机。
7.直流电动机M03。
8.双踪示波器。
9. 万用表。
五.注意事项1.直流电动机工作前,必须先加上直流激磁。
2.接入ASR 构成转速负反馈时,为了防止振荡,可预先把ASR 的RP3 电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR 的“5”、“6”端接入可调电容(预置7μF)。
3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。
双闭环直流调速实验报告

双闭环直流调速实验报告双闭环直流调速实验报告引言:直流电机作为一种常见的电动机类型,广泛应用于工业生产和日常生活中。
为了提高直流电机的调速性能,双闭环直流调速系统应运而生。
本实验旨在通过搭建双闭环直流调速系统,对其性能进行测试和评估。
一、实验目的本实验的主要目的是研究和掌握双闭环直流调速系统的工作原理和性能特点,具体包括以下几个方面:1. 了解双闭环直流调速系统的组成和工作原理;2. 掌握双闭环直流调速系统的参数调节方法;3. 测试和评估双闭环直流调速系统的调速性能。
二、实验原理双闭环直流调速系统由速度环和电流环组成,其中速度环负责控制电机的转速,电流环负责控制电机的电流。
具体工作原理如下:1. 速度环:速度环通过测量电机的转速,与给定的转速进行比较,计算出转速误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电流环。
2. 电流环:电流环通过测量电机的电流,与速度环输出的控制信号进行比较,计算出电流误差,并将误差信号经过PID控制器进行处理,最终输出控制信号给电机。
三、实验步骤1. 搭建实验平台:将直流电机与电机驱动器连接,并将驱动器与控制器相连。
2. 参数设置:根据实验要求,设置速度环和电流环的PID参数。
3. 测试电机转速:给定一个转速值,观察电机的实际转速是否与给定值一致。
4. 测试电机负载:通过改变电机负载,观察电机的转速是否能够稳定在给定值附近。
5. 测试电机响应时间:通过改变给定转速,观察电机的响应时间,并记录下来。
6. 测试电流控制性能:通过改变电机负载,观察电机电流的变化情况,并记录下来。
四、实验结果与分析1. 电机转速测试结果表明,双闭环直流调速系统能够准确控制电机的转速,实际转速与给定值之间的误差较小。
2. 电机负载测试结果表明,双闭环直流调速系统能够在不同负载下保持电机的转速稳定,具有较好的负载适应性。
3. 电机响应时间测试结果表明,双闭环直流调速系统的响应时间较短,能够快速响应给定转速的变化。
实验二转速电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统一、实验目的1.了解转速、电流双闭环直流调速系统的组成。
2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。
3.测定双闭环直流调速系统的静态和动态性能及其指标。
4.了解调节器参数对系统动态性能的影响。
二、实验系统组成及工作原理双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。
实际系统的组成如实验图2-1所示。
实验图2-1 转速、电流双闭环直流调速系统主电路采用三相桥式全控整流电路供电。
系统工作时,首先给电动机加上额定励磁,改变转速给定电压*n U 可方便地调节电动机的转速。
速度调节器ASR 、电流调节器ACR 均设有限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。
当突加给定电压*n U 时,ASR 立即达到饱和输出*im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即*n n U U )并出现超调,使ASR 退出饱和,最后稳定运行在给定转速(或略低于给定转速)上。
三、实验设备及仪器1.主控制屏NMCL-322.直流电动机-负载直流发电机-测速发电机组3. NMCL -18挂箱、NMCL-333挂箱及电阻箱4.双踪示波器5.万用表四、实验内容1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。
2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。
3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能)。
双闭环直流电动机调速系统

