第二章+第四节噪声控制技术——吸声2010032...
合集下载
《物理性污染控制》噪声污染控制 吸声
A (100 10 5) 0.05 10 0.10 5 0.30 6.75 平方米
第2章 噪声污染控制 2.2 吸声
2.2.1 吸声系数与吸声量 (3)吸声系数的测量
接近于实际声场
入射角度: ① 无规入射吸声系数αT(混响室法); ② 垂直入射吸声系数α0 (驻波管法)。
为方便使用,一般将松散的多孔吸声材料加工为板、毡或砖等形状
32
第2章 噪声污染控制 2.2 吸声
2.2.2 多孔吸声材料 多孔吸声材料结构
33
第2章 噪声污染控制 2.2 吸声
2.2.2 多孔吸声材料 (3)吸声特性与影响因素
吸声特性:1)与入射角度和频率有关。
对高频声吸收效果好,对低频声吸收效果差。
抓拍系统通过声呐采集设备对鸣笛车辆声源 进行精准定位,再通过关联的相机抓拍取证,自 动识别车牌号码,并生成违法抓拍数据。
第2章 噪声污染控制 2.1 噪声控制技术概述
2.1.3 城市环境噪声控制
噪声管理 环境噪声功能区划
(1)1989年 《中华人民共和国环境噪声污染防治条例》 (2)1996年 《中华人民共和国环境噪声污染防治法》
4
上一讲回顾:
噪声的测量:
(1) 声级计 (2) 频谱分析仪(滤波器+声级计)
5
第二章 噪声污染控制
2.1 噪声控制技术概述 2.2 吸声 2.3 消声 2.4 隔声
第2章 噪声污染控制 2.1 噪声控制技术概述
2.1.1 噪声控制基本原理与途径
声源
传播途径
受体
基本原理:
(1)在声源处抑制噪声.降低激发
在材料表面和内部有无数的微细孔隙,这些孔隙相互贯通并且 与外界相通的吸声材料称作多孔吸声材料 构造特征:固定部分在空间组成骨架,使材料具有一定的形状(筋 络),筋络间存在许多贯通的微小间隙,具有一定的通气性能。
第2章 噪声污染控制 2.2 吸声
2.2.1 吸声系数与吸声量 (3)吸声系数的测量
接近于实际声场
入射角度: ① 无规入射吸声系数αT(混响室法); ② 垂直入射吸声系数α0 (驻波管法)。
为方便使用,一般将松散的多孔吸声材料加工为板、毡或砖等形状
32
第2章 噪声污染控制 2.2 吸声
2.2.2 多孔吸声材料 多孔吸声材料结构
33
第2章 噪声污染控制 2.2 吸声
2.2.2 多孔吸声材料 (3)吸声特性与影响因素
吸声特性:1)与入射角度和频率有关。
对高频声吸收效果好,对低频声吸收效果差。
抓拍系统通过声呐采集设备对鸣笛车辆声源 进行精准定位,再通过关联的相机抓拍取证,自 动识别车牌号码,并生成违法抓拍数据。
第2章 噪声污染控制 2.1 噪声控制技术概述
2.1.3 城市环境噪声控制
噪声管理 环境噪声功能区划
(1)1989年 《中华人民共和国环境噪声污染防治条例》 (2)1996年 《中华人民共和国环境噪声污染防治法》
4
上一讲回顾:
噪声的测量:
(1) 声级计 (2) 频谱分析仪(滤波器+声级计)
5
第二章 噪声污染控制
2.1 噪声控制技术概述 2.2 吸声 2.3 消声 2.4 隔声
第2章 噪声污染控制 2.1 噪声控制技术概述
2.1.1 噪声控制基本原理与途径
声源
传播途径
受体
基本原理:
(1)在声源处抑制噪声.降低激发
在材料表面和内部有无数的微细孔隙,这些孔隙相互贯通并且 与外界相通的吸声材料称作多孔吸声材料 构造特征:固定部分在空间组成骨架,使材料具有一定的形状(筋 络),筋络间存在许多贯通的微小间隙,具有一定的通气性能。
噪声控制-吸声技术
(8)构件填料要均匀,对于松散材料,不因自重而下沉。对洁净 度要求较高的场合,材料不发脆而掉渣,也无纤维飞絮等飘散。
(9)就地取材,价格便宜。
2. 吸声系数、吸声量和声阻抗
吸声系数
Ea Ei Er 1 r Ei Ei
Ei为入射声能,Ea为被材料或结构吸收的 声能, Er为被材料或结构反射的声能,r为反 射系数。
