椭圆中的最值和范围问题
高中数学椭圆中的最值问题与定点、定值问题
椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。
一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。
推导:设点),(00y x P 为椭圆)0( 12222>>=+b a by a x 上的任意一点,左焦点为)0,(1c F -,2201)(||y c x PF ++=,由 1220220=+b y a x 得)1(22020ax b y -=,将其代入 20201)(||y c x PF ++=并化简得a x acPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+⋅=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a acPF -=+-⋅=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1. (2015浙江卷)如图,已知椭圆 1222=+y x 上两个 不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点)。
解:(1)由题意知0≠m ,可设直线AB 的方程为b x my +-=1。
联立⎪⎩⎪⎨⎧+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x my +-=1与椭圆 1222=+y x 有两个不同的交点, 所以042222>++-=∆m b 。
与椭圆有关的最值问题
角度类问题典型例题
例题2
已知椭圆C的中心在原点,焦点在x轴上,离心率为$frac{sqrt{3}}{2}$,它的一个顶点恰好是抛物线$x^2 = 8sqrt{2}y$的焦点,过点P(4,0)且不垂直于x轴的直线l与C相交于A、B两点,若直线PA与直线PB的斜率 之积为$- frac{5}{16}$,则直线l的方程为____。
距离类问题典型例题
例题1
已知椭圆$frac{x^2}{4} + frac{y^2}{3} = 1$,点P是椭圆上一点,F₁、F₂是椭圆的 两个焦点,则|PF₁|·|PF₂|的最大值为____。
例题2
过椭圆$frac{x^2}{5} + y^2 = 1$的右焦点作一条斜率为2的直线与椭圆交于A、 B两点,O为坐标原点,则弦AB的长为____。
通过解析几个与椭圆有关的最值问题的典型例题,我们掌握了这类问情况
通过本次课程的学习,我深刻理解了椭圆的标准方程和性质,掌握了在约束条件下求解最值问题的方法,对于典型例 题的解析也有了更深入的认识。
学习方法与效率
在学习过程中,我采用了课前预习、课后复习的方法,同时结合了大量的练习来巩固所学知识。这种学习方法使我能 够高效地吸收和掌握知识。
利用平面几何知识,如相似、勾股定 理等,求出最值;
03
与椭圆相关的最值问题类 型
面积类问题
1 2
椭圆内接矩形面积的最大值
给定椭圆,求其内接矩形面积的最大值。
椭圆内接三角形面积的最大值
给定椭圆,求其内接三角形面积的最大值。
3
椭圆与直线围成的图形面积
给定椭圆和直线,求它们围成的图形面积。
距离类问题
需要注意定义域的限 制。
利用一元二次函数的 性质,如顶点、对称 轴等,求出最值;
椭圆中的常见最值问题
椭圆中的常见最值问题1、椭圆上的点P到二焦点的距离之积取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。
例1、椭圆上一点到它的二焦点的距离之积为,则取得的最大值时,P点的坐标是。
P(0,3)或(0,-3)例2、已知椭圆方程()p为椭圆上一点,是椭圆的二焦点,求的取值范围。
分析:,当时,=,当时,即2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线xx或反向xx与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。
例3、已知,、是椭圆的左右焦点,P为椭圆上一动点,则的最大值是,此时P点坐标为。
的最小值是,此时P点坐标为。
3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的xx或反向xx与椭圆的交点。
例4、已知,是椭圆的左焦点,P为椭圆上一动点,则的最小值是,此时P点坐标为。
的最大值是,此时P点坐标为。
分析:,当P是的xx与椭圆的交点时取等号。
,当P是的反向xx与椭圆的交点时取等号。
4、椭圆上的点P到定点A的距离与它到椭圆的一个焦点F的距离的倍的和的最小值(为椭圆的离心率),可通过转化为(为P到相应准线的距离)最小值,取得最小值的点是A到准线的垂线与椭圆的交点。
例5、已知定点,点F为椭圆的右焦点,点M在该椭圆上移动,求的最小值,并求此时M点的坐标。
例6、已知点椭圆及点,为椭圆上一个动点,则的最小值是。
5、以过椭圆中心的弦的端点及椭圆的某一焦点构成面积最大的三角形是短轴的端点与该焦点构成的三角形。
例7、过椭圆()的中心的直线交椭圆于两点,右焦点,则的最大面积是。
例8、已知F是椭圆的一个焦点,PQ是过原点的一条弦,求面积的最大值。
6、椭圆上的点与椭圆二焦点为顶点的面积最大的三角形是椭圆的短轴的一个端点与椭圆二焦点为顶点的三角形。
例9、P为椭圆()一点,左、右焦点为,则的最大面积是。
7、椭圆上的点与椭圆长轴的端点为顶点的面积最大的三角形是短轴的一个端点和长轴两个端点为顶点的三角形。
椭圆中有关的取值范围问题大全(附详解)新高考
椭圆中有关的取值范围问题【目标导航】求解最值,可直接求导. 但是解析几何中的最值,直接求导,暴力求解最值的较少,更多的是化简函数表达式,根据结构采用基本不等式(无法取等的时候就求导来解决)来求解最终的最值(或者值域),必然要有定义域,所以寻找函数的定义域是非常重要的,而解析几何中直线和曲线联立(曲直联立)以后的关于x(或者y)的一元二次方程有解,判别式就是很重要的一个点,也就是定义域的一个重要来源,有些题目甚至是唯一来源.与线段有关的最值问题关键是建立关于线段的目标函数,然后运用基本不等式或者函数有关的问题,运用基本不等式或者函数求解。
线段的长度可以通过两点间的距离或者利用相交弦长公式进行求解。
与向量有关的最值问题关键就是表示出点坐标,通过数量积转化为函数问题,然后运用基本不等式或者求导研究最值。
与面积有关的最值问题通常建立起面积的目标函数,可以通过公式B acC ab sh s sin 21sin 2121===求解。
然后通过基本不等式或者求导研究函数的最值问题。
【例题导读】例1、在平面直角坐标系 xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,且过点⎝⎛⎭⎫3,12,点P 在第四象限, A 为左顶点, B 为上顶点, PA 交y 轴于点C ,PB 交x 轴于点D.(1) 求椭圆 C 的标准方程;(2) 求 △PCD 面积的最大值.例2、如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线的距离为6 2.(1) 求椭圆C 的标准方程;(2) 设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线P A 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .①当直线P A 的斜率为12时,求△FMN 的外接圆的方程; ②设直线AN 交椭圆C 于另一点Q ,求△APQ 的面积的最大值.例3、如图所示,椭圆M :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,右准线方程为x =4,过点P(0,4)作关于y 轴对称的两条直线l 1,l 2,且l 1与椭圆交于不同两点A ,B ,l 2与椭圆交于不同两点D ,C.(1) 求椭圆M 的方程;(2) 证明:直线AC 与直线BD 交于点Q(0,1);(3) 求线段AC 长的取值范围.例4、在平面直角坐标系 xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,且过点⎝⎛⎭⎫3,12,点P 在第四象限, A 为左顶点, B 为上顶点, PA 交y 轴于点C ,PB 交x 轴于点D.(1) 求椭圆 C 的标准方程;(2) 求 △PCD 面积的最大值.。
椭圆中的参数范围及最值问题(教师版)