04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的
实验三 转速负反馈闭环调速系统的仿真

实验三转速负反馈闭环调速系统的仿真一.实验目的熟练使用MATLAB下的SIMULINK软件进行系统仿真。
学会用MATLAB下的SIMULINK软件建立比例积分控制的直流调速系统的仿真模型和进行仿真实验的方法。
二.实验器材PC机一台,MATLAB软件三.实验参数采用比例积分控制的转速负反馈直流调速系统,结构框图参考教材P51的图2-45,其各环节的参数如下:直流电动机:额定电压UN = 220 V,额定电流IdN = 55 A,额定转速nN = 1000 r/min,电动机电势系数Ce= 0.192 V·min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数Ks = 44,滞后时间常数Ts = 0.00167 s。
电枢回路总电阻R =1.0 Ω,电枢回路电磁时间常数Tl = 0.00167 s,电力拖动系统机电时间常数Tm = 0.075 s。
转速反馈系数α= 0.01V·min/r。
对应额定转速时的给定电压Un*=10V。
电流负反馈采样电阻Rs = 0.1 Ω,临界截止电流Idcr=1.3IdN,比较电压Ucom = Idcr Rs。
四.实验内容1、根据所提供的系统参数,参考教材P51中图2-45建立采用比例积分控制的转速闭环调速系统的仿真模型。
图1比例积分控制的直流调速系统仿真图2、在理想空载下,改变比例积分控制器的比例系数K p 和积分系数K i (如表1所示),观察调速系统输出转速n 的响应曲线,记录转速的超调量、响应时间、稳态值等参数,以及电枢电流I d 的响应曲线,记录相关数据,并分析原因。
表1 比例积分系数表1不同比例系数K p 和积分系数K i 时的转速数据对比t/sn (r /m i n )不同比例系数Kp 和积分系数Ki 的转速n 曲线t/sI d /A不同比例系数Kp 和积分系数Ki 的电枢电流Id 曲线表2不同比例系数K p和积分系数K i时的电枢电流数据对比通过表1、2可得,当K p0.25,K i=3时,在响应阶段中转速变化比较慢且无超调,其稳态值999.55r/min,并且电枢电流比较小,波动范围也比较窄;当K p=0.56,Ki=11.43时,在响应阶段中转速变化比较快,其稳态值达到1000r/min,并且电枢电流较大,波动范围稍大一点,响应时间较短,约为0.26s;当Kp=0.8,Ki=15时,响应阶段中转速变化快,其稳态值达到1000r/min,响应时间短,约为0.2s,电枢电流大,波动范围大。
双闭环直流调速系统实验

实验一 实验二 实验三 实验四 实验五实验五实验五 双闭环直流调速系统实验双闭环直流调速系统实验一.实验目的一.实验目的⒈ 熟悉双闭环直流调速系统的组成、工作原理、调试方法。
⒉ 了解双闭环直流调速系统的静态和动态特性。
二.实验设备二.实验设备⒈ MCL –⒈ MCL – 31 31 31 低压控制电路及仪表。
低压控制电路及仪表。
低压控制电路及仪表。
⒉ MCL –⒉ MCL – 32 32 32 电源控制屏。
电源控制屏。
电源控制屏。
⒊ MCL –⒊ MCL – 33 33 33 触发电路及晶闸管主回路。
触发电路及晶闸管主回路。
触发电路及晶闸管主回路。
⒋ MEL –⒋ MEL – 0303 03 三相可调电阻器。
三相可调电阻器。
三相可调电阻器。
⒌ MEL –⒌ MEL – 11 11 11 电容箱。
电容箱。
电容箱。
⒍ 直流电动机–发电机–测速机组。
⒍ 直流电动机–发电机–测速机组。
⒎ 万用表。
⒎ 万用表。
⒏ 双踪示波器。
⒏ 双踪示波器。
三.三. 实验原理实验原理在双闭环直流调速系统中设置了两个调节器,转速调节器的输出当作电流调节器的输入,电流调节器的输出控制晶闸管整流器的 触发装置。
触发装置。
电流调节器在里面称作内环,转速调节器在外面称作外环,这样就形成转速、电流双闭环调速系统。
双闭环直流调速系统原理图如下图所示。
速系统原理图如下图所示。
为了获得良好的静、动态性能,转速和电流两个调节器都采用采用 PI PI PI 调节器。
转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变调节器。
转速调节器是调速系统的主导调节器,它使转速跟随其给定电压变化,稳态时实现转速无静差,对负载变化起抗扰作用,其输出限幅值决定电机允许的最大电流。
最大电流。
电流调节器电流调节器 使 电流紧紧跟随其电流紧紧跟随其 给定电压变化,对电网电压的波动起及时抗扰作用,在 转速动态过程中能够获得电动机允许的最大电流,从而加快动态过程, 当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
“双闭环控制直流电动机调速系统”数字仿真实验

