材料物理课程总结 PPT课件

合集下载

《材料物理总复习》PPT课件

《材料物理总复习》PPT课件
• (1)材料必须多孔,并且相互连通的气孔 要多。 • (2)吸声材料应不易虫蛀、腐朽,且不易 燃烧。 • (3)吸声材料强度一般较低,应设置在墙 裙以上,以免碰撞破坏。 • (4)吸声材料均匀分布在室内各个表面上, 不应只集中在天花板或墙壁的局部。
完整版课件ppt
72
完整版课件ppt
73
完整版课件ppt
50
完整版课件ppt
51
动画
完整版课件ppt
52
完整版课件ppt
53
完整版课件ppt
54
完整版课件ppt
55
完整版课件ppt
56
完整版课件ppt
57
完整版课件ppt
58
完整版课件ppt
59
完整版课件ppt
60
第六章 材料的声学
• 6.1 声波的产生与传播 • 6.2 室内声波和吸声材料 • 6.3 水中声学和水声材料 • 6.4 其他声学及其材料
完整版课件ppt
43
完整版课件ppt
44
完整版课件ppt
45
光在材料中传播时,遇到不均匀的结构产生的次级波, 与主波方向不一致,会与主波合成出现干涉现象,使光 偏离原来的方向,从而引起散射现象。
完整版课件ppt
46
完整版课件ppt
47
完整版课件ppt
48
动画
完整版课件ppt
49
完整版课件ppt
完整版课件ppt
41
完整版课件ppt
42
• 为什么金属材料的吸收系数大?而绝缘材 料的吸收系数小?
• 金属的价电子处于未满带,吸收光子后呈激发态,发生碰 撞而发热。金属和半导体吸收系数都很大。
• 绝缘体吸收系数小是由于其价电子所处的能带是满带的, 光子能量不足以使价电子跃迁到导带,在可见光波长区域 吸收系数小,但是在紫外光区域,光子能量越来越大,直 到光子能量达到禁带宽度,绝缘性材料的电子会吸收光子 能量从满带跃迁到导带,使其在紫外光区域吸收系数急剧 增大。

材料物理性能(课件)

材料物理性能(课件)
· 热重法(Thermogravimetry): 测量质量与温度的关系 。 · 用途: 测量有机物分解温度 , 研究高聚物的热稳定性
TIM
Ni(OH)2
19
(二)热容
■ 热分析方法 · 差热分析(Differential thermal analysis, DTA): 测量试样与参比物之 间温差与时间或温度的关系 。分析所采用的参比物应是热惰性物质 , 即在 整个测试温度范围内不发生分解、相变和破坏 ,也不与被测物质发生化学 反应 。参比物的热容、热传导系数等应尽量与试样接近。
5
(一 )热学性能的物理基础
■ 晶格热振动
· 晶格热振动: 晶体点阵中质点围绕平衡位置的微小振动 。材料 热学性能的物理本质均与其晶格热振动相关。 · 晶格振动是三维的 , 当振动很微弱时 , 可认为原子作简谐振动。 振动频率随弹性模量Em增大而提高。
x=ACOS(ot+p)
· 温度升高时质点动能增大 , 1/2 mv2= 1/2 kT, ∑ (动能)i =热能 · 质点热振动相互影响 ,相邻质点间的振动存在一定的相位差, 晶格振动以波(格波) 的形式在整个材料内传播 。格波在固体中的 传播速度: v = 3 * 103m/s, 晶格常数a为10-10 m数量级 ,格波最高频 率:v / 2a = 1.5 * 1013 Hz · 频率极低的格波: 声频支振动; 频率极高的格波: 光频支振动
■ 亚稳态组织转变为稳定态要释放 热量 ,热容 -温度曲线向下拐折。
H
TC
T
二级相变焓和热容随温度的变化
17
(二)热容
■ 热容的测量
· 量热计法 。低温及中温区: 电加热法 · 高温区:撒克司法
P:搅拌器 ,C: 量热器筒 18

材料的基本物理性质与力学性质(ppt57页)