椭圆中的参数范围及最值1.点N x 0,y 0 是曲线Γ:ax 2+by 2=1上任一点,已知曲线Γ在点N x 0,y 0处的切线方程为ax 0x +by 0y =1.如图,点P 是椭圆C :x 22+y 2=1上的动点,过点P 作椭圆C 的切线l 交圆O :x 2+y 2=4于点A 、B ,过A 、B 作圆O 的切线交于点M .(1)求点M 的轨迹方程;(2)求△OPM 面积的最大值.【答案】(1)x 28+y 216=1;(2)22【解析】(1)设P m ,n ,则AB :mx2+ny =1,设A x 1,y 1 ,B x 2,y 2 ,则MB :x 1x +y 1y =4,MA :x 2x +y 2y =4,设M s ,t ,则x 1s +y 1t =4,x 2s +y 2t =4,故AB :sx +ty =4即AB :s 4x +t4y =1,所以s 4=m2t 4=n即s 2=m t 4=n所以s 28+t 216=1即M 的轨迹方程为:x 28+y 216=1.(2)由(1)可得M 2m ,4n ,故直线OM :2nx -my =0.P 到OM 的距离为2nm -mn4n 2+m 2=nm4n 2+m 2,故△OPM 面积S =12×nm 4n 2+m 2×2×4n 2+m 2=nm ,因为m 22+n 2=1,故1≥2m 2n 22即mn≤22,当且仅当m =±1,n =±22时等号成立,故△OPM 面积的最大值为22.2.已知椭圆C :x 2a 2+y 2b 2=1a >b >0的离心率为223,且经过点6,33 .(1)求C 的方程;(2)动直线l 与圆O :x 2+y 2=1相切,与C 交于M ,N 两点,求O 到线段MN 的中垂线的最大距离.【答案】(1)x 29+y 2=1;(2)43【解析】(1)由题知:e =c a =2236a 2+13b 2=1a 2=b 2+c 2,解得a =3b =1c =22.所以C 的方程为x 29+y 2=1.(2)当l 的斜率不存在时,线段MN 的中垂线为x 轴,此时O 到中垂线的距离为0.当l 的斜率存在时,设l :y =kx +m (k ≠0),M x 1,y 1 ,N x 2,y 2 .因为l 与圆x 2+y 2=1相切,则O 到l 的距离为|m |1+k2=1,所以m 2=k 2+1.联立方程x 29+y 2=1y =kx +m,得1+9k 2 x 2+18kmx +9m 2-9=0,则x 1+x 2=-18km 1+9k 2,可得MN 的中点为-9km 1+9k 2,m1+9k 2.则MN 的中垂线方程为y =-1k x +9km 1+9k 2 +m 1+9k 2,即x +ky +8km1+9k 2=0.因此O 到中垂线的距离为d =8km1+9k 21+k 2=|8k |1+9k 2=89|k |+1|k |≤43(当且仅当k =13,m =103时等号成立).综上所述,O 到线段MN 的中垂线的最大距离为43.3.在平面直角坐标系xOy 中,动点P 到直线x =2的距离和点P 到点C 1,0 的距离的比为2,记点P 的轨迹为Γ.(1)求Γ的方程;(2)若不经过点C 的直线l 与Γ交于M ,N 两点,且∠OCM =∠xCN ,求△CMN 面积的最大值.【答案】(1)x 22+y 2=1;(2)24【解析】(1)设P x ,y ,P 到直线x =2的距离记为d ,则dPC=2,依题意,2-x =2x -1 2+y 2,化简得x 2+2y 2=2,即x 22+y 2=1.(2)设直线l :x =my +t ,t ≠1,M x 1,y 1 ,N x 2,y 2 ,由x =my +tx 22+y 2=1得:m 2+2 y 2+2mty +t 2-2=0,则Δ=(2mt )2-4m 2+2 t 2-2 =8m 2+2-t 2 >0,可得m 2+2>t 2,所以y 1+y 2=-2mt m 2+2,y 1y 2=t 2-2m 2+2.法一:由∠MCO =∠xCN ,则k CM +k CN =y 1x 1-1+y 2x 2-1=0,所以x 2y 1+x 1y 2=y 1+y 2,即2my 1y 2+t -1 y 1+y 2 =0,所以2m t 2-2 m 2+2+t -1-2mt m 2+2=0,可得t =2,所以直线l 经过定点T 2,0 .因为△CMN 面积S =12CT y 1-y 2 =12y 1-y 2 ,所以S =2m 2+2-t 2m 2+2=2m 2-2m 2+2=2-4m 2+2 2+1m 2+2,当1m 2+2=18,即m =±6时,S 有最大值为24.法二:作M 点关于x 轴的对称点M x 1,-y 1 ,因为∠OCM =∠xCN ,则∠OCM =∠xCN ,故∠OCM +OCN =180°,所以M ,C ,N 三点共线,所以CM⎳CN ,因为CM =x 1-1,-y 1 ,CN =x 2-1,y 2 ,所以x 1-1 y 2--y 1 x 2-1 =0,即x 2y 1+x 1y 2=y 1+y 2,所以2my 1y 2+t -1 y 1+y 2 =0,则2m t 2-2 m 2+2+t -1(-2mt )m 2+2=0,可得t =2,所以直线l 经过定点T 2,0 ,因为△CMN 面积S =12CT y 1-y 2 =12y 1-y 2 ,所以S =2m 2+2-t 2m 2+2=2m 2-2m 2+2,设m 2-2=u ,则m 2=u 2+2,则S =2u u 2+4=21u +4u≤24,当u =2,即m =±6时,S 有最大值为24.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,点P 1,32 在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求△OMN 面积的最大值.【答案】(1)x 24+y 23=1;(2)3【解析】(1)设椭圆的左、右焦点分别为F 1、F 2,因为焦距为2,P 1,32所以2c =2且PF 1⊥x 轴,故b 2a =32又由于a 2=b 2+c 2=b 2+1,所以解得a =2,b =3故椭圆C 方程为x 24+y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +m ,由于直线PM ,PN 的倾斜角互补,故k PM +k PN =0联立方程y =kx +m x 24+y 23=1,整理得3+4k 2 x 2+8kmx +4m 2-12=0,故Δ=8km 2-43+4k 2 4m 2-12 =483+4k 2-m 2 >0,即m 2<3+4k 2且x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2k PM +k PN =y 1-32x 1-1+y 2-32x 2-1=2k +k +m -32 1x 1-1+1x 2-1=2k +k +m -32 x 1+x 2-2x 1x 2-x 1+x 2 +1=2k -k +m -32 8k 2+8km +64m 2+4k 2+8km -9 =2k -8k 2+8km +622m +2k +3 =12k -622m +2k +3=0,所以k =12,故MN 的方程为y =12x +m ,且0≤m 2<3+4k 2=4所以弦长MN =1+12 2x 1-x 2 =52(x 1+x 2)2-4x 1x 2=52×34-m 2原点到直线MN :x -2y +2m =0的距离为d =2m5,所以S △OMN =12MN d =32m 24-m 2 =32-m 2-2 2+4≤3 故当且仅当m =±2时,△OMN 的面积的最大值为 3.5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为32,且经过点A (-2,0),B(2,0),过点M -23,0 作直线l 与椭圆交于点P ,Q (点P ,Q 异于点A ,B ),连接直线AQ ,PB 交于点N .(1)求椭圆的方程;(2)当点P 位于第二象限时,求tan ∠PNQ 的取值范围.【答案】(1)x 24+y 2=1;(2)0,13.【解析】(1)由题意知,a =2,又a 2=b 2+c 2,e =c a =32,所以c =3,b =1,故椭圆的标准方程为x 24+y 2=1;(2)设直线PB 倾斜角为α,斜率为k 1,直线AQ 倾斜角为β,斜率为k 2,直线PQ 的方程为:x =my -23,则x 24+y 2=1x =my -32,消去x ,得(m 2+4)y 2-43my -329=0,Δ=169+4×329(m 2+4)>0,设P x 1,y 1 ,Q x 2,y 2 ,y 1+y 2=4m 3(m 2+4),y 1y 2=-329(m 2+4),有my 1y 2=-83(y 1+y 2),所以k 2k 1=y 2x 2+2y 1x 1-2=y 2(x 1-2)y 1(x 2+2)=y 2my 1-23-2 y 1my 2-23+2 =my 1y 2-83y 2my 1y 2+43y 1=-163y 2-83y 1-83y 2-43y 1=2,即k 2=2k 1,则tan ∠PNQ =tan (α-β)=tan α-tan β1+tan α⋅tan β=k 1-k 21+k 1k 2=k 1-2k 11+2k 12=-k 11+2k 12=-11k 1+2k 1,因为点P 位于第二象限,则k 1∈-12,0 ,所以1k 1+2k 1∈(-∞,-3),故tan ∠PNQ =-11k 1+2k 1∈0,13 .6.已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的离心率为63,左、右焦点分别为F 1,F 2,过F 2作不平行于坐标轴的直线交Γ于A ,B 两点,且△ABF 1的周长为4 6.