几种常用软件架构设计指南
软件设计相关书籍
软件设计相关书籍
在软件开发中,软件设计是至关重要的一步。
好的软件设计可以提高软件的可靠性、可维护性和可扩展性,从而提高软件的质量和效率。
以下是一些值得推荐的软件设计相关书籍:
1. 《软件架构设计:大型系统分层与组件化实践》
本书从软件设计的角度对软件架构的定义、原则、模式、结构和实践进行了深入介绍。
书中重点讲解了大型系统的分层与组件化实践,是一本非常实用的软件设计指南。
2. 《设计模式:可复用面向对象软件的基础》
该书作为经典的软件设计指南,介绍了23种设计模式,对软件
设计的思路和方法进行了深入探讨。
这些设计模式被广泛应用于各种软件开发领域,具有很高的实用价值。
3. 《重构:改善既有代码的设计》
该书介绍了重构的概念、目的、流程和技巧,并提供了多个实例来说明如何进行重构。
重构是一种改善代码设计的方法,可以帮助开发人员提高代码质量,更好地维护代码。
4. 《敏捷软件开发:原则、实践与模式》
该书介绍了敏捷软件开发的原则、实践和模式,包括用户故事、迭代开发、测试驱动开发等。
敏捷开发是一种响应变化的开发方法,可以提高软件开发的灵活性和适应性。
5. 《代码大全(第2版)》
该书介绍了软件开发中的各种最佳实践和技巧,包括代码组织、
注释、命名、测试等。
这些实践和技巧可以帮助开发人员编写出更高质量、更易维护的代码。
总之,软件设计是软件开发中非常重要的一环。
以上书籍可以帮助开发人员掌握软件设计的方法和技巧,提高软件开发的效率和质量。
软件架构模式:掌握常见的软件架构模式和设计原则
软件架构模式:掌握常见的软件架构模式和设计原则软件架构是软件系统整体结构的框架,负责定义软件系统的各个组成部分之间的关系和交互方式。
在软件开发过程中,选择合适的软件架构模式可以提高软件系统的可维护性、扩展性和性能。
下面我们将介绍一些常见的软件架构模式和设计原则。
1.分层架构模式分层架构模式是将系统分为若干层次,每一层次有各自的功能和责任,各层之间通过明确的接口进行通信。
常见的分层架构包括三层架构和N层架构。
三层架构包括表示层(Presentation Layer)、业务逻辑层(Business Logic Layer)和数据访问层(Data Access Layer),分别负责显示用户界面、处理业务逻辑和与数据存储进行交互。
2. MVC模式MVC(Model-View-Controller)模式是一种将应用程序分为数据模型(Model)、视图(View)和控制器(Controller)三个部分的软件架构模式。
Model负责数据的管理和处理,View负责界面的展示,Controller负责处理用户的输入和决定视图和模型之间的交互。
3.微服务架构微服务架构是一种将一个大型软件系统拆分成多个小型、可独立部署的服务的架构模式。
每个微服务都可以独立开发、部署和运行,各个微服务之间通过API进行通信。
微服务架构可以提高系统的灵活性和可扩展性,有利于团队间的协作和部署的快速迭代。
4.事件驱动架构事件驱动架构是一种基于事件和消息传递的软件架构模式,系统中的各个组件相互之间通过事件的方式进行通信。
当一个组件的状态发生变化时,它会发布一个事件,其他组件可以订阅这个事件并做出相应的响应。
事件驱动架构可以降低系统组件之间的耦合度,提高系统的可扩展性和灵活性。
5.领域驱动设计(DDD)领域驱动设计是一种将软件设计与业务领域相结合的设计方法。
DDD将系统分为领域层、应用层和基础设施层,通过模型驱动的方式建模业务领域,并将业务规则和逻辑体现在软件设计中。
软件架构设计的五种常用模式
软件架构设计的五种常用模式现在的软件行业中,软件的复杂性和规模越来越大,而软件架构设计可以让我们更好地管理和维护软件系统,以满足业务和技术的需求。
软件架构设计的核心就是选择合适的架构模式,让软件系统在更高的层次上易于使用、扩展和维护。
下面将介绍软件架构设计中的五种常用模式。
一、客户端-服务器模式客户端-服务器模式是最常见的架构模式之一,它使用了两个核心组件:客户端和服务器。
服务器是一个中央处理器,它处理所有的业务逻辑,而客户端则用于接收和呈现数据。
客户端可以是桌面应用程序、Web应用程序或移动应用程序等。
这种模式的最大优势是它的可移植性和可扩展性,因为客户端和服务器是独立的,可以在不影响对方的情况下进行修改和升级。
它也很容易进行并发处理,因为服务器可以同时处理多个客户端的请求。
二、MVC模式MVC(Model-View-Controller)是另一种常见的软件架构模式。
在MVC中,所有的组件都有明确的角色分配:模型(Model)、视图(View)和控制器(Controller)。
模型处理数据和业务逻辑,视图呈现数据并与用户进行交互,控制器协调模型和视图之间的交互。
MVC的优势在于它可以解耦业务逻辑和视图,使得系统更具灵活性和可移植性。
它也很容易进行单元测试和改进,因为它允许各个组件进行独立的测试和修改。
三、面向服务的架构(SOA)面向服务的架构(SOA)是一种分布式系统架构,它将业务逻辑封装在可重用的服务中。
每个服务都提供一组相关的功能并使用标准化的接口进行通信。
客户端通过使用这些服务来访问业务逻辑。
SOA的优势在于它可以支持多种平台和技术,使得系统更具灵活性和可扩展性。
它还可以使开发团队更好地重用和共享代码,从而提高效率和降低成本。
四、微服务架构微服务架构是SOA的一种变体,它将系统拆分成许多小的、独立的服务。
每个服务专注于处理一个特定的需求,并使用标准化的接口进行通信。
这样做可以使得系统更具弹性和可伸缩性,因为每个服务都可以独立部署和升级。
软件架构设计方法理论
软件架构设计方法理论软件架构设计是指在开发软件系统时,根据需求和设计目标,确定系统的整体结构和组成部分,以及它们之间的关系和交互方式的过程。
一个好的架构设计能够提供系统的稳定性、可扩展性和可维护性,同时也能够降低开发和维护成本。
下面介绍几种常用的软件架构设计方法理论。
1. 分层架构(Layered Architecture)分层架构是将系统分为若干层次的架构,每一层完成特定的功能,并且只与上层和下层进行交互。
这种架构设计方法具有灵活性,使得系统的各个层次能够独立开发和升级,从而提高系统的可维护性和可扩展性。