0.61
0.56 0.27 0.34 0.34
—
— 0.20 0.45 — 驻波管
90
1500
0.18
0.41
0.40
0.35
0.38
—
驻波管
部分泡沫状吸声制品吸声系数
材料(结构) 名称 0 吸声泡沫玻 璃+空腔/ (mm) 50 100 150 200 聚氨酯泡沫塑料 厚度 /(mm) 25 25 25 25 25 20 20 40 聚氨酯泡沫塑料(聚醚)流 阻率2.8×104瑞利/m 60 体积密度 /(kg/m3) 250~280 250~280 250~280 250~280 250~280 43
1 2
tg 1{2 1 a N sin(2b} / c}
为相对法向声阻抗率, 为相对法向声阻抗率 的模,Φ为相对法向声阻抗率的辐角,v为相对法
向声抗率,u为相对法向声阻率。
aN与as的换算
驻波管法吸声系数aN 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 混响室法吸声系数 as 0.25 0.40 0.50 0.60 0.75 0.85 0.90 0.98
部分纤维状吸声材料及制品吸声系数
材料(结构)名称 软质木纤维板厚板材 软质木纤维板半穿板 软质木纤维板 棉絮
噪声控制技术-第二章声学基础
2mepp1声压和声压级声音种类声压声音种类声压正常人耳能听到最弱声2声音种类声压声音种类声压正常人耳能听到最弱声2105织布车间2普通说话声1m远处2织布车间2普通说话声1m远处2102柴油发动机球磨机20公共汽车内02喷气飞机起飞200柴油发动机球磨机20公共汽车内02喷气飞机起飞200日常生活中声音的声压数据pa?声压级
[例1] 当声压为原来声压的 (a)加倍;(c)十倍; (b)减半;(d)十分之一 时分别求声压级的变化。 [例2] 声压增加20%,求声压级Lp的变化量。
2)声强和声强级:
声波的总能量(设媒质体积为V0):
动能: 势能:
p2 Ek = V 2 0 2 0c p2 Ep = V 2 0 2 0c
1)声功率的合成 总声功率和各声源功率之间的关系式:
W W1 W2 Wn
根据声功率级的定义:
W LW 10 lg 10 lg(W1 W2 Wn ) 10 lg W0 W0 10 lg(W1 W2 Wn ) 120
2.2.3 声级的计算
噪声控制技术
内容提要
1.绪论 6.吸收处理技术
2.声学基础
3.噪声测量技术
7.隔声技术
8.消声技术 9.阻尼与隔振技术
4.噪声评价方法及标准
5.噪声污染控制概论
2 声学基础
2.1声波的基本性质
2.2 声音的量度
2.3 声音的频谱 2.4声音的传播特性
2.1 声波的基本性质
1、声音的产生
★在物理学中,将在气体、液体、固体中传播的机械 振动称为声振动。声振动的传播过程称为声波。 ★声波:依靠介质质点的震动向外传播,声波的频率与 振动的频率相同。 ★声场:有声波传播的空间叫声场。 声音传播的实质:物体振动形式的传播(声振动的 传播)。
[例1] 当声压为原来声压的 (a)加倍;(c)十倍; (b)减半;(d)十分之一 时分别求声压级的变化。 [例2] 声压增加20%,求声压级Lp的变化量。
2)声强和声强级:
声波的总能量(设媒质体积为V0):
动能: 势能:
p2 Ek = V 2 0 2 0c p2 Ep = V 2 0 2 0c
1)声功率的合成 总声功率和各声源功率之间的关系式:
W W1 W2 Wn
根据声功率级的定义:
W LW 10 lg 10 lg(W1 W2 Wn ) 10 lg W0 W0 10 lg(W1 W2 Wn ) 120
2.2.3 声级的计算
噪声控制技术
内容提要
1.绪论 6.吸收处理技术
2.声学基础
3.噪声测量技术
7.隔声技术
8.消声技术 9.阻尼与隔振技术