(1)求Γ的方程;(2)若AM ⊥x 轴于点M ,BN ⊥x 轴于点N ,直线AN 与BM 交于点C ,求△ABC 面积的最大值.【答案】(1)x 26+y 22=1;(2)34【解析】(1)由椭圆定义可知△ABF 1的周长为4a =46,即a =6,因为离心率e =c a =63,所以c =2,又因为b 2=a 2-c 2,所以b 2=2,故Γ的方程为x 26+y 22=1.(2)依题意,设直线AB 方程为x =my +2(m ≠0).联立x =my +2x 26+y 22=1,得m 2+3 y 2+4my -2=0,易知Δ=16m 2+8m 2+3 =24m 2+1 >0设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-4m m 2+3,y 1⋅y 2=-2m 2+3.因为AM ⊥x 轴,BN ⊥x 轴,所以M x 1,0 ,N x 2,0 .所以直线AN :y =y 1x 1-x 2x -x 2 ①,直线BM :y =y 2x 2-x 1x -x 1 ②,联立①②解得x C =x 1y 2+x 2y 1y 1+y 2=my 1+2 y 2+my 2+2 y 1y 1+y 2=2+2my 1y 2y 1+y 2=3.因为S △ABC =12|BN |⋅x C -x 1 =12y 2 ⋅3-x 1 =12y 2-my 1y 2 ,又my 1y 2y 1+y 2=12,则S △ABC =12y 1-y 1+y 22=14y 1-y 2 =14y 1-y 2 2=62m 2+1m 2+3,设m 2+1=t >1,则S △ABC =62⋅t t 2+2=62⋅1t +2t≤34,当且仅当t =2t,即m =±1时,等号成立,故△ABC 面积的最大值为34.7.已知点F 为椭圆E :x 2a 2+y 2b2=1a >b >0 的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x4+y 2=1与椭圆E 有且仅有一个公共点M .(1)求椭圆E 的方程;(2)设直线x4+y 2=1与y 轴交于点P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若PM 2⋅PF 2=λPA ⋅PB ,求实数λ的取值范围.【答案】(1)x 24+y 23=1;(2)5,254【解析】(1)由题意,得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c 2=1,由x 24+y 23=c 2x 4+y 2=1 ,得x 2-2x +4-3c 2=0,因为直线x4+y 2=1与椭圆E 有且仅有一个交点M ,所以Δ=4-44-3c 3 =0,解得c 2=1,所以椭圆E 的方程为x 24+y 23=1.(2)由(1)知:M 1,32 ,P 0,2 ,所以PM 2=54,PF 2=5,当直线l 与x 轴垂直时,PA ⋅PB =2+3 2-3 =1,由PM 2⋅PF 2=λPA ⋅PB ,得λ=254.当直线l 与x 轴不垂直时,设直线方程为y =kx +2,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +23x 2+4y 2-12=0,得3+4k 2 x 2+16kx +4=0,则x 1x 2=43+4k2,Δ=484k 2-1 >0,即k 2>14.所以,PA ⋅PB =1+k 243+4k 2=254λ,所以λ=2541-14+4k 2,因为k 2>14,所以,5<λ<254.综上,实数λ的取值范围为5,254 .8.定义:若点(x 0,y 0),(x 0,y 0)在椭圆M :x 2a 2+y 2b2=1(a >b >0)上,并且满足x 0x 0a 2+y 0y 0 b2=0,则称这两点是关于M 的一对共轭点,或称点(x 0,y 0)关于M 的一个共轭点为(x 0 ,y 0).已知点A (3,1)在椭圆M :x 212+y 24=1,O 坐标原点.(1)求点A 关于M 的所有共轭点的坐标;(2)设点P ,Q 在M 上,且PQ ∥OA,求点A 关于M 的所有共轭点和点P ,Q 所围成封闭图形面积的最大值.【答案】(1)A 13,-3 或A 2-3,3 ;(2)83【解析】(1)设点A (3,1)在椭圆M :x 212+y 24=1的共轭点为(x ,y ),则3x 12+y 4=0,且x 212+y 24=1,解得x =3y =-3 或x =-3y =3 ,所以点A 关于M 的所有共轭点的坐标为A 13,-3 或A 2-3,3(2)因为PQ ∥OA ,k OA =13,所以设直线PQ 的方程为y =13x +m ,P (x 1,y 1),Q (x 2,y 2),,将y =13x +m 代入x 212+y 24=1中,化简得4x 2+6mx +9m 2-36=0,由Δ=36m 2-16(9m 2-36)>0,得0≤m 2<163,x 1+x 2=-3m 2,x 1x 2=9m 2-364,所以PQ =1+19(x 1+x 2)2-4x 1x 2=1039m 24-9m 2+36=10216-3m 2,设A 1,A 2到直线PQ 的距离分别为d 1,d 2,因为PQ ∥OA ,所以d 1+d 2等于A 1,A 2到直线OA :y =13x 的距离和,所以d 1+d 2=3+33 1+9+-3-33 1+9=8310,所以S =S △A 1PQ +S △A 2PQ =12d 1+d 2 PQ=12×10216-3m 2×8310=23×16-3m 20≤m 2<163 ,令t =m 2,则y =16-3t 在0≤t <163上单调递减,所以当t =0时,即m =0时,y 取最大值16,所以当m =0时,S 的最大值为23×16=839.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F 2,0 ,离心率为63,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设点P 3,m m >0 ,过F 作PF 的垂线交椭圆于A ,B 两点.求△OAB 面积的最大值.【答案】(1)x 26+y 22=1;(2) 3.【解析】(1)由右焦点为F 2,0 ,可得c =2,又离心率为63,∴a =6,b 2=a 2-c 2=6-4=2,∴椭圆C 的标准方程为x 26+y 22=1.(2)由题可知k PF =m3-2=m ,∴k AB =-1m,故直线AB 为y =-1mx -2 ,即x =-my +2,由x 26+y 22=1x =-my +2,可得3+m 2 y 2-4my -2=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=4m 3+m 2,y 1y 2=-23+m 2,∴y 1-y 2 =y 1+y 2 2-4y 1y 2=4m 3+m 2 2-4⋅-23+m 2=261+m 23+m 2,∴△OAB 面积为S =12×OF ×y 1-y 2 =261+m 23+m 2,令t =1+m 2>1,∴S =26t 2+t 2=262t+t ≤2622=3,当且仅当2t =t ,即t =2,m =1时取等号,∴△OAB 面积的最大值为 3.10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,点A -1,32 在椭圆C 上,点P 是y 轴正半轴上的一点,过椭圆C 的右焦点F 和点P 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)求PM +PNPF的取值范围.【答案】(1)x 24+y 23=1;(2)85,4 .【解析】(1)由题意知c a =121a 2+94b 2=1c 2+b 2=a 2,∴a =2b =3 ,椭圆C 标准方程为x 24+y 23=1.(2)设直线l 的方程为y =k (x -1),其中k <0,M (x 1,y 1),N (x 2,y 2)y =k (x -1)3x 2+4y 2=12⇒3x 2+4k 2(x 2-2x +1)=12∴(3+4k 2)x 2-8k 2x +4k 2-12=0,Δ=64k 4-4(3+4k 2)(4k 2-12)=144(k 2+1)>0,x 1+x 2=8k 23+4k 2,x 1⋅x 2=4k 2-123+4k 2,∴PM =1+k 2x 1 ,PN =1+k 2⋅x 2 ,PF =1+k 2∴PM +PNPF=x 1 +x 2若k ≤-3,则x 1≥0,x 2>0,∴x 1 +x 2 =x 1+x 2=8k 23+4k 2=83k 2+4∈85,4若-3<k <0,则x 1<0,x 2>0,∴x 1 +x 2 =x 2-x 1=12k 2+13+4k 2令k 2+1=m ,∴1<m <2,∴x 2-x 1=12m 3+4(m 2-1)=12m 4m 2-1=124m -1m,因为y =124m -1m 在(1,2)单调递减,所以x 2-x 1=124m -1m∈85,4 综上:PM +PN PF 的取值范围为85,4 .11.