2. 客户端-服务器架构(Client-Server Architecture)客户端-服务器架构是指将软件系统分为客户端和服务器两个独立的部分,客户端负责用户界面和用户交互,而服务器负责数据存储和业务逻辑处理。
这种架构设计方法可以使得系统的各个部分独立演化,并且能够支持分布式部署和负载均衡。
3. 单一职责原则(Single Responsibility Principle)单一职责原则是指一个类或模块应该只有一个责任,即一个类或模块只负责完成一个明确的功能。
这种原则能够使得软件系统的各个部分职责清晰,降低模块之间的耦合度,提高系统的可维护性和可测试性。
4. 开放闭合原则(Open-Closed Principle)开放闭合原则是指软件系统的设计应该对扩展开放,对修改闭合,即在系统需要增加新功能时,应该尽量利用已有的模块和接口进行扩展,而不是修改已有的代码。
这种原则能够使得软件系统具有更好的可维护性和可扩展性。
组合-聚合原则是指在设计系统时,应该优先考虑使用组合关系而不是继承关系,即通过组合多个相同类型的对象来构成新的对象,而不是通过继承一个接口或类来获得其功能。
这种原则能够降低系统的耦合度,提高系统的灵活性和可维护性。
6. 适配器模式(Adapter Pattern)适配器模式是一种常用的设计模式,它能够将一个类的接口转换成客户端所期望的另一个接口。
软件架构设计三篇
软件架构设计三篇篇一:软件架构设计之常用架构模式1.分层架构:分层架构是使用最多的架构模式,通过分层使各个层的职责更加明确,通过定义的接口使各层之间通讯,上层使用下层提供的服务。
分层分为:严格意义上的分层,一般意义的分层。
严格意义的分层是n+1层使用n层的服务。
而一般意义的分层是上层能够使用它下边所有层的服务。
领域驱动设计的分层定义:UI层,UI控制层,服务层,领域层,基础设施层。
2.MVC架构:MVC架构相信做软件的都听说,主要是为了让软件的各部分松耦合,现在好多根据MVC思想构建的框架如:Spring MVC,Structs2, MVC等。
MVC是Model View Control的简写,他的原理是什么那,比如拿web来举例吧。
当一个web请求来了以后View接收这个请求,随即把请求转发给Control进行处理,Control通过分析请求的类型等信息决定加载哪些Model,当Model加载完成以后Control通知Model已经加载完毕,这是View就去读取Model数据进行显示自己。
MVC还有一个衍生架构叫MVP,因为MVC的View跟Control和Model 都有耦合关系所以为了解除View和Model之间的关系,View不直接读取Model 而是通过Control来转发View需要的数据。
还有一个衍生架构叫MVVP,就是增加了一个View Control的层,用来辅助视图的生成,这样View的功能更加简单只是用来显示不包含其它的功能,而且有了View Control使多视图或替换视图很方便。
MVP微软的WPF就是使用这种架构。
3.微内核架构:微内核架构就是做一个稳定通用的内核,也就是给软件设计一个强劲的心脏。
如果需要更多功能通过在内核外部再封装一层对软件进行扩充,微内核提供基本的接口供外部调用,这些接口一定要通用,并且提供事件的机制告诉外部内部发生的事件,这样就是内核与外部完全隔离。
软件架构设计技术手册
软件架构设计技术手册1. 引言在当今数字化时代,软件的重要性日益凸显。
软件架构设计是软件开发过程中至关重要的一环,它决定了软件的整体结构、组成和交互方式,直接影响着软件的可维护性、可扩展性和性能优化等方面。
本技术手册将详细介绍软件架构设计的基本概念、原则和方法,并提供一些实用的技巧和建议,旨在帮助软件设计人员和开发团队提高软件架构设计的水平与质量。
2. 软件架构设计概述2.1 软件架构的定义软件架构是指一个软件系统的基本结构和组成方式,包括系统的各个模块、组件之间的关系以及模块、组件的功能和接口定义等。
良好的软件架构能够提供系统的稳定性、可靠性和可扩展性,并满足系统的功能和性能需求。
2.2 确定软件架构的目的在软件开发过程中,确定软件架构的主要目的包括:- 分离关注点:将系统按照不同的模块和组件进行分割,使得不同的开发人员可以独立开发和测试各自负责的模块,提高开发效率和质量。
- 实现系统的可维护性:良好的软件架构能够使得系统的代码结构清晰明了,易于维护和修改。
- 支持系统的扩展性:在系统需求变化时,能够方便地添加新的功能模块或修改现有的功能模块,提高系统的灵活性和可扩展性。
- 保证系统的性能和可靠性:优秀的软件架构可以帮助系统在大负载和高并发情况下保持良好的性能和可靠性。
3. 软件架构设计原则3.1 模块化原则模块化是软件架构设计的核心原则之一。
它要求将软件系统划分为多个功能独立、高内聚、低耦合的模块,每个模块应该有明确的功能和接口定义,并且能够独立进行开发和测试。
3.2 单一职责原则单一职责原则要求每个模块或组件应该只负责一项明确的功能,且该功能应该在系统中的唯一位置得到实现。
这样可以确保系统的功能清晰明了,模块之间的关系简单明确,提高系统的可维护性和可测试性。
3.3 开闭原则开闭原则要求软件架构设计应该对扩展开放,对修改关闭。
在软件架构中,应该通过接口和抽象类定义系统的功能和扩展点,而避免修改已有的核心代码。
软件架构设计方法总结
软件架构设计方法总结一、概述软件架构设计是一个非常繁琐而且复杂的工作,需要考虑到众多的不同方面,例如运行环境,安全性,可用性,可扩展性,可维护性等等。
而且不同的软件之间有许多不同之处,这就需要采用不同的架构设计方法。
在本文中,我们将概述几种重要的软件架构设计方法。
二、分层架构分层架构是软件架构中最基本的方法之一。
它将软件系统分为若干层,每个层都有不同的功能。
这些层可以是物理层,例如操作系统层,中间件层和应用程序层,也可以是逻辑层,例如表示层,控制层和数据层。
每个层都提供特定的服务,并且只允许与相邻的层通信。
分层架构的优点在于它提供了模块化和可扩展性:每个层都独立,并且可以被修改而不受影响。
当新的需求或应用程序需要添加到系统时,只需要添加相应的层或修改原有层即可。