4.噪声评价方法及标准
5.噪声污染控制概论
2 声学基础
2.1声波的基本性质
2.2 声音的量度
2.3 声音的频谱 2.4声音的传播特性
2.1 声波的基本性质
1、声音的产生
★在物理学中,将在气体、液体、固体中传播的机械 振动称为声振动。声振动的传播过程称为声波。 ★声波:依靠介质质点的震动向外传播,声波的频率与 振动的频率相同。 ★声场:有声波传播的空间叫声场。 声音传播的实质:物体振动形式的传播(声振动的 传播)。
【精选】噪声控制技术精讲幻灯片
L50——在测量时间内有50%的时间A 声级超过的值, 相当于噪声的平均中值;
L90——在测量时间内有90%的时间A 声级超过的值, 相当于噪声的平均本底值。
LAeq≈ L50 +( L10- L90)2/60
4. 昼夜等效声级Ldn
(1)昼间:是指6:00至22:00之间的时段; (2)夜间:是指22:00至次日6:00之间的时段。 (3)昼间等效声级 :在昼间时段内测得的等效连续A 声
A计权网络不同频率的修正值如下:
频率/HZ A计权修正值/dB
31.5
-39.4
63
-26.2
125
-16.1
250
-8.6
500
-3.2
1000
0
2000
+1.2
4000
+1.0
8000
-1.1
16000
-6.6
2. 等效连续A声级LAeq
对于声级起伏或不连续的噪声,A声级很难 确切的反映噪声的状况。对于这种非稳态的噪 声,常用等效连续A声级来评价。等效连续A声 级指在规定测量时间T内A 声级的能量平均值, 用LAeq,T 表示(简写为Leq),单位dB(A)。根 据定义,等效声级表示为:
(2)声功率级:
Lw =10lg(W/W0) 其中:W0 = 10-12 W。 (3)声压级与声功率级的关系 全空间:Lp = LW - 20 lgr -11 半空间:Lp = LW - 20 lgr - 8
3. 声压级的相加 (1)叠加公式:
Lp =10lg(100.1Lp1+100.1Lp2+......+100.1Lpn)
第三讲 工业噪声测量
♣ 噪声的测量仪器——声级计 ♣ 工业噪声的测量方法
L90——在测量时间内有90%的时间A 声级超过的值, 相当于噪声的平均本底值。
LAeq≈ L50 +( L10- L90)2/60
4. 昼夜等效声级Ldn
(1)昼间:是指6:00至22:00之间的时段; (2)夜间:是指22:00至次日6:00之间的时段。 (3)昼间等效声级 :在昼间时段内测得的等效连续A 声
A计权网络不同频率的修正值如下:
频率/HZ A计权修正值/dB
31.5
-39.4
63
-26.2
125
-16.1
250
-8.6
500
-3.2
1000
0
2000
+1.2
4000
+1.0
8000
-1.1
16000
-6.6
2. 等效连续A声级LAeq
对于声级起伏或不连续的噪声,A声级很难 确切的反映噪声的状况。对于这种非稳态的噪 声,常用等效连续A声级来评价。等效连续A声 级指在规定测量时间T内A 声级的能量平均值, 用LAeq,T 表示(简写为Leq),单位dB(A)。根 据定义,等效声级表示为:
(2)声功率级:
Lw =10lg(W/W0) 其中:W0 = 10-12 W。 (3)声压级与声功率级的关系 全空间:Lp = LW - 20 lgr -11 半空间:Lp = LW - 20 lgr - 8
3. 声压级的相加 (1)叠加公式:
Lp =10lg(100.1Lp1+100.1Lp2+......+100.1Lpn)
第三讲 工业噪声测量
♣ 噪声的测量仪器——声级计 ♣ 工业噪声的测量方法
噪声控制技术——吸声幻灯片PPT
定义:吸声系数与吸声面积的乘积
A S
式中 A ——吸声量,m2;
——某频率声波的吸声系数;
S ——吸声面积,m2。