已知O 坐标原点,椭圆C :x 2a 2+y 2b 2=1a >b >0 的上顶点为A ,右顶点为B ,△AOB 的面积为22,原点O 到直线AB 的距离为63.(1)求椭圆C 的方程;(2)过C 的左焦点F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若DE ⋅MN=0,求△FPQ 面积的最大值.【答案】(1)x 22+y 2=1;(2)19【解析】(1)解:由题意,S △AOB =12ab =22①∵A (0,b ),B (a ,0),则直线AB 的方程为:xa +y b=1,即为bx +ay -ab =0,∵原点到直线AB 的距离为63,∴ab a 2+b2=63,∴3a 2b 2=2(a 2+b 2),②∵b 2+c 2=a 2,③由①②③得:a 2=2,b 2=1,所以椭圆C 的标准方程为:x 22+y 2=1;(2)由(1)可知F -1,0 ,因为DE ⋅MN=0,所以DE ⊥MN ,若直线DE 或MN 中有一条直线斜率不存在,那么P 、Q 中一点与F 重合,故斜率一定存在,设DE :y =k x +1 ,则MN 的斜率为-1k,由x 22+y 2=1y =k (x +1)可得:(1+2k 2)x 2+4k 2x +2k 2-2=0,设D (x 1,y 1),E (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,所以x P =x 1+x 22=-2k 21+2k 2y P =k x P +1 =k -2k 21+2k 2+1 =k 1+2k 2,即P -2k 21+2k 2,k1+2k 2,同理将-1k 代入得Q -22+k 2,-k2+k 2,所以PF =-1+2k 21+2k 2 2+k 1+2k 2 2=1+k 21+2k 2,QF =-1--22+k 2 2+-k2+k 2 2=k 1+k 22+k 2,所以S △QFP =12PF ⋅QF =12×1+k 21+2k 2×k 1+k 22+k 2=12×k 1+k 22k 4+5k 2+2=12×k 21+2k 2+k 4 2k 4+5k 2+2=12×k 41k 2+k 2+2 k 22k 2+5+2k2 =12×1k 2+k 2+22k 2+5+2k 2令t =1k 2+k 2+2,则t ≥2,当且仅当1k 2=k 2即k =±1时取等号,所以1k 2+k 2=t 2-2,所以S △QFP =12×t 2t 2+1=12×12t +1t,因为函数y =2x +1x 在2,+∞ 上单调递增,所以当x =2时y min =92,所以S △QFP max =19,即△FPQ 面积的最大值为19;12.已知椭圆C :x 2a 2+y 2b2=1a >b >0 经过点M (0,3),离心率为22.(1)求椭圆C 的方程;(2)直线l :y =kx -1与椭圆C 相交于A 、B 两点,求MA ⋅MB 的最大值.【答案】(1)x 218+y 29=1;(2)32.【解析】(1)由已知得9b 2=1,a 2-b 2a 2=12, 解得a =32,b =3,因此椭圆C 的方程为x 218+y 29=1;(2)由x 218+y 29=1,y =kx -1,整理得2k 2+1 x 2-4kx -16=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k 2k 2+1,x 1x 2=-162k 2+1,因为MA ⋅MB=x 1x 2+(y 1-3)(y 2-3)=x 1x 2+kx 1-4 kx 2-4=k 2+1 x 1x 2-4k x 1+x 2 +16=-16k 2+1 2k 2+1-4k ×4k 2k 2+1+16=0,所以MA ⊥MB ,三角形MAB 为直角三角形,设d 为点M 到直线l 的距离,故MAMB =AB ⋅d ,又因为d =41+k 2,AB =1+k 2 x 1+x 2 2-4x 1x 2 =1+k 2 4k 2k 2+1 2-4×-162k 2+1=41+k 2 9k 2+4 2k 2+1,所以MA MB =169k 2+42k 2+1,设2k 2+1=t ,则MA MB =16818-121t -92 2,由于1t∈0,1 ,所以MA MB ≤32,当1t=1,即k =0时,等号成立.因此,MA MB 的最大值为32.13.在平面直角坐标系xOy 中,已知F (1,0),动点P 到直线x =6的距离等于2PF +2.动点P 的轨迹记为曲线C .(1)求曲线C 的方程;(2)已知A (2,0),过点F 的动直线l 与曲线C 交于B ,D 两点,记△AOB 和△AOD 的面积分别为S 1和S 2,求S 1+S 2的最大值.【答案】(1)x 24+y 23=1;(2)最大值为3.【解析】(1)设点P (x ,y ),当x ≥6时,P 到直线x =6的距离显然小于PF ,故不满足题意;故|x -6|=2(x -1)2+y 2+2(x <6),即4-x =2(x -1)2+y 2,整理得3x 2+4y 2=12,即x 24+y 23=1,故曲线C 的方程为x 24+y 23=1;(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B x 1,y 1 ,D x 2,y 2 ,联立x =my +1x 24+y 23=1,整理得3m 2+4 y 2+6my -9=0,Δ>0显然成立,所以y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以y 1-y 2 =y 1+y 2 2-4y 1y 2=-6m 3m 2+4 2+363m 2+4=12m 2+13m 2+4,故S 1+S 2=12OA y 1 +12OA y 2 =12OA y 1-y 2 =12m 2+13m 2+4,设t =m 2+1,t ≥1,则m 2=t 2-1,则S 1+S 2=12t 3t 2+1=123t +1t,因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=123t +1t≤3,即S 1+S 2的最大值为3.14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.【解析】(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=3 5.所以△AMN 的面积的最大值:12×35×1255=18.15.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A 、A 两点,AA =4.(1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ',过P 、P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.【答案】(1)x 216+y 28=1;(2)答案不唯一,具体见解析【解析】(1)设椭圆方程为x 2a 2+y 2b2=1a >b >0 ,左焦点F 1-c ,0 ,将x =-c 代入椭圆方程,得y =±b 2a,由题意可得b 2a =2c a=22a 2=b 2+c 2 ,解得a =4b =c =22 ,所以椭圆方程为x 216+y 28=1.(2)解:当点Q 在y 轴的右侧时,设Q t ,0 t >0 ,圆的半径为r ,直线PP 方程为x =m m >t ,则圆Q 的方程为x -t 2+y 2=r 2,由x -t2+y 2=r 2x 2+2y 2=16得x 2-4tx +2t 2+16-2r 2=0,由Δ=16t 2-42t 2+16-2r 2 =0,即,得t 2+r 2=8,①把x =m 代入x 216+y 28=1,得y 2=81-m 216 =8-m 22,所以点P 坐标为m ,8-m 22,代入x -t 2+y 2=r 2,得m -t 2+8-m 22=r 2,②由①②消掉r 2得4t 2-4mt +m 2=0,即m =2t ,S △PPQ =12PP m -t =8-m 22×m -t =8-2t 2⋅t =2⋅4-t 2 t2≤2×4-t 2+t22=22,当且仅当4-t 2=t 2时,即当t =2时取等号,圆Q 的标准方程为x -2 2+y 2=6.在椭圆上任取一点E x ,y ,其中-4≤x ≤4,则y 2=8-x 22,所以,EQ =x -2 2+y 2=x 2-22x +2+8-x 22=x 22-22x +10=12x -22 2+6≥6,当且仅当x =22时,等号成立,故椭圆上除P 、P '外的点在圆Q 外,所以△PP Q 的面积的最大值为22,当圆心Q 、直线PP 在y 轴左侧时,由对称性可得圆Q 的方程为x +2 2+y 2=6,△PP Q 的面积的最大值仍为22.16.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,椭圆C的离心率为12,B 0,3 在椭圆C 上.