三、面向服务架构(SOA)面向服务架构SOA是一个较新的架构设计方法,它将软件系统中的各种功能和服务组成一个网络,以便不同的系统和应用程序可以互相访问和使用这些服务。
这些服务可以是其他系统提供的,也可以是本地系统提供的,例如订阅,搜索和购买服务。
SOA的优点在于它具有很好的灵活性和可扩展性。
系统的各个模块可以独立工作,并且可以直接与其他模块通信,而且任何新的模块可以随时添加到系统中。
四、微服务架构微服务架构(MSA)是一种面向服务的架构,强调将系统分成小的、相关的、自治的微服务。
微服务通常是小型的、灵活的、独立开发、部署和测试。
这些微服务由多个团队共同开发,每个团队负责一个或多个微服务。
MSA架构的优势在于它提高了系统的可伸缩性、可维护性和可组合性。
由于每个服务都是独立开发和测试的,因此它们更容易维护和改进。
五、事件驱动架构(EDA)事件驱动架构EDA是一种处理异步事件的架构。
事件可以由外部系统、UI或其他内部组件触发。
当事件发生时,系统将通知任何订阅事件的组件,并采取相应的行动。
通常,事件按照其类型或主题进行分类,并且处理事件的模块都与主题相关。
软件系统架构设计方案
软件系统架构设计方案软件系统架构设计方案是指在开发一个软件系统时,为了提高系统的可靠性、可扩展性和可维护性,以及满足用户的需求,需要对软件系统的架构进行设计。
下面是一个简单的软件系统架构设计方案。
该软件系统是一个在线购物网站,主要功能包括用户注册、商品浏览、购物车管理和订单管理等。
1. 架构风格:采用MVC(Model-View-Controller)架构。
Model层负责处理业务逻辑和数据管理,View层负责展示数据和接收用户输入,Controller层负责协调View和Model层之间的交互。
2. 分层架构:将整个系统分为多个层次,每个层次的功能单一、清晰。
例如,将用户注册和登录功能放在Presentation层,将商品浏览和管理功能放在Business层,将购物车和订单管理功能放在Data层。
3. 模块化设计:将系统拆分为多个独立的模块,每个模块负责一个特定的功能。
例如,将用户模块、商品模块、购物车模块和订单模块分别设计成独立的模块,以提高系统的可维护性和可扩展性。
4. 数据库设计:采用关系数据库存储系统,设计合理的数据库结构,保证数据的一致性和完整性。
例如,将用户信息、商品信息、购物车信息和订单信息设计为独立的表,建立关系和索引以提高查询效率。
5. 接口设计:设计良好的接口,使不同模块之间的交互简单和灵活。
例如,用户模块和商品模块之间通过接口获取用户信息和商品信息,购物车模块通过接口更新购物车信息,订单模块通过接口创建订单。
6. 高可用性设计:采用集群和负载均衡技术,提高系统的可用性和性能。
例如,将系统部署在多个服务器上,并使用负载均衡器将请求分发到不同的服务器上,以实现高并发和高可靠性。
7. 安全性设计:采用合适的安全机制,防止系统遭受攻击和数据泄露。
例如,用户密码采用哈希算法进行加密存储,禁止SQL注入和跨站脚本攻击等。
以上是一个简单的软件系统架构设计方案,可以根据具体的项目需求进行调整和优化。
软件架构设计
软件架构设计软件架构设计是指在开发软件系统时,根据系统所需功能和性能要求,合理地划分系统结构,确定各个组件之间的相互关系和交互方式的过程。
一个好的软件架构设计能够提高系统的可靠性、可维护性和可扩展性,并降低开发和维护成本。
一、分层架构分层架构是一种常用的软件架构设计模式,将系统划分为若干层次,每一层都有明确的职责和功能。
常见的分层架构包括三层架构和四层架构。
1. 三层架构三层架构将系统划分为表示层、业务逻辑层和数据访问层三个层次。
表示层负责用户界面的展示和与用户的交互,通常使用HTML、CSS和JavaScript来实现Web界面。
业务逻辑层处理业务逻辑,包括数据处理、业务规则以及与数据访问层的交互。
数据访问层负责与数据库进行数据的增删改查操作。
三层架构能够实现业务逻辑与用户界面的分离,提高系统的可维护性和可扩展性。
2. 四层架构四层架构在三层架构的基础上增加了一个服务层。
服务层负责处理系统中的具体业务逻辑,提供一系列可复用的服务接口供业务逻辑层调用。
四层架构将系统进一步解耦,降低了各个组件之间的耦合度,提高了系统的可测试性和可扩展性。
二、微服务架构微服务架构是一种将系统划分为一系列小型、独立部署的服务的架构模式。
每个微服务都有自己独立的数据库,并通过网络进行通信。
微服务之间通过API接口进行通信,每个微服务都可以独立开发、测试、部署和扩展。
微服务架构能够提高系统的灵活性和可伸缩性,使系统更加容易扩展和维护。
但是,微服务架构也增加了系统的复杂性,对系统设计和运维人员的要求更高。
三、事件驱动架构事件驱动架构将系统的各个组件解耦,通过事件的方式进行通信。
当某个组件发生某一事件时,其他组件可以订阅该事件并做出相应的处理。
事件可以异步处理,提高系统的响应速度和并发能力。
事件驱动架构能够降低系统的耦合度,提高系统的可扩展性和可维护性。
同时,事件驱动架构也增加了系统的复杂性,需要合理地设计和管理事件流。
四、容器化架构容器化架构是一种将系统划分为若干独立的容器的架构模式。
设计易于扩展和维护的软件架构的指南
设计易于扩展和维护的软件架构的指南设计易于扩展和维护的软件架构是一个关键的目标,在软件开发和系统设计中起着重要的作用。
下面将提供一些指南,帮助开发人员设计出如何实现这一目标的软件架构。
1. 模块化设计:将软件划分为多个模块,每个模块具有特定功能和责任。
模块之间应该是松耦合的,即模块之间的依赖应尽量减少。
这样可以使每个模块更易于独立开发、测试、修改和维护,且能提高系统的可扩展性。
2. 单一职责原则:每个模块或组件应该只有一个明确定义的责任和功能。
这样可以提高代码的可读性和可维护性,也能使系统更易于扩展。
如果一个模块负责过多的功能,不仅会让代码变得复杂,还会增加其他模块依赖的风险。
3. 松耦合和高内聚:模块之间的耦合度应该尽可能地低,这意味着模块之间应该少进行直接的依赖。
通过中间件、接口和事件驱动等方式,可以实现模块之间的松耦合。
同时,模块内部的代码应该关注于完成自己的功能,不要涉及其他模块的具体实现细节,保持高内聚性。