【注】工程上通常采用吸声量评价吸声材料的 实际吸声效果。
(二) 吸声量〔等效吸声面积〕
总吸声量:假设组成室内各壁面的材料不同, 那么壁面在某频率下的总吸声量为
n
n
AAi iSi
i1
i1
A 式中
i
——第i种材料组成的壁面的吸声
量,mS2i ;
i ——第i种材料组成的壁面的面积,
一 吸声材料
(一) 吸声系数 (二) 吸声量 (三) 多孔吸声材料
多孔吸声材料
多孔吸声材料是应用最广泛的吸声材料。
最初的多孔吸声材料以麻、棉、棕丝、毛发、 甘蔗渣等天然动植物纤维为主; 目前则以玻璃棉、矿渣棉等无机纤维为主。
吸声材料可以是松散的,也可以加工成棉 絮状或粘结成毡状或板状。
(二) 多孔吸声材料
木丝板吸声材料
多孔槽型木质吸声材料
KTV软包阻燃吸声材料
木质穿孔吸声板
丝质吸声材料
混凝土复合吸声型声屏障
轻质复合吸声型声屏障
吸声门
吸声体
吸声材料构造特性
材料的孔隙率要高,一般在70%以上, 多数到达90%左右;
偏差较大,但比较接近实际情况。 在吸声减噪设计中采用。
驻波管法吸声系数(垂直入射吸声系数)
驻波管法简便、准确, 但与一般实际声场不 符。
用于测试材料的声学 性质和鉴定。
设计消声器。
驻波管法吸声系数测试仪
一 吸声材料
(一) 吸声系数 (二) 吸声量 (二) 多孔吸声材料
(二) 吸声量〔等效吸声面积〕
孔隙应该尽可能细小,且均匀分布; 微孔应该是相互贯穿,而不是封闭的; 微孔要向外敞开,使声波易于进入微孔
A S
式中 A ——吸声量,m2;
——某频率声波的吸声系数;
S ——吸声面积,m2。
【注】工程上通常采用吸声量评价吸声材料的 实际吸声效果。
(二) 吸声量〔等效吸声面积〕
总吸声量:假设组成室内各壁面的材料不同, 那么壁面在某频率下的总吸声量为
n
n
AAi iSi
i1
i1
A 式中
i
——第i种材料组成的壁面的吸声
量,mS2i ;
i ——第i种材料组成的壁面的面积,
一 吸声材料
(一) 吸声系数 (二) 吸声量 (三) 多孔吸声材料
多孔吸声材料
多孔吸声材料是应用最广泛的吸声材料。
最初的多孔吸声材料以麻、棉、棕丝、毛发、 甘蔗渣等天然动植物纤维为主; 目前则以玻璃棉、矿渣棉等无机纤维为主。
吸声材料可以是松散的,也可以加工成棉 絮状或粘结成毡状或板状。
(二) 多孔吸声材料
木丝板吸声材料
多孔槽型木质吸声材料
KTV软包阻燃吸声材料
木质穿孔吸声板
丝质吸声材料
混凝土复合吸声型声屏障
轻质复合吸声型声屏障
吸声门
吸声体
吸声材料构造特性
材料的孔隙率要高,一般在70%以上, 多数到达90%左右;
偏差较大,但比较接近实际情况。 在吸声减噪设计中采用。
驻波管法吸声系数(垂直入射吸声系数)
驻波管法简便、准确, 但与一般实际声场不 符。
用于测试材料的声学 性质和鉴定。
设计消声器。
驻波管法吸声系数测试仪
一 吸声材料
(一) 吸声系数 (二) 吸声量 (二) 多孔吸声材料
(二) 吸声量〔等效吸声面积〕
孔隙应该尽可能细小,且均匀分布; 微孔应该是相互贯穿,而不是封闭的; 微孔要向外敞开,使声波易于进入微孔
噪声控制技术—吸声隔声消声
噪声控制技术 ——吸声、隔声、消声
噪声控制技术—吸声
室内噪声的来源:
通过空气传来的直达声 室内各墙壁面反射回来的混响声
室内混响声对环境的影响:
❖ 混响使室内噪声级增加,如一列火车进 入隧道以后的噪声级比行驶在空旷的野 外可高出5-10dB;
❖ 混响对听觉的干扰;
▪ 吸声是噪声污染控制的一种重要手段;
0
0.06
0.12
0.20
0.21
0.60
0.68
3
0.28
0.40
0.33
0.32
0.37
0.26
木质纤维板
1.1
0
0.06
0.15
0.28
0.30
0.33
0.31
5
0.22
0.30
0.34
0.32
0.41
0.42
泡沫水泥
5
0
0.32
0.39
0.48
0.49