(1)求椭圆C 的方程;(2)过椭圆C 的左顶点A 作两条互相垂直的直线分别与椭圆C 交于M 、N 两点(不同于点A ),且AD ⊥MN ,D 为垂足,求三角形ABD 面积的最大值.【答案】(1)x 24+y 23=1;(2)37+337【解析】(1)由题意得c a =12b =3b 2=a 2+c2 ,解得a =2b =3c =1,所以椭圆C 的方程x 24+y 23=1.(2)当MN 垂直于x 轴时,则M 、N 关于x 轴对称,设点M 在x 轴上方,因为AM ⊥AN ,易知直线AM 的倾斜角为π4,所以,直线AM 的方程为y =x +2,联立y =x +23x 2+4y 2=12x ≠-2,可得x =-27y =127,即点M -27,127 ,则N -27,-127 ,可得D -27,0 ,此时,S △ABD =12⋅-27+2 ⋅3=637;当MN 不垂直于x 轴时,设直线MN 的方程为y =kx +t ,设点M x 1,y 1 、N x 2,y 2 ,联立y =kx +t3x 2+4y 2=12,可得3+4k 2 x 2+8ktx +4t 2-12=0,Δ=64k 2t 2-44k 2+3 4t 2-12 >0,可得t 2<4k 2+3,由韦达定理可得x 1+x 2=-8kt 4k 2+3,x 1x 2=4t 2-124k 2+3,AM =x 1+2,y 1 =x 1+2,kx 1+t ,AN =x 2+2,kx 2+t ,因为AM ⊥AN ,则AM ⋅AN=x 1+2 x 2+2 +kx 1+t kx 2+t =k 2+1 x 1x 2+kt +2 x 1+x 2 +t 2+4=k 2+1 4t 2-12 -8kt kt +24k 2+3+t 2+4=0,整理可得4k 2-16kt +7t 2=0,即2k -t 2k -7t =0,所以,t =2k 或t =2k 7.若t =2k ,则直线MN 的方程为y =k x +2 ,此时直线MN 过点A ,则M 、N 必有一点与点A 重合,不合乎题意;若t =27k ,则直线MN 的方程为y =k x +27 ,此时直线MN 过定点E -27,0 ,合乎题意.因为AD ⊥DE ,且线段AE 的中点坐标为-87,0 ,AE =127,所以,△AED 的外接圆为x +87 2+y 2=3649,因为AB 直线方程为x-2+y 3=1,即3x -2y +23=0,且AB =3+4=7,因为D 到直线AB 的最大距离为-837+233+4+67=42+62149,所以△ABD 的面积S △ABD ≤12⋅7⋅42+62149=37+337.综上所述,△ABD 面积的最大值为37+337.17.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为63,且经过点P 1,3 .(1)求椭圆C 的方程;(2)A 、B 为椭圆C 上两点,直线PA 与PB 的倾斜角互补,求△PAB 面积的最大值.【答案】(1)y 26+x 22=1;(2)3﹒【解析】(1)由题意得:e =c a =633a 2+1b 2=1a 2=b 2+c 2,解得:a =6,b =2,∴y 26+x 22=1.(2)由题意可知直线AB 的斜率一定存在,设直线AB 的方程为y =kx +t ,A x 1,y 1 ,B x 2,y 2 ,将y =kx +t 代入y 26+x 22=1得:k 2+3 x 2+2ktx +t 2-6=0,∴x 1+x 2=-2kt k 2+3,x 1x 2=t 2-6k 2+3,则y 1+y 2=kx 1+t +kx 2+t =k x 1+x 2 +2t =6tk 2+3,x 1y 2+x 2y 1=x 1kx 2+t +x 2kx 1+t =kt x 1+x 2 +2ktx 1x 2=-12kk 2+3,∵直线PA 和直线PB 的倾斜角互补,∴k PA =-k PB ⇒y 1-3x 1-1=-y 2-3x 2-1,化简可得:23+x 1y 2+x 2y 1=y 1+y 2 +3x 1+x 2 ,即23+-12k k 2+3=6t k 2+3+3⋅-2ktk 2+3,即k -3 k +t -3 =0,∵直线AB 不过点P ,∴k =3,∴x 1+x 2=-3t 3,x 1x 2=t 2-t6,则AB =1+3 2x 1+x 2 2-4x 1x 2=2312-t 23,又点P 到直线AB 的距离为t2,∵Δ=12t 2-24t 2-6 >0,∴-23<t <23,∴S =12⋅2312-t 23⋅t 2=3612-t 2 t 2≤3,当且仅当t =±6时等号成立,∴△PAB 面积最大值为3.18.已知O 为坐标原点,定点F 1,0 ,M 是圆O :x 2+y 2=4内一动点,圆O 与以线段FM 为直径的圆内切.(1)求动点M 的轨迹方程;(2)若直线l 与动点M 的轨迹交于P ,Q 两点,以坐标原点O 为圆心,1为半径的圆与直线l 相切,求△POQ 面积的最大值.【答案】(1)x 24+y 23=1且x ≠±2;(2)263.【解析】(1)令M (x ,y ),又F 1,0 在圆O :x 2+y 2=4内,且圆O 与以线段FM 为直径的圆内切,所以线段FM 为直径的圆心为x +12,y 2 ,则12(x -1)2+y 2=2-(x +1)24+y 24,整理有(x -1)2+y 2=4-(x +1)2+y 2,则x 2-2x +1+y 2=4-x 2+2x +1+y 2,所以x 24+y 23=1,又M 是圆O :x 2+y 2=4内一动点,故x ≠±2,故M 的轨迹方程为x 24+y 23=1且x ≠±2.(2)由题意知:O 到直线l 的距离为1,要使△POQ 面积最大,只需|PQ |最大,若直线l 斜率不存在时,直线l :x =±1,此时P ,Q 为1,±32 或-1,±32,所以|PQ |=3,则△POQ 面积为32;若直线l 斜率存在时,令直线l :y =kx +b ,而|b |1+k2=1,即b 2=1+k 2,联立直线与M 的轨迹,x 24+y 23=1y =kx +b,整理有(4k 2+3)x 2+8kbx +4b 2-12=0,则x P +x Q =-8kb 4k 2+3,x P x Q =4b 2-124k 2+3,所以|PQ |=1+k 2⋅|x P -x Q |=1+k 2⋅(x P +x Q )2-4x P x Q =4(1+k 2)(12k 2+9-3b 2)4k 2+3,则|PQ |=43⋅(1+k 2)(3k 2+2)4k 2+3,令t =4k 2+3≥3,则|PQ |=3⋅-1t2+2t +3=3⋅-1t-1 2+4,而0<1t ≤13,所以|PQ |max =463,此时△POQ 最大面积为263;综上,△POQ 最大面积为263.19.如图,已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,直线l 1:y =12x +b 与圆O :x 2+y 2=b 2交于M ,N 两点,MN =455.(1)求椭圆E 的方程;(2)A ,B 为椭圆E 的上、下顶点,过点A 作直线l 2:y =kx +b k <0 交圆O 于点P ,交椭圆E 于点Q (P ,Q 位于y 轴的右侧),直线BP ,BQ 的斜率分别记为k 1,k 2,试用k 表示k 1+14k 2,并求当k 1+14k 2∈2,52时,△BPQ 面积的取值范围.【答案】(1)x 24+y 2=1;(2)1285,65 .【解析】(1)圆心O 到直线l 1的距离为d =b 2-2552=12b1+122,解得b 2=1,由题设,b =1c a =32c 2=a 2-b2 ,解得a =2c =3 ,故椭圆E 的方程为x 24+y 2=1.(2)由(1)知,A 0,1 ,B 0,-1 ,直线l 2为y =kx +1k <0 ,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +1x 2+y 2=1,得1+k 2 x 2+2kx =0,所以x 1=-2k k 2+1,y 1=kx 1+1=-k 2+1k 2+1,联立y =kx +1x 24+y 2=1得:4k 2+1 x 2+8kx =0,所以x 2=-8k 4k 2+1,y 2=kx 2+1=-4k 2+14k 2+1,k 1+14k 2=y 1+1x 1+x 24y 2+1=2k 2+1-2k k 2+1+-8k 4k 2+184k 2+1=-1k -k .由-1k-k ∈2,52 ,得:k ∈-2,-12 ,S △BPQ =S △ABQ -S △ABP =12AB x 2-x 1 =x 2-x 1=-8k 4k 2+1--2kk 2+1=-6k4k 2+1 k 2+1.令f k =-6k 4k 2+1 k 2+1 ,则fx =612k 4+5k 2-1 4k 2+1 k 2+12>0,所以函数f k 在-2,-12 上单调递增,f -2 =1285,f -12 =65,所以△BPQ 面积的取值范围为1285,65 .20.已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,其离心率e =22,过点F 垂直于x 轴的直线交椭圆Γ于P ,Q 两点,PQ =2.