材料的基本物理性质与力学性质(ppt57页)
D V o 100% Vo
影响材料的:强度 ;吸水性 耐久性 ;导热性
5、孔隙率-指材料体积内,孔隙体积与 总体积之比。直接反映材料的致密程度。
公式:
P Vo V 1 V (1 o ) 100%
孔隙率与Vo 密实度V的o 关系:
P+D=1
孔结构-孔隙率+孔径尺寸+开口形状
影响材料的: 强度、 吸水性、耐久性、 导热性
• 塑性-材料在外力的作用下产生变形,当外 力取消后,仍保持变形后的形状和尺寸,并 且不产生裂缝的性质。
• 实际的材料并不存在理想的弹性变形和塑性 变形。
荷载 A
弹塑性材料的变 形曲线
0
b a 变形
ob—塑性变形 ab—弹性变形
低碳钢的应力应变(σ~ε)曲线
第1章
内 容: ➢ 材料的基本物理性质 ➢ 材料的基本力学性质 ➢ 材料的耐久性
1.1 材料的基本物理性质
内 容: • 材料的状态参数 • 材料的结构参数 • 材料与水有关的性质 • 材料的热工性质
一、材料的状态参数
1、密度----材料在绝对密实状态下单位体积的 质量。单位g/cm3或kg/m3。
公式 :
Q
At(T2 T1)
式中 λ-热导率(W/m.K) 热阻 R=1/ λ
Q-传导的热量(J)
A-热传导面积(m2)
δ-材料的厚度(m)
t-热传导时间(s)
(T2-T1)-材料两侧温差(K)
• 材料的热导率越小,绝热性能越好。 • 影响热导率的因素:
材料内部的孔隙构造-密闭的空气使λ降低
材料的含水情况-含水、结冰使λ增大 • 常见热导率参数:
• 泡沫塑料 λ=0.035 水 λ=0.58 • 大理石 λ=3.5 冰 λ=2.2 • 钢材 λ=58 空气 λ=0.023 • 混凝土 λ=1.51 松木 λ=1.17~0.35

材料物理学ppt课件

材料物理学ppt课件
Vx12kx2 22m02x2
式中k, 4202m;k弹性系数 0固 ;有频率
代入薛定谔方程, 得到谐振子的运动微分方程:
2 2 V E
2m
2 2m
d 2
dx2
2
2m02 x2
E
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
的几率 ),波函数是空间和时间的函数,并且是复数,
即Φ = Φ(x,y,z,t)
自由粒子(动量、能量不随时间或位置改变)的波函数:
2 i ( px Et )
0e h
r,t
Ae
i
( Et
pr )
0 、 A 常数
(描述自由粒子的波是平面波)
波函数的性质:波函数乘上一个常数后,所描写的粒子状态不变(粒子在 空间各点出现的几率总和等于1,所以粒子在空间各点出现的几率只决定于 波函数在各点强度的比例,而不决定于强度的绝对大小)。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
量子力学的应用
⑴一维势阱问题 势阱—在某一定区域内,势能有固定的值。 设一粒子处于势能为V的势场中,沿x方向做一维运动,势能满足下列边界条件:
V
0xa,Vx0
x0和xa,Vx
t
(1.6)
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
③定态薛定谔方程 由于势能与时间无关,薛定谔方程可进行简化.设方程的一种特解为:
x ,y ,z .t. x ,y ,z ft

《材料物理化学》PPT课件

《材料物理化学》PPT课件
材料是全球新技术革命的四大标志之一 (新材料技术、新能源技术、信息技术、 生物技术)。
什么是材料科学?
材料科学是一门以固体材料为研究对象,以固体物理、 热力学、动力学、量子力学、冶金、化工为理论基础的边 缘交叉基础应用学科,它运用电子显微镜、X-射线衍射、 热谱、电子离子探针等各种精密仪器和技术,探讨材料的 组成、结构、制备工艺和加工使用过程与其机械、物理、 化学性能之间的规律的一门基础应用学科,是研究材料共 性的一门学科。
大部分耐火材料是以天然矿石(如耐火粘土、 硅石、菱镁矿、白云母等)为原料制造的。
3. 有机高分子材料(高聚物)
高聚物是由一种或几种简单低 分子化合物经聚合而组成的分子量 很大的化合物。高聚物的种类繁多, 性能各异,其分类的方法多种多样。 按高分子材料来源分为天然高分子 材料和合成高分子材料;按材料的 性能和用途可将高聚物分为橡胶、 纤维、塑料和胶粘剂等。
特种玻璃(亦称为新型玻璃)是指采用精制、高 纯或新型原料,通过新工艺在特殊条件下或严格控制 形成过程制成的一些具有特殊功能或特殊用途的玻璃。
特种玻璃包括SiO2含量在85%以上或55%以下的硅 酸盐玻璃、非硅酸盐氧化物玻璃(硼酸盐、磷酸盐、 锗酸盐、碲酸盐、铝酸盐及氧氮玻璃、氧碳玻璃等)、 非氧化物玻璃(卤化物、氮化物、硫化物、硫卤化物、 金属玻璃等)以及光学纤维等。
复合材料的种类繁多,目前还没有统 一的分类方法,下面根据复合材料的三要素 来分类。按基体材料分类,有金属基复合材 料,陶瓷基复合材料,水泥、混凝土基复合 材料,塑料基复合材料,橡胶基复合材料等; 按增强剂形状可分为粒子、纤维及层状复合 材料;依据复合材料的性能可分为结构复合 材料和功能复合材料。
0.1.2 根据材料的性能分类
功能材料是具有优良的电学、磁学、光 学、热学、声学、力学、化学和生物学 功能及其相互转化的功能,被用于非结 构目的的高技术材料。