“双闭环控制直流电动机调速系统”数字仿真实验24、SIMULINK建模我们借助SIMULINK,根据上节理论计算得到的参数,可得双闭环调速系统的动态结构图如下所示:图7 双闭环调速系统的动态结构图(1)系统动态结构的simulink建模①启动计算机,进入MATLAB系统检查计算机电源是否已经连接,插座开关是否打开,确定计算机已接通,按下计算机电压按钮,打开显示器开关,启动计算机。
打开Windows开始菜单,选择程序,选择MATAB6.5.1,选择并点击MATAB6.5.1,启动MATAB程序,如图8,点击后得到下图9:图8选择MATAB程序图9 MATAB6.5.1界面点击smulink 中的continuous,选择transfor Fc n(传递函数)就可以编辑系统的传递函数模型了,如图10。
图10 smulink界面②系统设置选择smulink界面左上角的白色图标既建立了一个新的simulink模型,系统地仿真与验证将在这个新模型中完成,可以看到在simulink目录下还有很多的子目录,里面有许多我们这个仿真实验中要用的模块,这里不再一一介绍,自介绍最重要的传递函数模块的设置,其他所需模块参数的摄制过程与之类似。
将transfor Fc n(传递函数)模块用鼠标左键拖入新模型后双击transfor Fc n(传递函数)模块得到图11,开始编辑此模块的属性。
图11参数表与模型建立参数对话栏第一和第二项就是我们需要设置的传递函数的分子与分母,如我们需要设置电流环的控制器的传递函数:0.01810.0181()0.2920.0180.062ACR s s W s s s++=⋅=,这在对话栏的第一栏写如:[0.018 1],第二栏为:[0.062 0]。
点击OK ,参数设置完成。
如图12。
图12传递函数参数设置设置完所有模块的参数后将模块连接起来既得到图7所示的系统仿真模型。
在这里需要注意的是,当我们按照理论设计的仿真模型得到的实验波形与理想的波形有很大的出入。
单闭环不可逆直流调速系统实验

单闭环不可逆直流调速系统实验
单闭环不可逆直流调速系统实验是一种用于直流电机控制的原型实验系统,旨在教授学生如何使用基于控制理论的方法来调节直流电机的速度并实现不同的功能要求。
该实验系统的基本结构包括直流电动机、电源、可编程随机逻辑控制器和信号调节器等几个部分,其整体系统设计具有紧密性和高效性。
主要研究内容包括如何进行直流电机的速度控制,如何获取直流电机的信息量和如何实现不同的控制算法等方面。
在进行实验之前,首先确定实验要求和目的,然后根据具体的实验内容选择不同的实验设备和工具。
在实验开始之前,需要进行一些准备工作,例如接线、开机和设置基本参数等。
在实验进行过程中,需要注意事项包括安全性、操作准确性和数据的通用性。
在实验结束之后,需要对实验数据进行处理和分析,根据实验结果进行总结和归纳,并对实验过程中的问题进行分析,并总结出实验中的经验和教训。
在单闭环不可逆直流调速系统实验中,学生们将会学习到许多重要的概念和方法,包括控制系统的基本理论、信号调节器的使用方法、可编程随机逻辑控制器的设计和实现等方面。
这些知识将使他们在现实世界中的工程问题中更加技术熟练和完善。
直流电动机双闭环调速系统MATLAB仿真实验报告

本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。
二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。
内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。
电流调节器的给定信号un。
与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。
在这个电压的作用下电机的电流及转矩将相应地发生变化。
电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。
这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。
当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。
反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。
外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。
另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。
这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。
直流电动机双闭环调速系统MATLAB仿真实验报告

直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。
实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。
双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。
实验步骤:
1.建立直流电动机的数学模型。
2.设计速度环控制器。
3.设计电流环控制器。
4.进行系统仿真实验。
实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。
同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。
实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。
实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。
实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。
通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。
同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。
通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。
双闭环直流调速实验报告