(1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为k 1,k 2,求k 1+k 2的取值范围.【答案】(1)x 22+y 2=1;(2)k 1+k 2∈-∞,12 ∪12,2-2 ∪2+2,+∞ 【解析】(1)由题可知e =c a =22PQ=2b 2a =2a 2=b 2+c 2,解得a =2b =1c =1.所以椭圆Γ的方程为:x 22+y 2=1.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为y =k (x -2),M (x 1,y 1),N (x 2,y 2).由题可知x 22+y 2=1y =k (x -2),整理得(2k 2+1)x 2-8k 2x +8k 2-2=0Δ=(-8k 2)2-4(2k 2+1)(8k 2-1)=-8(2k 2-1)>0,解得k ∈-22,22.由韦达定理可得x 1+x 2=8k 22k 2+1,x 1x 2=8k 2-22k 2+1.由(1)知,点B (0,-1)设椭圆上顶点为A ,∴A (0,1),k ≠k DA =-12且k ≠k DB =12,∴k 1+k 2=y 1+1x 1+y 2+1x 2=k x 1-2 +1x 1+k x 2-1 +1x 2=2k +1-2k x 1+x 2 x 1x 2=2k +1-2k⋅8k 21+2k 28k 2-21+2k 2=2k -4k 22k +1=2k 2k +1=1-12k +1∈2+2,+∞ ∪-∞,12 ∪12,2-2∴k 1+k 2的取值范围为-∞,12 ∪12,2-2 ∪2+2,+∞ .21.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,32 ,P 2(0,1),P 31,22 ,P 41,-22 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点Q 2,0 的直线l 与椭圆C 相交于M ,N 两点,求△OMN 面积的取值范围.【答案】(1)x 22+y 2=1;(2)0,22【解析】(1)由对称性可知:P 3,P 4都在椭圆C 上,对于椭圆在第一象限的图像上的点x ,y ,易知y 随x 的增大而减小,故P 1,P 2中只有P 2符合.所以P 2,P 3,P 4三点在椭圆上,故b =1,将P 3代入椭圆方程得a =2,所以椭圆方程为:x 22+y 2=1(2)(3)由已知直线l 斜率不为0,故设方程为:x =my +2设M (x 1,y 1),N (x 2,y 2),由x =my +2x 22+y 2=1联立方程得:(m 2+2)y 2+4my +2=0∴Δ=16m 2-8(m 2+2)=8(m 2-2)>0,即m 2>2y 1+y 2=-4m m 2+2;y 1y 2=2m 2+2;S △OMN =12⋅2⋅y 1-y 2 =y 1-y 2=16m 2(m 2+2)2-8m 2+2=22m 2-2m 2+2;令m 2-2=t >0,则m 2=t 2+2令S △OMN =22t t 2+4=22t +4t ≤222t ⋅4t=22,当且仅当t =2,m 2=6时取等号∴△OMN 面积的取值范围为0,2222.已知椭圆E :x 22+y 2=1的右焦点为F ,椭圆Γ:x 22+y 2=λλ>1 .(1)求Γ的离心率;(2)如图:直线l :x =my -1交椭圆Γ于A ,D 两点,交椭圆E 于B ,C 两点.①求证:AB =CD ;②若λ=5,求△ABF 面积的最大值.【答案】(1)22;(2)①证明过程见解析;② 2.【解析】(1)椭圆Γ:x 22+y 2=λλ>1 的标准方程为:x 22λ+y 2λ=1,则椭圆Γ的离心率为2λ-λ2λ=22(2)对于①,设A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4,y 4 ,直线l :x =my -1与x 22+y 2=λ联立整理得2+m y2-2my +1-2λ=0则y 1+y 2=2m 2+m 2,y 1y 2=1-2λ2+m 2则AD 的中点坐标-22+m 2,m2+m 2同理可知BC 的中点坐标-22+m 2,m2+m 2 .所以AD 与BC 中点重合,故AB =CD .对于②,由①知,直线l 被椭圆截得弦长为1+m 2y 2-y 1 =21+m 22λm 2+4λ-22+m 2把λ=5代入得,AD =21+m 210m 2+182+m 2把λ=1代入得,BC =21+m 22m 2+22+m 2F 1,0 到l 的距离为d =21+m 2,则△ABF 面积为:S =12×12×AD -BC ×d =10m 2+18-2+2m22+m 2=810m 2+18+2+2m 2∴当m =0时,△ABF 的面积最大值是 2.23.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点恰好为圆A :x 2+y 2-4x+3=0的圆心,且圆A 上的点到直线l 1:bx -ay =0的距离的最大值为255+1.(1)求C 的方程;(2)过点(3,0)的直线l 2与C 相交于P ,Q 两点,点M 在C 上,且OM =λ(OP+OQ ),弦PQ 的长度不超过3,求实数λ的取值范围.【答案】(1)x 24+y 2=1;(2)-33,-12 ∪12,33 .【解析】(1)圆A 化为标准方程:(x -2)2+y 2=1,圆心A (2,0),半径r =1,∴椭圆C 的右顶点标准为(2,0),即a =2,∵圆心A (2,0)到直线l 1:bx -ay =0的距离d =2ba 2+b 2,∴圆A 上的点到直线l 1:bx -ay =0的距离的最大值为d +r =2ba 2+b 2+1=255+1,∴2b 4+b 2=255,解得b =1,∴椭圆C 的方程为x 24+y 2=1.(2)由题意可知,直线l 2的斜率一定存在,设直线l 2的方程为y =k (x -3),P (x 1,y 1),Q (x 2,y 2),联立方程y =k (x -3)x 24+y 2=1,消去y 得(1+4k 2)x 2-24k 2x +36k 2-4=0,∴Δ=576k 4-4(1+4k 2)(36k 2-4)=16-80k 2>0,解得0≤k 2<15,∴x 1+x 2=24k 21+4k 2,x 1x 2=36k 2-41+4k 2,∴y 1+y 2=k x 1+x 2-6 =k ⋅24k 21+4k 2-6 =-6k1+4k 2,因为PQ =1+k 2 x 1+x 2 2-4x 1x 2 =1+k 2⋅16-80k 21+4k 2≤3所以可解得k 2≥18,所以15>k 2≥18设PQ 中点N ,所以N 12k 21+4k 2,-3k1+4k 2 ,∴OP +OQ =2ON =24k 21+4k 2,-6k 1+4k 2,∴k ON =-3k1+4k 212k 21+4k 2=-14k ,∴直线ON 的方程为y =-14kx ,∵OM =λ(OP +OQ ),∴M 为直线ON 与椭圆的交点,联立方程y =-14k x x 24+y 2=1 ,解得x =±16k 21+4k 2,∴M 16k 21+4k 2,-14k 16k 21+4k 2 或M -16k 21+4k 2,14k 16k 21+4k 2,∴OM =16k 21+4k 2,-14k 16k 21+4k 2 或OM -16k 21+4k 2,14k 16k 21+4k 2,∴±16k 21+4k 2=λ⋅24k 21+4k 2,∴16k 21+4k 2=λ2⋅24k 21+4k 22,∴λ2=16k 21+4k 2⋅1+4k 224k 2 2=136k2+19,又∵18≤k 2<15,∴13≥136k 2+19>14,∴13≥λ2>14,∴12<λ≤33或-33≤λ<-12即实数λ的取值范围为-33,-12 ∪12,3324.已知椭圆C :x 24+y 2=1,点P 为椭圆C 上非顶点的动点,点A 1,A 2分别为椭圆C 的左、右顶点,过点A 1,A 2分别作l 1⊥PA 1,l 2⊥PA 2,直线l 1,l 2相交于点G ,连接OG (O 为坐标原点),线段OG 与椭圆C 交于点Q ,若直线OP ,OQ 的斜率分别为k 1,k 2.(1)求k1k 2的值;(2)求△POQ 面积的最大值.【答案】(1)14;(2)35【解析】(1)由题意知,A 1-2,0 ,A 22,0 ,设P x 0,y 0 x 0≠±2,y 0≠±1 ,设直线l 1的方程为:y =-x 0+2y 0x +2 ,设直线l 2的方程为:y =-x 0-2y 0x -2 ,所以解得点G -x 0,-4y 0 ,所以k 1=y 0x 0,k 2=4y 0x 0,即k 1k 2=14.