0.47
0.54
5
0.42
0.40
0.43
0.48
0.49
0.55
2)穿孔板共振吸声结构
2.1)单腔共振吸声结构
共振频率:
V
t
f0
c
2
S Vlk
d
其中:
S:孔面积,m2 V:空腔体积,m3 lk:小孔有效颈长,m
2.2)多孔共振吸声结构
刚性壁面
t
V
D
d
假设:S:每各孔面积, m2
F:共振单元薄板面积, m2
h:空腔深度,m
lk:小孔有效颈长,m
穿孔率P=S/F 其共振频率为
f0
c
噪声控制技术—吸声
室内噪声的来源:
通过空气传来的直达声 室内各墙壁面反射回来的混响声
室内混响声对环境的影响:
❖ 混响使室内噪声级增加,如一列火车进 入隧道以后的噪声级比行驶在空旷的野 外可高出5-10dB;
❖ 混响对听觉的干扰;
▪ 吸声是噪声污染控制的一种重要手段;
0
0.06
0.12
0.20
0.21
0.60
0.68
3
0.28
0.40
0.33
0.32
0.37
0.26
木质纤维板
1.1
0
0.06
0.15
0.28
0.30
0.33
0.31
5
0.22
0.30
0.34
0.32
0.41
0.42
泡沫水泥
5
0
0.32
0.39
0.48
0.49
0.47
0.54
5
0.42
0.40
0.43
0.48
0.49
0.55
2)穿孔板共振吸声结构
2.1)单腔共振吸声结构
共振频率:
V
t
f0
c
2
S Vlk
d
其中:
S:孔面积,m2 V:空腔体积,m3 lk:小孔有效颈长,m
2.2)多孔共振吸声结构
刚性壁面
t
V
D
d
假设:S:每各孔面积, m2
F:共振单元薄板面积, m2
h:空腔深度,m
lk:小孔有效颈长,m
穿孔率P=S/F 其共振频率为
f0
c
噪声控制
隔声罩结 A计权隔 构形式 声量 (DB)
固定密封 型隔声罩 30-40
隔声罩结 A计权隔 构形式 声量 (DB)
局部敞开 10-20 式隔声罩
活动密封 15-30 型隔声罩
带有通风 15-25 散热消声 器
隔声罩设计原则: 1)壁罩宜采用0.5-2mm厚的钢板或,铝板等轻薄密实的材料 制作 2)壁面加筋,涂贴阻尼层 3)罩体与声源设备、机座之间不能有刚性接触;与地面间 隔振。 4)开隔声门、窗,缝隙处必须密封,且管线周围应有减震 密封装置 5)罩内壁采取吸声处理,使用多孔松散材料时,要有牢固 的护面层 6)尽量少用方形平行罩,罩内壁与设备之间留有较大空间, 一般为设备所占空间的三分之一以上,个内壁面与设备的距 离不小于10cm。 7)注意通风和散热,进出风口应增加消声器等设备。
2.4不同吸声手段的性能比较
材料高频有效
结构低频有效
3 隔声技术
采用适当的隔声措施一般能降低噪声级15dB~20dB。
隔声方式
• 单层均质墙 1)质量定律:单层均质墙的 隔声量不仅与单位面积隔墙 质量的常用对数成正比,且 与入射声波频率的常用对数 成正比。
2)吻合效应:因声波入射 角度造成的声波作用与隔墙 中弯曲波传播速度相吻合, 会导致隔声量降低。加大板 的阻尼可减少吻合效应的影 响。
冷却塔噪声综合控制
• 噪声声源分析 1)风机噪声:主要是空气动力性噪声, 集中在31.5 2000HZ之间。 2)机械噪声:齿轮啮合产生的撞击不摩擦,滚动轰承。 3)电动机噪声:电磁力引起的噪声声频 100—4000HZ 4) 淋水噪声:总声级仅次于风机。水量的大小不噪声大小 直接相关,受水池的水深,水滴细化程度均有影响。 5)水泵噪声。
1.劲度控制: TL∝K/f,随f增加, TL下降6dB/倍频程; 2.板共振区(阻尼控 制): 区的宽度取决于结构 形状、边界条件和结 构的阻尼大小; 3.质量控制区: 增大f,TL增大。 共振基频( 5~20Hz) 临界吻合频率
第二章第四节(二)吸声选编
内部。
7.2.3 多孔吸声材料的吸声特性