4. 抽象和接口:使用抽象和接口可以将模块的实现细节和接口分离开来,使得模块之间的交互更具灵活性。
通过定义清晰的接口规范,可以简化模块之间的交互,提高代码的可测试性和可维护性。
此外,抽象和接口也能够帮助开发人员更容易地对模块进行替换或扩展。
5. 分层架构:将软件系统划分为多个层次,每个层次负责特定的功能和责任。
常见的分层架构包括三层架构和MVC模式。
通过分层架构,可以将不同的关注点分离开来,使得每个层次都可以独立开发和测试,提高系统的可扩展性和可维护性。
6. 运用设计模式:在软件架构的设计过程中,合理运用一些常用的设计模式可以提供一些模板和指导,使得架构更易于扩展和维护。
例如,单例模式可以保证一个类只有一个实例,简化对全局资源的管理;观察者模式可以实现模块之间的事件通信等。
7. 合理的错误处理:在软件架构中,合理地处理和管理错误是非常重要的。
通过采用适当的错误处理机制,可以帮助开发人员快速定位和解决问题,使得软件更健壮和可维护。
软件架构设计
软件架构设计一、引言软件架构设计是指在软件开发过程中,根据系统需求和约束条件,对软件系统的整体结构进行设计的过程。
一个良好的软件架构能够保证系统的可靠性、可扩展性和可维护性,同时提高开发效率和降低开发成本。
本文将从需求分析、架构风格、分层架构、模块化设计等方面介绍软件架构设计的基本概念和方法。
二、需求分析在进行软件架构设计前,首先需要对系统需求进行详细分析。
需求分析主要包括功能需求、非功能需求以及系统约束条件的明确和规划。
功能需求描述了系统应该实现的具体功能,非功能需求描述了系统的性能、安全性、可用性等方面的要求。
系统约束条件包括开发环境、技术限制、资源限制等。
通过对需求的详细分析,可以为架构设计提供明确的目标和指导。
三、架构风格架构风格是指在软件架构设计中所采用的通用结构和组织原则。
常见的架构风格包括分层架构、客户端-服务器架构、微服务架构等。
在选择架构风格时,需要根据系统需求和技术特点来进行选择。
例如,对于大规模分布式系统,选择微服务架构可以实现系统的高可伸缩性和可扩展性;对于简单的单机应用,可以选择简单的分层架构来满足需求。
四、分层架构分层架构是指将系统划分为若干个逻辑层,并通过层与层之间的接口进行通信和协作。
常见的分层架构包括三层架构和四层架构。
三层架构一般包括表示层、业务逻辑层和数据访问层;四层架构在此基础上添加了数据层。
通过分层架构的设计,可以实现模块的高内聚和低耦合,提高系统的可维护性和可扩展性。
五、模块化设计模块化设计是指将系统划分为若干个功能模块,并通过模块之间的接口进行通信和协作。
模块化设计可以实现代码的复用和系统的拓展性。
在进行模块化设计时,需要进行模块划分和接口设计。
模块划分要求模块之间的功能和责任明确,避免功能耦合;接口设计要求接口简洁明了,遵循接口隔离原则。
同时,还需考虑模块的组合和集成,确保系统整体的功能完整性和一致性。
六、系统性能优化在进行软件架构设计时,需要考虑系统的性能问题。
10种常见的软件架构模式
10种常见的软件架构模式你是否想知道企业⼤规模系统是如何设计的?在软件开发开始之前,我们必须选择⼀个合适的架构,能提供所需的功能和质量特性。
因此,在将架构应⽤到我们的设计之前,我们应该了解各种不同架构的特点。
什么是架构模式?根据维基百科:架构模式是在软件架构上针对特定上下⽂件解决常见问题的通⽤、可复⽤的解决⽅案。
架构模式与软件设计模式相似,但范围更⼴。
在本⽂中,我将简要解释以下10种常见的体架构模式及其⽤法和优缺点。
1、分层模式2、客户服务器模式(CS)3、主从模式4、管道过滤器模式5、代理模式6、P2P模式7、事件总线模式8、MVC模式9、⿊板模式10、解释器模式1、分层模式此模式可⽤于构造可分解为⼦任务组的程序,每个⼦任务组处于特定的抽象级别。
每⼀层都为下⼀层提供服务。
信息系统中常见的四层模式如下:表⽰层(也称为UI层)应⽤层(也称服务层)业务逻辑层(也称领域层)数据访问层(也称持久化层)⽤途通⽤桌⾯应⽤电⼦商务应⽤2、客户端服务器模式这个模式由两部分组成;⼀个服务器和多个客户端。
服务器组件将为多个客户端组件提供服务。
客户端向服务器请求服务,服务器向这些客户端提供相关服务。
此外,服务器继续侦听客户机请求。
⽤途在线应⽤程序,如电⼦邮件,⽂档共享和银⾏应⽤。
image3、主从模式这个模式由两部分组成;master和slaves。
master组件将⼯作分配给相同的slave组件,并根据slave组件返回的结果计算最终结果。
⽤途在数据库复制中,将主数据库视为中⼼负责写数据,从数据库与主数据库同步。
连接到计算机系统总线上的外设(主驱动器和从驱动器)。
4、管道过滤器模式此模式可⽤于创建流数据处理系统。
每个处理步骤都包含在⼀个过滤器组件中。
要处理的数据通过管道传递。
这些管道可⽤于缓冲或同步⽬的。
⽤途编译器。
连续的过滤器分别执⾏:词法分析、解析、语义分析和代码⽣成。
信息处理⼯作流5、代理模式此模式结合解耦组件构造分布式系统。
软件架构设计的常用工具
软件架构设计的常用工具近年来,软件开发行业在飞速发展,新的技术和框架不断涌现,企业需要根据自身需求和技术实力选择合适的架构和工具。
软件架构并不仅仅是代码的框架,更多时候也包含了整体系统的设计、搭建和运维。
因此,软件架构设计的常用工具也成为了企业必不可少的一部分。
本文将介绍软件架构设计的常用工具,这些工具能够帮助企业更加高效地进行软件架构的设计。
1. UMLUML(Unified Modeling Language)是一种用于进行软件开发的图形化语言,其主要用途是描述软件系统的设计、行为和结构等方面。
UML提供了一些基本的元素,例如类、对象、接口、用例等,通过它们可以有效地描述软件的各个组成部分。
在软件架构设计过程中,UML可以帮助团队进行沟通,提高代码质量和可读性,为后续的开发和维护提供支持。
2. ER图ER图(Entity Relationship Diagram)是一种用于描述实体之间关系的图形化表达方式,其主要用途是在数据库设计中支持数据建模。
ER图中包含了实体、属性和关系等元素,我们可以通过它们来清晰地表达实体之间的关系。