一、实验目的1. 熟悉晶闸管直流调速系统的组成及其基本原理。
2. 掌握晶闸管直流调速系统参数及反馈环节测定方法。
3. 掌握调节器的工程设计及仿真方法。
4. 通过实验验证双闭环直流调速系统的性能,分析其动态响应和稳态特性。
二、实验原理双闭环直流调速系统由转速环和电流环组成,通过转速负反馈和电流负反馈实现对电机转速和电流的精确控制。
转速环的输出作为电流环的给定值,电流环的输出控制晶闸管整流装置的输出电压,从而调节电机的转速。
三、实验内容1. 系统搭建与调试- 搭建双闭环直流调速系统,包括晶闸管整流装置、电动机、转速检测环节、电流检测环节、转速调节器和电流调节器等。
- 对系统进行调试,确保各环节工作正常。
2. 参数测定- 测定晶闸管整流装置的输出电压、电流和功率等参数。
- 测定转速检测环节和电流检测环节的灵敏度。
3. 调节器设计- 设计转速调节器和电流调节器,采用PI调节器。
- 根据实验要求,确定调节器的参数。
4. 系统仿真- 使用MATLAB/Simulink软件建立双闭环直流调速系统的仿真模型。
- 对系统进行仿真,分析其动态响应和稳态特性。
5. 实验结果分析- 分析实验数据,评估系统的性能。
- 分析系统在不同负载条件下的响应和稳定性。
四、实验步骤1. 系统搭建- 按照实验电路图搭建双闭环直流调速系统。
- 连接晶闸管整流装置、电动机、转速检测环节、电流检测环节、转速调节器和电流调节器等。
2. 系统调试- 调整晶闸管整流装置的触发角,使输出电压和电流稳定。
- 调整转速检测环节和电流检测环节的灵敏度。
- 调整转速调节器和电流调节器的参数,使系统稳定运行。
3. 参数测定- 使用示波器、电流表、电压表等仪器测定晶闸管整流装置的输出电压、电流和功率等参数。
- 使用转速表和电流表测定转速检测环节和电流检测环节的灵敏度。
4. 调节器设计- 根据实验要求,设计转速调节器和电流调节器。
- 使用MATLAB/Simulink软件进行调节器参数的优化。
直流电动机双闭环调速系统课程设计

直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。
在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。
传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。
因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。
二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。
速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。
两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。
其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。
2.软件设计软件设计包括PID控制器设计和程序编写。
PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。
程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。
四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。
2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。
3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。
五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。
其优点是调速范围广、调速精度高、调速响应快、负载能力强等。
六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
实验三 双闭环直流调速系统MATLAB仿真

实验三双闭环直流调速系统MATLAB仿真
一、实验目的
1.掌握双闭环直流调速系统的原理及组成;
2.掌握双闭环直流调速系统的仿真。
二、实验原理
一、实验内容
基本数据如下:
直流电动机:220V, 136A, 1460r/min.Ce=0.132Vmin/r.允许过载倍数为1.5;晶闸管装置放大系数: Ks=40;Ts=0.0017s;
电枢回路总电阻: ;
时间常数: ;
电流反馈系数: ;
电流反馈滤波时间常数: ;
电流反馈系数: ;
转速反馈系数α=0.007vmin/r
转速反馈滤波时间常数:
设计要求:设计电流调节器, 要求电流无静差, 电流超调量。
转速无静差, 空载起动到额定负载转速时转速超调量。
并绘制双闭环调速系统的动态结构图。
四、实验步骤
1. 根据原理和内容搭建电路模型;
2. 设置各元器件的参数;
3. 设置仿真参数:仿真时间设为0.06s;计算方法为ode15或ode23。
4. 仿真实现。
五、实验报告
1.Idl=0和Idl=136A时电流和转速的输出波形
2.讨论PI 调节器参数对系统的影响.
τi =TL,s
i i K R
T KT Kp βτ•∑=
…………………………取KT=0.5 转速环设计成典型二型系统
h =5, T 087.0)2(=+==∑∑on i n n T T h hT τ Kn=7.112)1(=∑+=
n
RT h CeTm
h Kn αβ
取11.7 , 11.7/0.087。
单闭环双闭环_实验内容

实验一、单闭环直流调速系统静特性研究学号 xxxx 姓名 xxx一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.实验原理直流电动机:额定电压,额定电流,额定转速,电动机电动势系数,晶闸管整流装置可逆,装置放大系数,滞后时间常数,电枢回路总电阻,电枢回路电磁时间常数,电力拖动系统机电时间常数,转速反馈系数,对应额定转速时的给定电压,系统采用PI控制器。
直流调速系统框图如下。
图1-1 系统控制框图图1-2 仿真模型二.实验内容1. 开环机械特性;绘制;2. 测定单闭环电路的静特性;三、仿真实验报告输入信号:阶跃输入: 10V; 仿真时间:0-0.6s;1.记录仿真数据,绘制开环机械特性曲线;2.记录仿真数据,绘制闭环机械特性曲线;表1 - 开环机械特性曲线数据表表2-闭环机械特性曲线表实验二、双闭环直流调速系统一.实验目的1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。
2. 设计ASR 和ACR 两个调节器参数;2.掌握双闭环不可逆直流调速系统的调试步骤,方法及参数的整定。
二.实验原理某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:,允许过载倍数λ=1.5; 时间常数为:, 晶闸管装置放大系数:Ks =40;电枢回路总电阻:R=0.5Ω; 电流反馈系数:β=0.05V/A;。
设计要求:设计电流调节器,要求电流超调量σ≤5% 电流PI 调节器选择:(1),(2)图2-1 双闭环控制框图图2-1 电流环单闭环仿真图图2-3 双闭环仿真图三、仿真实验报告1. 分别绘制具有PI控制器电流单闭环调速系统仿真图,并分析其特点。
(电流输入信号:阶跃输入,幅值为10;仿真时间0-0.05s)1) PI控制器:;2) PI控制器:;2. 分别绘制下列两种情况下,具有PI控制器双闭环调速系统电流转速关系图,并分析电流转速变化特点。
实验四 双闭环不可逆直流调速系统实验