材料物理性能总结PPT文档68页

材料物理性能总结PPT文档68页
材料物理性能总结
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

材料物理学PPT课件

材料物理学PPT课件
表面是指基片(衬底)的表面状态 。 基片的作用:承载薄膜材料与作为外延衬底。 淀积物在表面形成薄膜的过程是:吸附→成核→
长大(二维或三维)。 表面的缺陷与形貌会延伸到薄膜中。 表面存在的应力也会影响薄膜的生长。 表面的状态对薄膜的性质影响非常大。
§2.2材料的界面
2.2.1界面的定义和种类
2.2.3 相界
1. 非共格相界 两相结构不同或晶格常数差别很大时,交界区
称非共格相界。 2. 共格相界
当两相结构一样,晶格常数差别较小,通过晶 格常数扩张与收缩,使得晶界两侧的原子排列按 原晶格结构连贯地结合。
3. 准共格相界:晶格结构相同,但晶格常数差
别较大,过渡区主要由失配位错组成
2.2.4 分界面
高技术新材料如金属间化合物,超晶格、多层膜和各
种薄膜材料,纳米固体材料以及颗粒、晶须、纤维等增强
金属基或增韧的陶瓷基复合材料中,由于界面的原子结构、
化学成分不同于界面两侧体材料,而且在界面上很容易发
生化学反应。
所以界面的性质与界面两侧的体材料有很大差别,界
面对材料的性能起着重要的作用,甚至有时能起控制作用。
1.表面的范围
根据研究内容而定,是一个过渡区(若干Å 至数 m)。
2.理想表面与实际表面
(1)理想表面表面原子排列除上部无原子外与 体内一样。
(2)实际表面 未清洁过的表面( Uncleaned surface); 清洁表面(Cleaned surface); 真空清洁表面 。
1.1.2清洁表面的的原子排布
相与相的交界面称界面(Boundary , Interface)。 晶粒与晶粒间的交界区称晶粒间界(Grain Boundary
GB),又称晶界或粒界。 对多相凝聚体系统,各相间的界面称相界(Phase

材料物理性能与力学性能PPT课件

材料物理性能与力学性能PPT课件

3. 弹性模量的影响因素
弹性模量是构成材料的离子或分子之间键合强度的主 要标志,凡是影响键合强度的因素均能影响弹性模量。 如:键合方式、晶体结构、化学成分、微观组织、温 度、加载方式和速度等。
第22页/共119页
1)键合方式和原子结构 共价键、离子键、金属键----较高 分子键----较弱 原子半径越大,E越小
5)温度----温度升高,E降低 特例:橡胶。其弹性模量随温度升高而增加。
第25页/共119页
6)加载条件和负荷持续时间 加载方式、速率和负荷持续时间对金属材料、陶瓷材料 影响很小。 对于高分子聚合物,负荷时间延长,E下降。
第26页/共119页
4、比例极限和弹性极限
p
Fp A0
Fp:比例极限对应的应力 A0 :试棒的原始截面面积
第39页/共119页
第四节 塑性变形及其性能指标
一、塑性变形机理 定义:材料微观组织的相邻部分产生永久性位移,并不 引起材料破裂的现象。 1:金属材料的塑性变形机理:滑移、孪生 滑移系越多,塑性越好
复习: 滑移:晶体的一部分对于另一部分沿一定晶面和晶向发生相对
滑动,滑动后原子处于新的稳定位置。 滑移通常沿晶体中原子密度最大的晶面和晶向发生。
第6页/共119页
五、本课程学习注意问题:
预备知识:材料力学和金属学方面的基本理论知识。 理论联系实际:是实用性很强的一门课程。某些力学性能指
标根据理论考虑定义,而更多指标则按工程实用 要求定义。 重视实验: 通过实验既可掌握力学性能的测试原理,又可 掌握测试技术,了解测试设备,进一步理解所 测的力学性能指标的物理意义与实用意义。 做些练习: 加深理解――巩固所学的知识。
消除方法:进行较大塑性变形;再结晶退火