在软件架构设计中,ER图可以帮助开发者对数据之间的关系进行深入的思考,进而设计出适合业务需求的数据库结构。
3. Code Review工具Code Review是软件工程领域一项重要的质量管理工具,其主要目的是检查代码是否符合规范,发现代码中存在的错误并提供改进建议。
Code Review不仅可以帮助开发团队保证代码质量和稳定性,还可以帮助开发人员进行技能提升和团队合作。
目前市面上有许多代码审查工具,例如Gerrit、Phabricator等等。
4. IDEIDE(Integrated Development Environment)是一种编辑器,其中集成了编译器、调试器、代码提示等功能,极大地提高了代码编写效率和代码质量。
常见的IDE有Visual Studio、Eclipse等等。
软件架构设计方法与应用案例分析
软件架构设计方法与应用案例分析在软件开发过程中,架构设计是至关重要的环节。
一个良好的软件架构可以提供高效、可靠、可维护的系统,同时也能帮助开发团队更好地组织工作和合理分配任务。
本文将分析一些常用的软件架构设计方法和应用案例,并探讨其优缺点以及适用场景。
软件架构设计方法1. 面向对象设计(OOD)面向对象设计是一种常用的软件架构设计方法。
它将系统分解成不同的对象,对象之间通过消息传递进行通信和协作。
面向对象设计有利于模块化、重用和可扩展性。
2. 分层架构设计分层架构将软件系统划分为多个层次,每个层次都有特定的职责和功能。
常见的分层架构有MVC(Model-View-Controller)和三层架构(表示层、业务逻辑层、数据访问层)。
分层架构设计有助于实现松耦合、高内聚的系统,提高可测试性和可维护性。
3. 领域驱动设计(DDD)领域驱动设计是一种重点关注业务领域的软件架构设计方法。
它将软件系统划分为多个领域模型,每个领域模型都有自己的业务规则和逻辑。
领域驱动设计注重与业务专家的协作,帮助开发团队深入理解业务需求,降低开发风险。
4. 微服务架构微服务架构将软件系统拆分为一系列独立的小服务,每个服务都有自己的数据库和独立运行环境。
微服务架构具有高度可扩展性和灵活性,可以快速响应变化的业务需求。
然而,微服务架构也带来了分布式系统管理和治理的挑战。
软件架构应用案例分析1. 电子商务平台电子商务平台是一个复杂的软件系统,需要处理海量的交易数据和用户信息。
在架构设计中,采用分层架构可以将表示层、业务逻辑层和数据访问层分离,提高系统的可扩展性和可维护性。
考虑到并发访问量较大,可以采用微服务架构来实现各个功能模块的解耦和独立部署。
2. 物联网平台物联网平台需要处理大量的传感器数据和设备连接。
在架构设计中,可以采用微服务架构将逻辑拆分为多个小服务,每个服务负责处理特定类型的数据或设备。
同时,面向对象设计可以帮助模块化和重用各种传感器和设备的业务逻辑。
软件架构设计方法
软件架构设计方法
软件架构设计方法有很多种,下面列举几种常见的方法:
1. 面向对象分析和设计(OOAD):基于面向对象的思想,将系统分解为一系列的对象,并建立对象之间的关系。
2. 领域驱动设计(DDD):关注系统的业务领域,在设计时将领域内的对象和业务规则进行合理的组织。
3. 分层架构:将系统分为多个层次,每个层次负责不同的功能,层与层之间通过接口进行通信,提高了系统的可维护性和扩展性。
4. 服务导向架构(SOA):将系统的功能划分为一系列可独立部署和调用的服务,通过服务间的消息传递实现系统间的集成。
5. 领域模型驱动设计(DMDD):将系统的领域模型作为设计的核心,通过对领域模型的分析和设计,构建出系统的架构。
6. 数据驱动架构:将系统的数据作为设计的出发点,根据数据的特点和需求来设计系统的架构,以保证数据的高效存储和访问。
7. 敏捷架构:采用敏捷开发的方式进行架构设计,通过迭代和用户反馈不断调
整和优化系统的架构。
不同的软件项目和需求,适用不同的架构设计方法。
在实际项目中,可以根据项目的需求、规模和技术特点选择合适的架构设计方法。
架构模式、特征及实践指南
架构模式、特征及实践指南随着软件开发的不断发展,架构设计的重要性也越来越凸显。
本文将从架构模式、特征和实践指南三个方面进行讲解,帮助读者更好地理解架构设计的本质和实践。
一、架构模式架构模式是一种通用的解决方案,用于处理特定的技术或业务问题。
它可以帮助开发人员快速构建出合理的系统架构,避免重复劳动,提高开发效率。
常见的架构模式包括MVC、MVP、MVVM等。
1. MVC(Model-View-Controller)模式是一种将应用程序分为三个部分的架构模式,分别是模型、视图和控制器。
其中,模型负责处理数据,视图负责呈现数据,控制器负责协调模型和视图之间的交互。
2. MVP(Model-View-Presenter)模式是在MVC模式的基础上发展而来的一种架构模式。
在MVP模式中,Presenter充当了Controller 的角色,负责处理视图和模型之间的逻辑。
3. MVVM(Model-View-ViewModel)模式是一种基于MVP模式的架构模式。
在MVVM模式中,ViewModel是连接View和Model的桥梁,负责处理视图和模型之间的绑定关系。
二、架构特征架构特征是指在设计架构时需要考虑的一些关键因素,包括灵活性、可扩展性、可重用性、安全性、性能等。
1. 灵活性:灵活性是指系统具有适应变化的能力。
在架构设计中,需要考虑如何设计灵活的系统,以便在需求变化时能够快速响应。
2. 可扩展性:可扩展性是指系统能够适应未来的需求增长。
在架构设计中,需要考虑如何设计可扩展的系统,以便在需求增长时能够快速扩展系统。
3. 可重用性:可重用性是指系统中的组件能够被重复利用。
在架构设计中,需要考虑如何设计可重用的组件,以便在将来的开发中能够节省时间和成本。
4. 安全性:安全性是指保护系统免受恶意攻击和安全漏洞的能力。
在架构设计中,需要考虑如何设计安全的系统,以便保护系统的安全性。
5. 性能:性能是指系统的响应速度和吞吐量。
10个常见的软件架构模式
10个常见的软件架构模式软件架构模式是软件系统设计中的重要概念,用于描述软件系统组件之间的关系和交互方式。
常见的软件架构模式有很多种,下面介绍十个常见的软件架构模式。