2.影响材料吸声的因素
a.材料的空气流阻 b.材料的密度或孔隙率 c.材料厚度的影响 d.材料后空气层的影响 e.材料装饰面的影响 f. 温度、湿度的影响
a.材料的空气流阻(Rf)
定义:
在稳定气流状态下,吸声材料中的压力梯度与气流
4.穿孔板吸声结构
单孔时系统共振频率:
f0
c
2
S , d V (t ) 4
多孔时系统共振频率:
f0
c
2
P
L(t )
4.穿孔板吸声结构
穿孔率(P)=穿孔面积/总面积 穿孔面积越大,吸声频率越高。 吸声频带:低中频噪声, 吸声系数:0.4-0.7 薄板厚度:2-5mm 孔 径:2-4mm 穿孔率:1%-10%
作用: 保护吸声材料,防止污染环境。 种类: 护面网罩、纤维布、塑料薄膜和穿孔板等。 要求: 要有良好的通气性。
f. 温度、湿度的影响
常用吸声材料的使用情况
主要种类 常用材料实例
使用情况
有机
纤维
材料
纤 维
无机
材 纤维
料 材料
动物纤维:毛毡 植物纤维:麻绒、海草、椰子丝 玻璃纤维:中粗棉、超细棉、玻璃棉毡 矿渣棉:散棉、矿棉毡
P u
3.声阻抗
ZS R jZ
声阻: 反映材料阻性的影响。 声抗: 反映材料惯性和弹性的影响,和频率成一定 的函数关系。 *声抗/声阻:表示材料的频率选择性。
3.声阻抗
c.声学意义:
对自由平面声波: ZS 0c
平面声波从空气中入射到材料表面时:
1 rP 2
7.2.3 多孔吸声材料的吸声特性
2.影响材料吸声的因素
a.材料的空气流阻 b.材料的密度或孔隙率 c.材料厚度的影响 d.材料后空气层的影响 e.材料装饰面的影响 f. 温度、湿度的影响
a.材料的空气流阻(Rf)
定义:
在稳定气流状态下,吸声材料中的压力梯度与气流
4.穿孔板吸声结构
单孔时系统共振频率:
f0
c
2
S , d V (t ) 4
多孔时系统共振频率:
f0
c
2
P
L(t )
4.穿孔板吸声结构
穿孔率(P)=穿孔面积/总面积 穿孔面积越大,吸声频率越高。 吸声频带:低中频噪声, 吸声系数:0.4-0.7 薄板厚度:2-5mm 孔 径:2-4mm 穿孔率:1%-10%
作用: 保护吸声材料,防止污染环境。 种类: 护面网罩、纤维布、塑料薄膜和穿孔板等。 要求: 要有良好的通气性。
f. 温度、湿度的影响
常用吸声材料的使用情况
主要种类 常用材料实例
使用情况
有机
纤维
材料
纤 维
无机
材 纤维
料 材料
动物纤维:毛毡 植物纤维:麻绒、海草、椰子丝 玻璃纤维:中粗棉、超细棉、玻璃棉毡 矿渣棉:散棉、矿棉毡
P u
3.声阻抗
ZS R jZ
声阻: 反映材料阻性的影响。 声抗: 反映材料惯性和弹性的影响,和频率成一定 的函数关系。 *声抗/声阻:表示材料的频率选择性。
3.声阻抗
c.声学意义:
对自由平面声波: ZS 0c
平面声波从空气中入射到材料表面时:
1 rP 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2-117)
【讨论】: 表示材料吸声能力的大小, 值在0~1之 间, 值愈大,材料的吸声性能愈好; =0,声波 完全反射,材料不吸声; =1,声能全部被吸收。
吸声系数的影响因素
材料的性质
2
材料的结构
1
3
使用条件
吸声系数 影响因素
声波频率
5
4
声波入射角 度
【声波频率】
同种吸声材料对不同频率的声波具有不同的吸声
保温吸声层
阻燃吸声板 羊毛阻燃吸声板
外墙保温吸声层
注意特殊的使用条件,如腐蚀、高温或火焰等情况对多孔材料的影响。
第二章
噪声污染及其控制
第四节 噪声控制技术——吸声
一
吸声材料
二
吸声结构
三 室内吸声降噪
二
吸声结构
吸声处理中常采用吸声结构。 吸声结构机理:赫姆霍兹共振吸声原理 常用的吸声结构
3
空腔对吸声性能的影响
图2-16 背后空气层厚度对吸声性能的影响