实验四双闭环不可逆直流调速系统实验一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。
(3)研究调节器参数对系统动态性能的影响。
二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。
双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
实验系统的原理框图组成如下:启动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即U g=U fn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。
系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。
“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。
“电流调节器”的输出作为“触发电路”的控制电压U ct,利用“电流调节器”的输出限幅可达到限制αmax的目的。
在本实验中DJK04上的“调节器I”做为“速度调节器”使用,“调节器II”做为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。
四、实验内容(1)各控制单元调试。
(2)测定电流反馈系数β、转速反馈系数α。
直流电动机闭环调速实验

直流电动机闭环调速实验本实验主要是利用闭环控制思想来完成直流电动机的调速实验。
直流电动机是工业生产中最常见的驱动装置之一,其广泛应用于动力和万向传动领域,因而其调速功能也显得特别重要。
本实验所采用的直流电动机主要是通过调整直流电源的电压来实现调速的,闭环调速实验主要包括系统建模、控制参数的选择、控制效果的评估等内容。
一、实验原理直流电动机是一种较为简单的电机。
在工作过程中,它的转速与电源电压有很大的关系。
电源电压越高,电机的转速越快;反之,电源电压越低,电机的转速也越慢。
因此,通过改变直流电源的电压,就可以实现直流电动机的调速。
这种方法叫做电压调速。
但是,这种方法的调速精度无法满足需要,因此采用闭环控制调速,可以更加精准地调节直流电动机的转速。
2. 直流电动机闭环控制原理闭环控制是一种基于反馈的控制方法,控制器通过传感器获得输出反馈信号,从而实现对系统控制的精准调节。
在直流电动机的闭环调速中,可以通过安装转速传感器来获得电动机输出的转速信号,控制器则根据转速信号对输出电压进行调节,从而控制电机的转速。
二、实验设备直流电动机、电源、转速传感器、PID调节器、数字万用表、示波器。
三、实验步骤1. 点动实验点动实验是为了检测电机正反转和控制信号的传输情况。
在实验开始之前,先将转速传感器安装在电机上,并将调节器与传感器相连。
将电机接通电源,观察电机是否正常运转。
然后,用调节器控制电机正反转,观察电机运动方向是否正确。
最后,观察调节器的数值是否能够正常反映电机运转的转速。
2. 建立数学模型在实验过程中,需要对电机系统进行建模。
首先,采用传递函数的方法对电机系统进行建模,建立电机系统的传递函数,然后对传递函数进行调整,从而得到合适的控制器参数。
3. 选择控制参数根据实验结果,选择合适的控制参数。
在本实验中,采用PID控制器来完成闭环控制。
将调节器设定为PID控制模式,并分别测试不同比例系数、积分系数和微分系数下的调节效果,选择合适的控制参数。
单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 仿真软件。
2.通过改变比例系数以及积分时间常数τ的值来研究和τ对比例积分控制的直流调速系统的影响。
二、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析三、实验要求建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。
四、实验原理图4-1 带转速反馈的闭环直流调速系统原理图调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。
转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。
在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。
当t=0时突加输入时,由于比例部分的作用,输出量立即响应,突跳到,实现了快速响应;随后按积分规律增长,。
在时,输入突降为0,=0,=,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。