《材料物理性能干货》PPT课件

《材料物理性能干货》PPT课件

2、 电子交换积分A>0 充分条件
Rab 3 r
——
( 具有一定晶体结构)
为什么温度升高铁磁性转变为顺磁性?
1)温度升高,原子间距最大,交互作用降低;
2)温度升高,热运动破坏了磁矩的同相排列(自发磁化);
3)当温度升高到T>Tc ,自发磁化不存在,铁磁性转变为 顺磁性。
4、 铁磁性物质的基本特征
(3-1)
I Q nqls n qs tt
j I n q nq E (3-2)
s
如何理解材料的电导现象 必须明确几个问题☺
☺参与迁移的是哪种载流子——有关载流子类别 的问题 carrier sort
☺载流子的数量有多大——有关载流子浓度、载 流子产生过程的问题 carrier density
☺载流子迁移速度的大小——有关载流子输运过
( 物理意义为载流子在单位电场中的迁移速度)
s<0的则称为负磁致伸缩。负磁致伸缩则是沿场磁 化方向缩短,在垂直于磁化方向伸长,镍属于这 一类。
磁性材料
B
软磁材料的特征
•具有较高的磁导率和较高的饱和 磁感应强度;
oH
• 较小的矫顽力(矫顽力很小,
即磁场的方向和大小发生变化时
磁畴壁很容易运动)和较低磁滞
损耗,磁滞回线很窄;
软铁、坡莫合金、硒钢片、铁

在磁场作用下非常容易磁化;
铝合金、铁镍合金等。 由于软磁材料磁滞损耗小,
• 取消磁场后很容易退磁化
适合用在交变磁场中,如变压
器铁芯、继电器、电动机转子
、定子都是用软件磁性材料制
成。
磁性材料
(二) 硬磁材料
硬磁材料又称永磁
材料,难于磁化又难于退磁。

(推荐)《材料物理性能》PPT课件

(推荐)《材料物理性能》PPT课件
焓 内能
P
比定容热容:材料温度升高时,体积恒定,所测得的比热容。
cp与cv哪个大? cp>cv 原因? cp测量方便,cv更具理论意义。对于固体材料二者差别很小,可忽 略,但高温下差别增大。cp、cv与温度之间的关系(三个阶段)。 12
二、晶态固体热容的经验定律与经典理论
19世纪提出,认为热容与温度和材料种类无关。
CV,m
3R1
2 TD3
D T 0
x3 d
ex 1
xe3 T DTD1
ω x
kT
讨论: (1)高温时(T>>θD ) ex 1x
1mol原子的原子个数为N(阿佛加德罗常数 6.02 ×1023),1mol原子 的总能量为: E=3NkT=3RT
=3R=3 × 8.314≈25J/K·mol
(2) 实际上大部分元素的在常温以上原子热容接近该值,但对于轻元素 与实际值差别较大。
13
二、晶态固体热容的经验定律与经典理论
2. 化合物的热容定律——奈曼-柯普定律
通过材料性能的学习,可以掌握材料性能的基本概念、物理本质、 变化规律及性能指标的工程意义,了解影响材料性能的各种因素及材料 性能与其化学成分、组织结构间的关系,掌握改善和提高材料性能、充 分发挥材料性能潜力的主要途径,同时了解材料性能的测试原理、方法 及相关仪器设备。
只有这样才能在合理选用材料、提高材料性能和开发新材料过程中 具有必须的基本知识、基本技能和明确的思路。
xn+1 。该质点的运动方程为:
Em为微观弹
性模量。
描述: 相邻质点振动位移间的关系。
说明: 临近质点的振动存在一定的相位差,即各质点的热振动不是孤 立的,与临近质点存在相互作用。
3、质点的热振动与物体热量 构成物体各质点热运动动能的总和即为物体的热量。温度升高,质