空腔:材料层与刚性壁之间一定距离的空气层; 吸声系数随腔深D(空气层)增加而增加; 空腔结构节省材料,比单纯增加材料厚度更经济。
3
空腔对吸声性能的影响
多孔材料的吸声系数随空气层厚度增加而增加,
但增加到一定厚度后,效果不再继续明显增加。
龙骨 空气层 1-刚性壁面
龙骨
3—阻尼材料
4—薄板
采用组合不同单元或不同腔 深的薄板结构,或直接采用 木丝板、草纸板等可吸收中、 高频声的板材,拓宽吸声频 带。
在薄板结构边缘(板-龙骨 交接处)填置能增加结构阻 尼的软材料,如泡沫塑料条、 软橡皮、海绵条、毛毡等, 增大吸声系数。
图2-15
不同厚度的超细玻璃棉的吸声系数
理论证明,若吸声材料层背后 为刚性壁面,最佳吸声频率出 现在材料的厚度等于该频率声 波波长的1/4处。使用中,考虑 经济及制作的方便,对于中、 高频噪声,一般可采用2~5cm 厚的成形吸声板;对低频吸声 要求较高时,则采用厚度为5~ 10cm的吸声板。
2 孔隙率与密度
0.4 0.60
0.5 0.75
0.6 0.85
0.7 0.90
0.8 0.98
0.9 1
混响室:声学实验室
混响室法吸声系数(无规入射吸声系数) :
在混响室中,使不同频率的声波以相等几率从
各个角度入射到材料表面,测得的吸声系数。
测试较复杂,对仪器设备要求高,且数值往往
偏差较大,但比较接近实际情况。
吸声性能的影响因素
孔隙率与密度
2
厚度
1
3
空腔
吸声性能 影响因素 使用环境
5 4
护面层
1
厚度对吸声性能的影响
由实验测试可知: 同种材料,厚度增加一倍,吸声最佳频 率向低频方向近似移动一个倍频程 厚度越大,低频时吸声系数越大; >2000Hz,吸声系数与材料厚度无关; 增加厚度,可提高低频声的吸收效果, 对高频声效果不大。
混响室法吸声系数(无规入射吸声系数) T
驻波管法吸声系数(垂直入射吸声系数) 0 应用:测量材料的垂直入射吸声系数 0 ,按
表2-11,将 0 换算为无规入射吸声系数 T 。
表2-11 0 与 T 的换算关系
0 T
0.1 0.25
0.2 0.40
0.3 0.50
第二章
噪声污染及其控制
第四节 噪声控制技术——吸声
一
吸声材料
二
吸声结构
三 室内吸声降噪
一
吸声材料
(一) 吸声系数
(二) 吸声量 (二) 多孔吸声材料
(一) 吸声系数
吸声材料:能吸收消耗一定声能的材料。 吸声系数:材料吸收的声能( Ea )与入射到
材料上的总声能( Ei )之比,即
Ea Ei
孔隙率:材料内部的孔洞体积占材料总体积的
百分比。
一般多孔吸声材料的孔隙率>50%; 孔隙率增大,密度减小,反之密度增大; 一种多孔吸声材料对应存在一个最佳吸声性能
的密度范围。 【讨论】密度太大或太小都会影响材料的吸声性能。
若厚度不变,增大多孔吸声材料密度,可提高低中频 的吸声系数,但比增大厚度所引起的变化小,且高频 吸收会有所下降。
系数。
平均吸声系数 :工程中通常采用125Hz、250 Hz、500 Hz、1000 Hz、2000 Hz、4000 Hz六个频
率的吸声系数的算术平均值表示某种材料的平均 吸声系数。
通常,吸声材料 在0.2以上,理想吸声材料 在0.5以上。
【入射吸声系数】工程设计中常用的吸声系数有
A S
(2-108)
式中 A ——吸声量,m2; ——某频率声波的吸声系数; S ——吸声面积,m2。
【注】工程上通常采用吸声量评价吸声材料的
实际吸声效果。
(二) 吸声量(等效吸声面积)
总吸声量:若组成室内各壁面的材料不同,则
壁面在某频率下的总吸声量为
A Ai i Si
木质穿孔吸声板
丝质吸声材料
混凝土复合吸声型声屏障
轻质复合吸声型声屏障
吸声门
吸声体
吸声罩
多孔吸声材料
多孔吸声材料是应用最广泛的吸声材料。
最初的多孔吸声材料以麻、棉、棕丝、毛发、
甘蔗渣等天然动植物纤维为主;
目前则以玻璃棉、矿渣棉等无机纤维为主。