(2)由(1)知,设直线OP 的方程为:y =k 1x ,直线OQ 的方程为:y =4k 1x ,由y =k 1xx 24+y 2=1,得4k 21+1 x 2=4,又对称性,设x P >0,所以P 24k 21+1,2k 14k 21+1,所以OP =2k 21+14k 21+1,由(1)知x P 和x Q 异号,由y =4k 1xx 24+y 2=1,得64k 21+1 x 2=4,所以Q -264k 21+1,-8k 164k 21+1,点Q 到直线y =k 1x 的距离为:d =6k 1k 21+1×64k 21+1,即S △POQ =12×OP ×d =12×2k 21+14k 21+1×6k 1 k 21+1×64k 21+1=6k 1 4k 21+1×64k 21+1=6×k 214k 21+1 ×64k 21+1 =6×k 21256k 41+68k 21+1=6×1256k 21+68+1k 21≤6×168+2256k 21×1k 21=35等号成立条件为,当且仅当256k 21=1k 21即k 1=±14等号成立,故△POQ 面积的最大值为:35.25.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率为32,过C 的右顶点A的直线l 与C 的另一交点为P .当P 为C 的上顶点时,原点到l 的距离为255.(1)求C 的标准方程;(2)过A 与l 垂直的直线交抛物线y 2=8x 于M ,N 两点,求△PMN 面积的最小值.【答案】(1)x 24+y 2=1;(2)9【解析】(1)由题意知:A a ,0 ,若P 为C 的上顶点,则P 0,b ,∴l :xa +y b=1,即bx +ay -ab =0,∴原点到l 的距离d =ab a 2+b2=255,又离心率e =c a =32,a 2=b 2+c 2,∴a =2,b =1,∴椭圆C 的标准方程为:x 24+y 2=1.(2)由题意知:直线l 斜率存在;①当直线l 斜率为0时,l :y =0,P -2,0 ;此时直线MN :x =2,则M 2,4 ,N 2,-4 ,∴S △PMN =12MN ⋅PA =12×8×4=16;②当直线l 斜率存在且不为0时,l :y =k x -2 ,由y =k x -2x 24+y 2=1得:1+4k 2 x 2-16k 2x +16k 2-4=0,又A 2,0 ,∴x P =8k 2-21+4k 2,则y P =-6k 1+4k 2,∴P 8k 2-21+4k 2,-4k1+4k 2;又直线MN :y =-1kx -2 ,由y =-1k x -2y 2=8x得:x 2-8k 2+4 x +4=0,∴x M +x N =8k 2+4;∵y 2=8x 的焦点为A 2,0 ,∴MN =x M +x N +4=8k 2+8,又AP =8k 2-21+4k 2-2 2+-4k 1+4k 2 2=4k 2+11+4k 2,∴S △PMN =12AP ⋅MN =16k 2+1 ⋅k 2+11+4k 2,设k 2+1=t >1,则k 2=t 2-1,∴S △PMN =16t 34t 2-3t >1 ,令f t =16t 34t 2-3,则ft =48t 24t 2-3 -16t 3⋅8t 4t 2-3 2=16t 22t +3 2t -3 4t 2-3 2,∴当t ∈1,32 时,f t <0;当t ∈32,+∞ 时,f t >0;∴f t 在1,32 上单调递减,在32,+∞ 上单调递增,∴f t min =f 32=9,即S △PMN min =9;综上所述:△PMN 面积的最小值为9.26.已知曲线C 由C 1:x 2a 2+y 2b2=1(a >b >0,x ≥0)和C 2:x 2+y 2=b 2(x <0)两部分组成,C 1所在椭圆的离心率为32,上、下顶点分别为B 1,B 2,右焦点为F ,C 2与x 轴相交于点D ,四边形B 1FB 2D 的面积为3+1.(1)求a ,b 的值;(2)若直线l 与C 1相交于A ,B 两点,AB =2,点P 在C 2上,求△PAB 面积的最大值.【答案】(1)2;1;(2)2.【解析】(1)由题意知c a =3212b +c ⋅2b =3+1a 2=b 2+c 2⇒a =2b =1 ;(2)①当AB 斜率存在时,设直线AB 的方程为y =kx +m ,y =kx +m x 2+4y 2=4⇒1+4k 2x 2+8kmx +4m2-4=0 ,Δ=64k 2m 2-41+4k 2 4m 2-4 =164k 2-m 2+1 >0,且-8km 1+4k 2>04m 2-41+4k 2≥0⇒m ≥1 ,AB =1+k 2⋅44k 2-m 2+11+4k 2=2⇒12k 2-4m 2-4k 2m 2+3=0,计算可得m 2=34k 2+14k 2+1,故原点O 到直线AB :y =kx +m 的距离d =m 1+k 2=34k 2+121+k 2 ≤3+4k 2+141+k 2=1,当3=4k 2+1时,即k =22m =-62或k =-22m =62时取等号,故原点O 到直线AB 的距离d 的最大值为1,则点P 到直线AB 的距离h ≤d+1≤2,故S △PAB =12AB h =h ≤2,∴△PAB 面积最大值2;②当AB 斜率不存在时,A 0,-1 ,B 0,1 ,此时S △PAB =12×2×1=1<2.综上:△PAB 面积的最大值为2.27.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1a >b >0 的上顶点B ,左、右焦点分别为F 1-c ,0 、F 2c ,0 ,△F 1BF 2是周长为4+42的等腰直角三角形.(1)求椭圆C 的标准方程;(2)过点P -1,-1 ,且互相垂直的直线l 1、l 2分别交椭圆C 于M 、N 两点及S 、T 两点.①若直线l 1过左焦点F 1,求四边形MSNT 的面积;②求PM ⋅PN PS ⋅PT的最大值.【答案】(1)x 28+y 24=1;(2)①3269;②2.【解析】(1)因为△F 1BF 2是等腰直角三角形,且BF 1 =BF 2 =a ,F 1F 2 =2c ,由勾股定理可得BF 1 2+BF 2 2=F 1F 2 2,即2a 2=4c 2,则a =2c ,因为△F 1BF 2的周长为2a +2c =22+1 c =4+22,可得c =2,a =22,b =a 2-c 2=2,因此,椭圆C 的标准方程为x 28+y 24=1.。
椭圆中的范围最值问题
专题2椭圆中的范围最值问题1.己知椭圆c:干+p%对>o)的左、右焦点分别为匕吗,椭圆c上存在点机使巫巫=0.(1)求椭圆C的离心率e的取值范围;⑵若椭圆C的e = g,匕(-店0),设点尸(如为)()序0)在椭圆C上,点。
(4,0)在夺眇的平分线上,求7的取值范围.2.如图,椭圆「:二+写=W〉》>0)的离心率为分别是其左、右焦点,过F,的直线/ a' b~交椭圆于点A, B, P是椭圆上不与A, B重合的动点,。
是坐标原点.(I)若。
是△枷的外心,Sg*的值;。
的取值范围.3.已知点心在椭圆乒#*小。
)上,点A在第-象限,。
为坐标原点,且"必.(I)若a = Rb = \直线OA的方程为x-3y = 0,求直线08的斜率;(2)若△Q4B是邻腰三角形(点O,吊,B按顺时针排列),求仑的最大值.2 24.知椭圆C:声+分=1(。
>人>0)的长轴长为4右,点(75,妁在C上.(1)求C的方程;(2)设C的上顶点为A,右顶点为B,直线/与平行,且与C交于M, N两点Mb = DN , 点F为C的右焦点,求|DF|的最小值.5.如图所示,在平面直角坐标系中,椭圆r:y + / = l的左、右焦点分别为匕如设P是第一象限内下上的一点,S、PF「的延长线分别交r于点Q、Q2.(1)求W0,的周长;(2)求5而面积的取值范围;(3)设小弓分别为时牛0、WQ的内切圆半径,求厂弓的最大值.6.已知K是椭圆C:§ + § = 1(">0)的左焦点,经过点P(0, -2)作两条互相垂直的直线4和小直线匕与C交于点A, B.当直线£经过点月时,直线£与C有且只有一个公共点.(1)求C的标准方程;(2)若直线匕与椭圆C有两个公共点,求线段AB的取值范围.。
椭圆中的最值问题与定点、定值问题
椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法(1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解;(3)利用函数最值得探求方法,将其转化为区间上的二次函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为三角函数的最值问题处理。
一、椭圆上一动点与焦点的距离的最值问题椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a-c (近日点)。
推导:设点),(00y x P 为椭圆)0(12222>>=+b a b y a x 上的任意一点,左焦点为)0,(1c F -,20201)(||y c x PF ++=,由1220220=+b y ax 得)1(22020a x b y -=,将其代入20201)(||y c x PF ++=并化简得a x a cPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+×=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a a cPF -=+-×=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1.(2015浙江卷)如图,已知椭圆1222=+y x 上两个不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB D 面积的最大值(O 为坐标原点)。