1. 分层架构(Layered Architecture):分层架构将软件系统分为若干层次,每个层次都有特定的功能和职责。
分层架构可以提高系统的可维护性和可扩展性,因为每个层次可以独立开发、测试、维护和扩展。
2. 客户端-服务器架构(Client-Server Architecture):客户端-服务器架构将系统分为客户端和服务器两个部分。
客户端发送请求给服务器,服务器接收请求并进行相应的处理,然后将结果返回给客户端。
这种架构模式可以实现分布式计算,提高系统的性能和可靠性。
3. MVC架构(Model-View-Controller Architecture):MVC架构将系统分为模型(Model)、视图(View)和控制器(Controller)三个部分。
模型负责处理数据逻辑,视图负责显示用户界面,控制器负责协调模型和视图之间的交互。
MVC架构可以实现分离关注点,提高系统的可维护性。
4. 微服务架构(Microservices Architecture):微服务架构将软件系统分为一组小型、独立的服务。
每个服务都可以独立部署、运行和扩展,通过API进行通信。
微服务架构可以实现松耦合和高内聚,提高系统的可扩展性和可维护性。
5. 事件驱动架构(Event-Driven Architecture):事件驱动架构基于事件的触发和处理机制。
系统中的组件通过发布和订阅事件的方式进行通信。
事件驱动架构可以实现异步和解耦的系统设计,提高系统的可伸缩性和可扩展性。
6. 服务导向架构(Service-Oriented Architecture):服务导向架构将系统分为一组互相协作的服务。
每个服务都提供特定的功能,并通过标准化的接口进行通信。
服务导向架构可以实现松耦合和可重用的系统设计,提高系统的灵活性和可维护性。
软件架构设计的常用模型
软件架构设计的常用模型软件架构是指设计和构建软件系统的整体结构及其组成成分,这些成分包括软件的组织方式、运行方式、开发方式等方面。
软件架构设计是软件开发过程中的一个重要环节,影响着软件系统的质量、可维护性和可扩展性。
为了保证软件系统的可靠性和稳定性,软件架构设计需要采用一系列常用模型来进行分析和设计。
1. 分层模型分层模型是一个基于层次结构的软件架构设计模型,它将软件系统分为若干个层次化的模块,每个模块之间具有不同的职责和功能,在软件开发过程中可以逐层实现,从而提高软件的可维护性和可扩展性。
分层模型通常包括三个层次:表示层、应用层和数据层。
表示层是用户界面层,用于显示信息和接收用户输入,应用层是软件系统的核心层,用于处理业务逻辑和流程控制,数据层是软件系统的数据库层,用于存储和管理数据。
2. 客户端-服务器模型客户端-服务器模型是一种典型的分布式计算模型,它将软件系统的功能分为客户端和服务器两部分,客户端负责向用户提供界面和收集用户输入,服务器负责处理数据和提供服务。
客户端-服务器模型的优点在于可以实现分布式计算和分布式处理,提高软件系统的性能和可靠性。
3. MVC模型MVC模型是一种基于分层模型的软件架构设计模型,它将软件系统分为三个部分:模型、视图和控制器。
模型负责处理数据和业务逻辑,视图负责显示数据和用户界面,控制器负责协调模型和视图之间的交互。
MVC模型可以实现数据和业务逻辑的分离,同时支持多种用户界面和设备,提高软件系统的可用性和可扩展性。
4. 微服务模型微服务模型是一种全新的软件架构设计模型,它将软件系统分为若干个微服务,每个微服务负责独立的业务功能和服务,可以独立部署和维护。
微服务模型的优点在于能够实现快速部署和快速迭代,同时提高软件系统的可靠性和可扩展性。
总之,软件架构设计模型的选择与软件系统的需求密切相关,需要根据具体的业务场景和应用需求来进行选择和设计。
选择适合的软件架构设计模型,可以为软件系统的可靠性、可维护性和可扩展性提供保障,从而提高软件系统的整体质量和效率。
软件工程的软件架构设计
软件工程的软件架构设计软件架构设计是软件工程中至关重要的一环,它决定了软件系统的整体结构和组织方式。
一个好的软件架构设计能够提高软件的可维护性、可扩展性和可重用性,从而在软件开发过程中起到关键的作用。
本文将介绍软件工程中软件架构设计的概念、原则和常见的架构模式,并探讨其在实际项目中的应用。
一、概念和目标软件架构设计是指在软件开发过程中,对软件系统整体架构进行规划和设计的过程。
它主要包括选择适当的架构模式、定义关键组件和模块之间的接口和交互方式,以及确定系统层次结构和模块划分等内容。
软件架构设计旨在使软件系统具备良好的可维护性、可扩展性和可重用性,并且满足用户需求和系统功能的要求。
二、原则和准则在进行软件架构设计时,有一些重要的原则和准则需要遵循:1. 模块化:将系统分解成若干相对独立的模块,每个模块具有清晰的功能和职责,便于理解、维护和重用。
2. 松耦合:模块之间的依赖关系应尽量减少,并且要保持高内聚、低耦合的设计原则,以提高系统的灵活性和可扩展性。
3. 分层结构:将系统划分为若干层次,每一层次都有明确定义的角色和功能,以便于分工合作、复用和测试。
4. 可扩展性:软件架构应该具备良好的可扩展性,能够满足未来的需求变化和系统扩展的要求,减少系统重构的成本和风险。
5. 性能和安全性:架构设计需要考虑系统的性能要求和安全性需求,保证系统在高负载和恶意攻击等情况下的稳定性和可靠性。
6. 可测试性:良好的架构设计应该方便进行单元测试、集成测试和系统测试,以保证软件质量和稳定性。
三、常见的架构模式软件架构设计可以采用不同的架构模式进行实现,下面介绍几种常见的架构模式:1. 分层架构:将软件系统划分为若干层次,每一层次都有其特定的功能和职责。
常见的分层架构包括三层架构(Presentation、Business Logic、Data Access),N层架构等。
2. 客户端-服务器架构:将软件系统划分为客户端和服务器两个部分,客户端提供用户界面和交互逻辑,服务器提供数据处理和业务逻辑。
软件研发中的软件架构模式选型指南
软件研发中的软件架构模式选型指南在软件研发过程中,选择适合的软件架构模式对于项目的成功和高质量的交付至关重要。
不同的软件架构模式具有不同的特点和适用场景,因此在做出选择之前,开发团队需要详细了解并综合考虑各种因素。