材料物理性能与力学性能解析PPT课件

材料物理性能与力学性能解析PPT课件
2、多次冲击试验: 当试样破坏前承受的冲击次数少于500-1000次,试样断
裂的规律与一次冲击相同;当冲击次数大于105次时,破坏后 具有典型的疲劳断口特征。 冲击功-冲断次数曲线(A-N曲线): 随冲击功A的减小,冲断次数增加。
第1页/共48页
3、冲击韧性及工程意义 1)一次冲击: 冲击韧度(冲击值):用冲击吸收功除以试样缺口处截面(cm2)
第16页/共48页
裂纹的三种基本类型: (1)张开型(I型)裂纹 拉应力垂直作用于裂纹面,裂纹沿作用力方向张开,扩展 方向和拉应力垂直。 (2)滑开型(Ⅱ型)裂纹 切应力平行于裂纹面,并且与裂纹前沿线垂直,裂纹沿裂纹 面平行滑移扩展 (3)撕开型(Ⅲ型)裂纹 切应力平行作用于裂纹面,并且与裂纹线平行,裂纹沿裂纹面 撕开扩展。
冲 击 功
三类材料的冲击功-温度曲线
第6页/共48页
低温脆性的宏观解释:
第7页/共48页
韧脆转化温度及其评价方法
工程上希望确定一个材料的冷脆转化温度,在此温度以上只要
应力还处于弹性范围,材料就不会发生脆性破坏。在冷脆转化
温度的确定标准一旦
建立之后,实际上是按照

冷脆转化温度的高低来选
收 的
择材料。例如,有两种材
当r=0时,应力为无穷大。但实际上对一般金属材料,当应力超 过材料的屈服强度,将发生塑性变形,在裂纹尖端将出现塑性 区,裂纹尖端的应力分布发生改变。
讨论塑性区的意义: 1)断裂是裂纹的扩展过程,裂纹扩展所需的能量主要是消耗于 塑性变形功,材料的塑性区尺寸大,消耗的塑性变形功也越大, 材料的断裂韧性KIc相应地也就越大。 2)由于我们是根据线弹性断裂力学来讨论裂纹尖端的应力应变 场的,当塑性区尺寸过大时,线弹性断裂理论是否依然适用? 因此我们必须讨论不同应力状态的塑性区以及塑性区尺寸的决 定因素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属:主要由一种原子组成,结构简单,金属键无方向性, 滑移系统多,塑性好。 无机材料:组成复杂、结构复杂。共价键有方向性,同号 离子相遇,斥力极大。只有个别滑移系统才能满足几何条 件与静电作用条件。滑移系统很少,塑性差。
4、塑性变形机理
实验证明,滑移是位错在切应力作用下运动的结果。
➢材料的高温蠕变
1)oa 在外力作用下发生瞬时弹性形变
2)ab 蠕变减速阶段。特点是应变速率随时间递减。
d Atn
dt
低温时, n 1, Aln t
高温时,
材料Ⅲ弹性材料(橡胶):如上图曲线(c),没有残余形 变。
➢弹性形变
1、弹性的特点
(1)可逆性 (2)单值线性(线弹性)
G
E
(3)变形量较小
一般:金属、陶瓷、结晶态高聚物小于1%
x
例外:橡胶态高聚物:1000%、非线性
x
2、弹性变形的本质
弹性变形本质:构成材料的 原子(离子)或分子从平衡 位置产生可逆位移的反映。
滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动。 ➢滑移是在剪应力作用下在一定滑移系统上进行的。 ➢不破坏晶体内部原子排列规律性的塑变方式。
1.滑移条件
产生滑移条件:
面间距大; 移动距离短; 相对滑移面上的电荷相反。
滑移总是在密排面
(滑移面)上密排方向 (滑移方向)进行。
一个滑移面与其面上的一个滑移方向组成一个滑移系。
Байду номын сангаас
2.滑移的临界分切应力
滑移面上沿滑移方向的分切应力()


F cos
A

F cos cos cos cos
A
cos
滑移的临界分切应力(c):在滑移面上沿滑移 方面开始滑移的最小分切应力。
c s cos cos
3、金属与非金属晶体滑移难易的比较
如果晶体只有一个滑移系统,产生滑移的机会就很少。 如果有多个滑移系统,达到临界切应力的机会就多。