吸声材料可以是松散的,也可以加工成棉
絮状或粘结成毡状或板状。
1 吸声原理
声波入射到多孔吸声材料的表面时,部
分声波反射,部分声波透入材料内部微孔 内,激发孔内空气与筋络发生振动,空气 与筋络之间的摩擦阻力使声能不断转化为 热能而消耗;空气与筋络之间的热交换也 消耗部分声能,从而达到吸声的目的。
2.吸声特性及影响因素
特性:高频声吸收效果好,低频声吸收效 果差。 原因:低频声波激发微孔内空气与筋络的 相对运动少,摩擦损小,因而声能损失少, 而高频声容易使振动加快,从而消耗声能 较多。所以多孔吸收材料常用于高中频噪 声的吸收。
当腔深D近似等于入/2波长或其整倍数时,吸声系数最小。 一般推荐取腔深为5~10cm。
天花板上的腔深可视实际需要及空间大小选取较
大的距离。
4 护面层对吸声性能的影响
实际使用中,为便于固定和美观,往往要对
疏松材质的多孔材料作护面处理。
(一)薄板共振吸声结构
(二)穿孔板共振吸声结构
(三)微穿孔板吸声结构
(一)薄板共振吸声结构
机理:声波入射引起薄板振动,薄板振动克服自身阻尼和 板-框架间的摩擦力,使部分声能转化为热能而耗损。当入 射声波的频率与振动系统的固有频率相同时,发生共振,薄 板弯曲变形最大,振动最剧烈,声能消耗最多。 结构
【讨论】 M 增大或 D 增加,共振频率下降。
通常取薄板厚度3~6mm,空气层厚度3~10mm,共振
频率多在80~300Hz之间,故一般用于低频吸声;
吸声频率范围窄,吸声系数不高,约为0.2~0.5。
改善薄板共振吸声性能的措施:
在空腔中,沿框架四周 放置多孔吸声材料,如 矿棉、玻璃棉等。
气流
通风管道和消声器内
及空气粘滞性变化, 影响材料吸声性能。 温度升高,吸声性能 向高频方向移动; 温度降低则向低频方
向移动。
料含水率变化。 湿度增大,孔隙吸水量 增加,堵塞细孔,吸声系 数下降,先从高频开始。 湿度较大环境应选用耐 潮吸声材料。
气流易吹散多孔材料, 吸声效果下降; 飞散的材料会堵塞管 道,损坏风机叶片; 应根据气流速度大小 选择一层或多层不同 的护面层。
在吸声减噪设计中采用。
驻波管法吸声系数(垂直入射吸声系数)
驻波管法简便、精确,
但与一般实际声场不 符。
用于测试材料的声学
性质和鉴定。
设计消声器。
驻波管法吸声系数测试仪
一
吸声材料
(一) 吸声系数
(二) 吸声量 (二) 多孔吸声材料
(二) 吸声量(等效吸声面积)
定义:吸声系数与吸声面积的乘积
护面层的要求:
良好的透气性; 微穿孔护面板穿孔率应大于20%,否则会影响高频
吸声效果;
透气性较好的纺织品对吸声特性几乎没有影响。
对成型多孔材料板表面粉饰时,应采用水质涂料
喷涂,不宜用油漆涂刷,以防止涂料封闭孔隙。
5 使用环境对吸声性能的影响
温度
温度引起声速、波长
湿度
空气湿度引起多孔材
i 1 i 1
n
n
(2-109)
式中
Ai ——第i种材料组成的壁面的吸声量,m2; S i ——第i种材料组成的壁面的面积,m2;
i ——第i种材料在某频率下的吸声系数。
一
吸声材料
(一) 吸声系数
(二) 吸声量 (三) 多孔吸声材料
(二) 多孔吸声材料
木丝板吸声材料
多孔槽型木质吸声材料
KTV软包阻燃吸声材料
第二章 噪声污染及其控制
第一节 概述 第二节 声学基础 第三节 噪声的评价和标准 第四节 噪声控制技术——吸声 第五节 噪声控制技术——隔声 第六节 噪声控制技术——消声 第七节 噪声控制技术——有源噪声控制简介
第二章
噪声污染及其控制
第四节 噪声控制技术——吸声
吸声降噪是控制室内噪声常用的技术措施。 通过吸声材料和吸声结构来降低噪声的技 术称为吸声。 一般情况下,吸声控制能使室内噪声降低 约3~5dB(A),使噪声严重的车间降噪6~10 dB(A)。
1-刚性壁面
龙骨
空气层
龙骨
3—阻尼材料
入射声波
4—薄板
薄金属板、胶合板、 硬质纤维板、石膏板等