五、实验各环节的参数及和1/τ的参数的确定5.1各环节的参数:_-_+直流电动机:额定电压=220V,额定电流=55A,额定转速=1000r/min,电动机电动势系数=0.192V •min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数=44,滞后时间常数=0.00167s。
电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数=0.00167s电力拖动系统机电时间常数=0.075s。
转速反馈系数=0.01V •min/r。
对应额定转速时的给定电压=10V。
稳态性能指标D=20,s 5% 。
5.2 和1/τ的参数的确定:PI调节器的传递函数为其中,。
(1)确定时间常数1)整流装置滞后时间常数;2)转速滤波时间常数;3)转速环小时间常数;(2)计算参数按跟随和抗扰性都较好的原则,取h=5,则调节器超前时间常数,即积分时间常数:,则由此可得开环增益:于是放大器比例放大系数:六、仿真模型的建立如图6-1为比例积分控制的无静差直流调速系统的仿真框图,根据仿真框图,利用MATLAB下的SMULINK软件进行系统仿真,建立的仿真模型如图6-2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
University of South China
电气传动技术
实验报告1
实验名称直流电动机闭环调速实验
学院名称电气工程学院
指导教师
班级电力
学号
学生姓名
一预习报告
目的:1了解并掌握典型环节模拟电路构成方法。
2 熟悉各典型线性环节阶跃响应曲线。
3 了解参数变化对典型环节动态性能影响。
内容:
1比例积分控制的无静差直流调速系统的仿真模型
2电流环调速系统的仿真模型
3转速环调速系统的仿真模型
二实验报告
直流电动机:额定电压U N=220N,额定电流I dN=55A,额定转速n N=1000r/min,电动机电动势系数C e=0.192V·min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数Ks=44,滞后的时间常数T s=0.00167s。
电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数T l=0.00167s,电力拖动系统机电时间常数T m=0.075s。
转速反馈系数α=0.01V·min/r。
对应额定转速时的给定电压U*=10V。
双闭环调速系统中Ks=40,T s=0.0017s,T m=0.18s,T l=0.03s,T oi=0.002s,T on=0.01s,R=0Ω,C e=0.132V·min/r,α=0.00666V·min/r,β=0.05V·min/r。
一比例积分控制的无静差直流调速系统中PI调节器的值为:K P=0.56,1/τ=11.34
无静差调速系统输出(Scope图像1)
输出波形比例部分(Scope1图像2)
对比图1和图2可以发现,只应用比例控制的话,系统响应速度快,但是静差率大,而添加积分环节后,系统既保留了比例环节的快速响应性,又具有了积分环节的无静差调速特性,使调速系统稳定性相对更高,动态响应速度也快。
当取=0.25,1/τ=3时,系统转的响应无超调,但调节时间很长。
如图
无超调的仿真结果3
当=0.8,1/τ=15时,系统转速的响应的超调较大,但快速性较好。
如图所示。
超调较大的仿真结果4
控制系统的各项动态跟随性能指标与参数KT有关。
当系统的时间常数T一定时,随着开环增益K的增大,系统的快速性提高,而稳定性变差。
若要求动态响应快,则把K取得大一点;若要求超调小,则把K 取得小一点。
二1双闭环调速系统中电流环系统的pi调节器的传递函数微1.013+1.013/(0.03*s),KT=0.5,曲线为
双闭环调速系统中转速环系统中PI调节器的传递0.5067+16.89/s,KT=0.25。
曲线为
很快的得到电流环的阶跃响应的仿真结果,无超调,但上升时间长,
2当KT=1.0,即传递函数为2.027+67.567/s,曲线为超调大,但上升时间短。
三,1双闭环调速系统中转速环系统中PI调节器的传递函数为11.7+134.48/s,负载电流为0A,曲线图如下可以看出,系统转速最终稳定运行于给定系统。
2当负载电流设置为136A时,曲线如图为启动时间延长,退饱和超调量减少.
U 3加入扰动。
曲线如下,从转速调节器使转速n跟随给定电压*m
变化,当偏差电压为零时,实现稳态无静差。
其输出限幅值决定允许的最大电流。
电流调节器起动时保证获得允许的最大电流,使系统获得最大加速度起动。
当电机过载甚至于堵转时,限制电枢电流的最大而起大快速的安全保护作用。
当故障消失时,系统能够自动恢复正常。
四心得体会
通过此次试验,使我对MATLAB中的SIMULINK仿真软件也有了进一步的了解,通过SIMULINK仿真软件的仿真功能,可以用图像化的方法直接建立系统模型,使我可以很直观方便地了解一些系统特性。
同时通过自己动手做实验,计算数据,使我对比例积分控制的无静差直流电机调速系统又有了更深层次的学习。