本文将为您提供一份软件研发中的软件架构模式选型指南,帮助您做出明智的决策。
一、概述软件架构是指软件系统的结构和组织方式,它决定了系统中各个组件的职责和交互方式。
软件架构模式则是指在不同场景下可以采用的常见架构设计。
选取适合的软件架构模式可以提高系统的可扩展性、可维护性以及可靠性。
二、常见软件架构模式1. 分层架构模式分层架构模式将系统划分为若干层,每一层只与相邻的一层进行通信,从而实现了业务逻辑和数据持久化的分离。
这种模式适用于大型系统,可以提高系统的可维护性和可扩展性。
常见的分层架构模式包括三层架构和五层架构。
2. 客户端-服务器架构模式客户端-服务器架构模式将系统划分为客户端和服务器两部分,客户端发送请求,服务器进行处理并返回结果。
这种模式适用于分布式系统,可以将业务逻辑与界面分离,实现系统的高效通信和可扩展性。
3. MVC 架构模式MVC(Model-View-Controller)架构模式将系统划分为模型、视图和控制器三个组件。
模型负责处理数据逻辑,视图负责展示数据,控制器负责协调模型和视图之间的交互。
这种模式适用于需要频繁更新和修改的系统,可以实现业务逻辑和数据展示的分离。
4. 微服务架构模式微服务架构模式将系统拆分为一系列小型、独立的服务,每个服务负责一个特定的业务功能。
这种模式适用于大型系统,可以实现各个服务之间的解耦和独立部署,提高系统的灵活性和可扩展性。
5. 事件驱动架构模式事件驱动架构模式将系统设计为基于事件的异步通信方式。
系统中的各个组件通过触发和处理事件来进行通信,从而实现松耦合和高内聚。
这种模式适用于需要实时响应和高并发处理的系统,可以提高系统的性能和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种常用软件架构设计指南软件架构(software architecture)是一系列相关的抽象模式,用于指导大型软件系统各个方面的设计。
软件架构是一个系统的草图。
软件架构描述的对象是直接构成系统的抽象组件。
各个组件之间的连接则明确和相对细致地描述组件之间的通讯。
在实现阶段,这些抽象组件被细化为实际的组件,比如具体某个类或者对象。
在面向对象领域中,组件之间的连接通常用接口来实现。
软件体系结构的定义虽然软件体系结构已经在软件工程领域中有着广泛的应用,但迄今为止还没有一个被大家所公认的定义。
许多专家学者从不同角度和不同侧面对软件体系结构进行了刻画,较为典型的定义有:Dewayne Perry和A1ex Wo1f曾这样定义:软件体系结构是具有一定形式的结构化元素,即构件的集合,包括处理构件、数据构件和连接构件。
处理构件负责对数据进行加工,数据构件是被加工的信息,连接构件把体系结构的不同部分组组合连接起来。
这一定义注重区分处理构件、数据构件和连接构件,这一方法在其他的定义和方法中基本上得到保持。
Mary Shaw和David Garlan认为软件体系结构是软件设计过程中的一个层次,这一层次超越计算过程中的算法设计和数据结构设计。
体系结构问题包括总体组织和全局控制、通讯协议、同步、数据存取,给设计元素分配特定功能,设计元素的组织,规模和性能,在各设计方案间进行选择等。
软件体系结构处理算法与数据结构之上关于整体系统结构设计和描述方面的一些问题,如全局组织和全局控制结构、关于通讯、同步与数据存取的协议,设计构件功能定义,物理分布与合成,设计方案的选择、评估与实现等Kruchten指出,软件体系结构有四个角度,它们从不同方面对系统进行描述:概念角度描述系统的主要构件及它们之间的关系;模块角度包含功能分解与层次结构;运行角度描述了一个系统的动态结构;代码角度描述了各种代码和库函数在开发环境中的组织。
Hayes Roth则认为软件体系结构是一个抽象的系统规范,主要包括用其行为来描述的功能构件和构件之间的相互连接、接口和关系。
David Garlan和Dewne Perry于1995年在IEEE软件工程学报上又采用如下的定义:软件体系结构是一个程序/系统各构件的结构、它们之间的相互关系以及进行设计的原则和随时间进化的指导方针。
Barry Boehm和他的学生提出,一个软件体系结构包括一个软件和系统构件,互联及约束的集合;一个系统需求说明的集合;一个基本原理用以说明这一构件,互联和约束能够满足系统需求。
1997年,Bass,Ctements和Kazman在《使用软件体系结构》一书中给出如下的定义:一个程序或计算机系统的软件体系结构包括一个或一组软件构件、软件构件的外部的可见特性及其相互关系。
其中,"软件外部的可见特性"是指软件构件提供的服务、性能、特性、错误处理、共享资源使用等。
软件体系结构建模研究软件体系结构的首要问题是如何表示软件体系结构,即如何对软件体系结构建模。
根据建模的侧重点的不同,可以将软件体系结构的模型分为5种:结构模型、框架模型、动态模型、过程模型和功能模型。
在这5个模型中,最常用的是结构模型和动态模型。
结构模型这是一个最直观、最普遍的建模方法。
这种方法以体系结构的构件、连接件和其他概念来刻画结构,并力图通过结构来反映系统的重要语义内容,包括系统的配置、约束、隐含的假设条件、风格、性质。
研究结构模型的核心是体系结构描述语言。
框架模型框架模型与结构模型类似,但它不太侧重描述结构的细节而更侧重于整体的结构。
框架模型主要以一些特殊的问题为目标建立只针对和适应该问题的结构。
动态模型动态模型是对结构或框架模型的补充,研究系统的"大颗粒"的行为性质。
例如,描述系统的重新配置或演化。
动态可能指系统总体结构的配置、建立或拆除通信通道或计算的过程。
这类系统常是激励型的。
过程模型过程模型研究构造系统的步骤和过程。
因而结构是遵循某些过程脚本的结果。
功能模型该模型认为体系结构是由一组功能构件按层次组成,下层向上层提供服务。
它可以看作是一种特殊的框架模型。
这5种模型各有所长,也许将5种模型有机地统一在一起,形成一个完整的模型来刻画软件体系结构更合适。
例如,Kruchten在1995年提出了一个"4+1"的视角模型。
"4+1"模型从5个不同的视角包括逻辑视角、过程视角、物理视角、开发视角和场景视角来描述软件体系结构。