是应力从原始值 0 松弛到
1 e

0
所需时间
➢材料的塑性形变
0
塑性指标
断后伸长率(延伸率): 断面收缩率:
l1 l0 100 %
l0
A0 A1 100 %
A0
δ和ψ都是材料的塑性指标,表示金属的塑性变形能力。
弹屈性服极强限度es、:产 生0.2弹: 金性属变开形始而塑不性产变生形塑的性最变小形应的力最;大应力; 抗拉强度 b : 材料抵抗大塑性变形的能力,反映极限承载能力。
E0—材料无气孔时的弹性模量 ,P —为气 孔率.
7、两相复合材料的弹性横量
在两相系统中,总弹性模量在高弹性模量成分与低弹性模 量成分的数值之间。
并联模型
串联模型
上限模量
E EAvA EBvB
下限模量
1 vA vB E EA EB
➢滞弹性

0
加载
1
卸 载
1 1 0
滞弹性:应变滞后于应力
对于实际固体相应于最大应力 的弹性应变滞后于引起这个应变 的最大负荷。因此测得的弹性模 量随时间而变化。弹性模量依赖 于时间的现象称为滞弹性。
应力松弛 应变松弛(蠕变)
力学模型
1.虎克固体模型
2.牛顿流体模型
E G

t
d

dt
t
二、组合模型
1.麦克斯韦模型
d
dt
G
应用:应力松弛
2.开尔文固体模型 应用:蠕变(应变松弛)
1 E11 3 3


2 E2 2
1 3
1 2 3 2
1 3 2
3、标准线性固体
(E1 E2 )
材料物理
2020年3月3日星期二
课程总结
• 一、力学性能 • 二、热学性能 • 三、电学性能 • 四、磁学性能
一、力学性能
➢应力与应变
0

F S0
L L0
单向拉伸应变 剪切应变 压缩应变(体积应变)
应力与应变曲线
1、说明图中三种应力-应变曲线的特点,并举例说明对应的材料。
2、如图有三种材料的应力-应变曲线,回答下列问题。 (1)哪种材料的弹性模量最高? (2)哪种材料的延伸率(伸长率)最大? (3)哪种材料的韧性最高? (4)哪种材料断裂前没有明显的塑性变形? (5)材料Ⅰ、材料Ⅱ、材料Ⅲ 分别代表什么材料?
1、说明图中三种应力-应变曲线的特点,并举例说明对应的材料。 材料Ⅰ脆性材料(陶瓷):如上图曲线(a),即在弹性变 形后没有塑性变形(或塑性变形很小)接着就是断裂,总弹性 应变能非常小。
材料Ⅱ塑性材料(金属):如上图曲线(b) 开始为弹性形 变,接着有一段弹塑性形变,然 后才断裂,总变形能很大。
E1E2
E1E2
E2
定义:
(E1 E2 ) E1E2
应变蠕变时间。



E1E2




应力弛豫时间。

E2
t
蠕变方程
a


a
(1

e

)
应变蠕变时间:在恒定应力作用下,应变
达到


(e 1)总 0 e
所需时间
t
应力松弛方程 0e
3、弹性模量
物理意义:
E
微观上:表征了原子间结合能的大小。
x

x
E
宏观上:表征了材料抵抗弹性变形的能力。
拉伸模量
E
,剪切模量 G
,体积模量
KP
G

E
21

K

E
31 2
:泊松比
4、弹性模量的影响因素
弹性模量,

E E0 11.9P 0.9P2
高温: 金属:T (0.3 ~ 0.4)Tm
陶瓷:T (0.4 ~ 0.5)Tm 高分子: T Tg
Tm : 熔点, K
所谓高温蠕变是指材料在低于屈服强度的应力作用下, 随加载时间的延长缓慢地产生塑性变形的现象。
1、典型的蠕变曲线
当外力和温度不同时, 蠕变各阶段的曲线倾斜 程度将有所变化。
滑移系在一定程度上决定了金属塑性的好坏。如面心 立方和体心立方金属的塑性好于密排六方金属。
但在相同条件下,金属塑性好坏还取决于滑移面原子 密排程度及滑移方向的数目等因素。
一个滑移系就是滑移时的一种空间取向或一种可能性。因此, 滑移系越多,金属变形能力越大。常见金属的滑移系如下:
滑移方向对滑移所起的作用比滑移面大,所以面心立方金属 比体心立方金属的塑性更好。
相关文档
最新文档