每一个视角只关心系统的一个侧面,5个视角结合在一起才能够反映系统的软件体系结构的全部内容。
图1 “4+1”视图模型逻辑架构逻辑架构主要支持功能性需求――即在为用户提供服务方面系统所应该提供的功能。
系统分解为一系列的关键抽象,(大多数)来自于问题域,表现为对象或对象类的形式。
它们采用抽象、封装和继承的原理。
分解并不仅仅是为了功能分析,而且用来识别遍布系统各个部分的通用机制和设计元素。
我们使用Rational/Booch 方法来表示逻辑架构,借助于类图和类模板的手段。
类图用来显示一个类的集合和它们的逻辑关系:关联、使用、组合、继承等等。
相似的类可以划分成类集合。
类模板关注于单个类,它们强调主要的类操作,并且识别关键的对象特征。
如果需要定义对象的内部行为,则使用状态转换图或状态图来完成。
公共机制或服务可以在类功能(class utilities)中定义。
对于数据驱动程度高的应用程序,可以使用其他形式的逻辑视图,例如E-R 图,来代替面向对象的方法(OO approach)。
图2 逻辑视图表示符号开发架构开发架构关注软件开发环境下实际模块的组织。
软件打包成小的程序块(程序库或子系统),它们可以由一位或几位开发人员来开发。
子系统可以组织成分层结构,每个层为上一层提供良好定义的接口。
系统的开发架构用模块和子系统图来表达,显示了"输出"和"输入"关系。
完整的开发架构只有当所有软件元素被识别后才能加以描述。
但是,可以列出控制开发架构的规则:分块、分组和可见性。
图3 开发视图的标识符号进程架构进程架构考虑一些非功能性的需求,如性能和可用性。
它解决并发性、分布性、系统完整性、容错性的问题,以及逻辑视图的主要抽象如何与进程结构相配合在一起-即在哪个控制线程上,对象的操作被实际执行。
进程架构可以在几种层次的抽象上进行描述,每个层次针对不同的问题。
在最高的层次上,进程架构可以视为一组独立执行的通信程序(叫作"processes")的逻辑网络,它们分布在整个一组硬件资源上,这些资源通过LAN 或者WAN 连接起来。
多个逻辑网络可能同时并存,共享相同的物理资源。
例如,独立的逻辑网络可能用于支持离线系统与在线系统的分离,或者支持软件的模拟版本和测试版本的共存。
图4 进程视图的标识符号物理架构物理架构主要关注系统非功能性的需求,如可用性、可靠性(容错性),性能(吞吐量)和可伸缩性。
软件在计算机网络或处理节点上运行,被识别的各种元素(网络、过程、任务和对象),需要被映射至不同的节点;我们希望使用不同的物理配置:一些用于开发和测试,另外一些则用于不同地点和不同客户的部署。
因此软件至节点的映射需要高度的灵活性及对源代码产生最小的影响。
图5 物理视图的标识符号场景架构四种视图的元素通过数量比较少的一组重要场景(更常见的是用例)进行无缝协同工作,我们为场景描述相应的脚本(对象之间和过程之间的交互序列)。
在某种意义上场景是最重要的需求抽象,它们的设计使用对象场景图和对象交互图来表示。
该视图是其他视图的冗余(因此"+1"),但它起到了两个作用:●作为一项驱动因素来发现架构设计过程中的架构元素。
●作为架构设计结束后的一项验证和说明功能,既以视图的角度来说明又作为架构原型测试的出发点。
场景表示法与组件逻辑视图非常相似(请对照图2),但它使用过程视图的连接符来表示对象之间的交互(请对照图4),注意对象实例使用实线来表达。
管道过滤器风格软件架构在管道/过滤器风格的软件体系结构中,每个构件都有一组输入和输出,构件读输入的数据流,经过内部处理,然后产生输出数据流。
这个过程通常通过对输入流的变换及增量计算来完成,所以在输入被完全消费之前,输出便产生了。
因此,这里的构件被称为过滤器,这种风格的连接件就象是数据流传输的管道,将一个过滤器的输出传到另一过滤器的输入。
此风格特别重要的过滤器必须是独立的实体,它不能与其它的过滤器共享数据,而且一个过滤器不知道它上游和下游的标识。
一个管道/过滤器网络输出的正确性并不依赖于过滤器进行增量计算过程的顺序。
图6 管道过滤器体系结构图7 数字通信系统粗略模型管道/过滤器风格的软件体系结构具有许多很好的特点:➢使得软构件具有良好的隐蔽性和高内聚、低耦合的特点;➢允许设计者将整个系统的输入/输出行为看成是多个过滤器的行为的简单合成;➢支持软件重用。
重要提供适合在两个过滤器之间传送的数据,任何两个过滤器都可被连接起来;➢系统维护和增强系统性能简单。
新的过滤器可以添加到现有系统中来;旧的可以被改进的过滤器替换掉;➢允许对一些如吞吐量、死锁等属性的分析;➢支持并行执行。
每个过滤器是作为一个单独的任务完成,因此可与其它任务并行执行。
但是,这样的系统也存在着若干不利因素。
➢通常导致进程成为批处理的结构。
这是因为虽然过滤器可增量式地处理数据,但它们是独立的,所以设计者必须将每个过滤器看成一个完整的从输入到输出的转换。
➢不适合处理交互的应用。
当需要增量地显示改变时,这个问题尤为严重。
➢因为在数据传输上没有通用的标准,每个过滤器都增加了解析和合成数据的工作,这样就导致了系统性能下降,并增加了编写过滤器的复杂性。
层次风格软件架构层次系统组织成一个层次结构,每一层为上层服务,并作为下层客户。
在一些层次系统中,除了一些精心挑选的输出函数外,内部的层只对相邻的层可见。
这样的系统中构件在一些层实现了虚拟机(在另一些层次系统中层是部分不透明的)。
连接件通过决定层间如何交互的协议来定义,拓扑约束包括对相邻层间交互的约束。
这种风格支持基于可增加抽象层的设计。
这样,允许将一个复杂问题分解成一个增量步骤序列的实现。
由于每一层最多只影响两层,同时只要给相邻层提供相同的接口,允许每层用不同的方法实现,同样为软件重用提供了强大的支持。
图8是层次系统风格的示意图。
层次系统最广泛的应用是分层通信协议。
在这一应用领域中,每一层提供一个抽象的功能,作为上层通信的基础。
较低的层次定义低层的交互,最低层通常只定义硬件物理连接。
图8 层次系统体系结构层次系统有许多可取的属性:➢支持基于抽象程度递增的系统设计,使设计者可以把一个复杂系统按递增的步骤进行分解;➢支持功能增强,因为每一层至多和相邻的上下层交互,因此功能的改变最多影响相邻的上下层;➢支持重用。