解:(1)由题意知0¹m ,可设直线AB 的方程为b x my +-=1。
联立ïîïíì+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x m y +-=1与椭圆1222=+y x 有两个不同的交点,所以042222>++-=D mb 。
椭圆综合题(求范围和最值)
椭圆综合题:求最值和参数取值范围一.题型示例:1.(全国二21).(本小题满分12分)设椭圆中心在坐标原点,(20)(0A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF = ,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值.2.(12广东20.)(本小题满分14分) 在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b +=>>的离心率23e =,且椭圆C 上的点到Q (0,2)的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由。
3.如图所示,已知圆,8)1(:22=++y x C 定点A (1,0),M为圆上一动点,点P 在AM 上,点N 在CM 上,且满足0,2=⋅=AM NP AP AM ,点N 的轨迹为曲线E 。
(1)求曲线E 的方程;(2)若过定点F (0,2)的直线交曲线E 于不同的两点G 、H(点G 在点F 、H 之间),且满足λλ求,FH FG =的取值范围。
4.(09福建卷21)(本小题满分12分)如图、椭圆22221(0)x y a b a b+= 的一个焦点是F (1,0),O 为坐标原点. (Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB + ,求a 的取值范围.规律总结:a.最值问题可用几何法和代数法:Ⅰ.条件和结论能明显体现几何特征和意义,则利用图形性质解决;Ⅱ.挖掘条件和结论间的函数关系,建立起目标函数,再求其最值.b.求参数取值范围:Ⅰ.不等式(组)求解法:根据题义,结合图形列出所讨论的参数的各项约束条件,通过解不等式(组)得出参数取值范围;Ⅱ.函数值域求解法:另选一个适当的参数(注意其范围)作为自变量来表示所讨论参数,通过求该函数的值域求得取值范围.二.强化训练:1.已知某椭圆的焦点是()()124,04,0F F -、,过点2F 并垂直于x 轴的直线与椭圆的一个交点为B ,且1210FB F B +=。
2.2.3椭圆中的范围最值问题
即 y02
ax0
x0 2
,又
x0 2 a2
y02 b2
1
a2 b2
x02
a3x0
a2b2
0,
即 x0 a
a2 b2
x0 ab2
0
x0
ab2 a2 b2
又
0
x0
a 0
则
ab2 a2c2
1,0
4 y12 4 y22
12 12
3x1 x2 x1 x2 4y1 y2 y1 y2 0
x1 x2 2x, y1 y2 2 y, x1 x2 ,
3x 4y
y1 x1
y2 x2
kPQ
1,y 4
3x
由
y
y
3x 4x
m
解得
M
(m,3m)
点 M 在椭圆 C 的内部 m2 3m2 1,
4
3
2 13 m 2 13
13
13
思考:设
P
x2 y2
是椭圆 9 + 5 =1
上一点,M,N
分别是两圆:
(x+2)2+y2=1 和(x-2)2+y2=1 上的点,
则|PM|+|PN|的最小值、最大值分别为 ( A )
A.4,8
B.2,6
C.6,8
D.8,12
椭圆中的范围最值问题
例 1.若椭圆上存在一点 P 过以椭圆中心和长轴
一个端点为直径的圆,求椭圆离心率的取值范围.
解:不妨设椭圆方程 x2 y 2 1a b 0,
椭圆中的最值和取值范围问题课件
(三)合作探究,强化运用意识
(1)解:由题意,可设直线 AB 的方程为 x=﹣ky+n,代入椭圆方程
,
可得(k2+2)y2﹣2kny+n2﹣2=0, 设 A(x1,y1),B(x2,y2). 由题意,△=4k2n2﹣4(k2+2)(n2﹣2)=8(k2﹣n2+2)>0,
由韦达定理得
设线段 AB 的中点 P(x0,y0),
解:︱MP︱+︱MF2︱=︱MP︱+2a-︱MF1︱ 连接 PF1 延长 PF1 交椭圆于点 M1,延长 F1P 交椭圆于点 M2 由三角形三边关系知–︱PF1︱ ︱MP︱-︱MF1︱ ︱PF1︱ 当且仅当 M 与 M1 重合时取右等号、M 与 M2 重合时取左等号。 因为 2a=10, ︱PF1︱=2 所以(︱MP︱+︱MF2︱)max=12, (︱MP︱+︱MF2︱)min=8
(一)知识回顾,聚焦核心考点
2.椭圆的标准方程 和简单几何性质
|x|≤a,|y|≤b (±a,0),(0,±b)
|y|≤a,|x|≤b (0,±a),(±b,0)
x=0,y=0 (0,0)
(一)知识回顾,聚焦核心考点
3.弦长公式
设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 的两个交点为 A(x1,y1),B(x2,y2),则
1、 椭圆中的最值问题类型较多, 距离、离心率、弦长、面积,斜率等等, 解法灵活多变, 有函数法、不等式法、定义法、几何法、三角代换 法,设而不求法,等,但总体上主要有两种角度: 一是几何角度,即利用曲线的定义、几何性质以及平面几何中的定 理、性质等进行求解; 二是代数角度,即把几何条件转化为代数表达,然后利用方程法,函
丰富学生思维活动,提升数学核心素养
椭圆中的最值与范围问题
椭圆中的最值与范围问题作者:段开发来源:《金田》2015年第03期摘要:圆锥曲线在新课标考卷中的地位是不言而喻,同时大题的难度也是师生公认的。
对这样的题我们应该从平时做起、从点面做起,不断进行归类总结,逐类、逐点突破,这样才能达到预期的目的。
椭圆又是圆锥曲线的重点,对椭圆的学习就显得十分重要。
下面我从一个侧面谈谈椭圆中的最值和范围问题。
关键词:椭圆;范围;最值与椭圆有关的一些问题中,常出现离心率、弦长或面积的范围、最值问题,这类问题的解题思路可从下面两点说起。
(1)、一般先根据条件列出所求目标函数的关系式,然后根据函数关系式的特征选用配方法,应用不等式的性质,以及三角函数的最值求法求出它的最大值或最小值及范围.(2)解决椭圆x2a2+y2b2=1(a>b>0)中的范围问常用的关系有:①-a≤x≤a,-b≤y≤b;②离心率0例1、已知椭圆4x2+y2=1及直线y=x+m(1)当直线和椭圆有公共点时,求实数m的取值范围;(2)求被椭圆截得的最长弦所在的直线方程解答、(1)由4x2+y2=1y=x+m得5x2+2mx+m2-1=0,因为直线与椭圆有公共点,所以Δ=4m2-20(m2-1)≥0解得-52≤m≤52.(2)设直线与椭圆交于A(x1,y1),B(x2,y2)两点,由(1)知:5x2+2mx+m2-1=0,所以x1+x2=-2m5,x1x2=15(m2-1)所以|AB|=(x1-x2)2+(y1-y2)2=2(x1-x2)2=2[(x1+x2)2-4x1x2]= 24m225-45(m2-1)=2510-8m2所以当m=0时,|AB|最大,此时直线方程为y=x.变式练习:在本例中,设直线与椭圆相交于A(x1,y1),B(x2,y2)两点,求△AOB 面积的最大值及△AOB面积最大时的直线方程解答:可求得O到AB的距离d=|m|2,又|AB|=2510-8m2,∴S△AOB=12|AB|·d=12·2510-8m2·|m|2=25 54-m2m2≤25·54-m2m22=14.当且仅当“54-m2=m2”时,上式取“=”.此时m=±104∈-52,52.∴所求直线方程为x-y±104=0.反思与悟领本题主要运用了方程思想、函数思想和均值不等式思想。
椭圆中的范围最值问题高二上学期数学人教A版(2019)选择性必修第一册
椭圆中的范围问题
椭圆的标准方程和几何性质
x2 y2
标准方程
+ =1(a>b>0)
a2 b2
y2 x2
+ =1(a>b>0)
a2 b2
图形
范围
性
质
对称性
顶点
离心率
a,b,c 的关系
x∈[-a,a] ,
x∈ [-b,b] ,
y∈ [-b,b]
y∈ [-a,a]
对称轴: 坐标轴 ;对称中心:原点
A1(-a,0),A2(a,0)
直线 y 4 x m 对称的两个点,
M ( x, y ) 是它们的中点,则有
3 x12 4 y12 12
2
2
3
x
4
y
2 12
2
3x1 x2 x1 x2 4 y1 y2 y1 y2 0
x1 x2 2 x, y1 y2 2 y, x1 x2 ,
x2 y2
解:不妨设椭圆方程 2 2 1a b 0 ,
a
b
P
长轴端点 Aa,0 , P ( x0 , y0 )
由题意知 PO PA ,
y0
y0
1 ,
x0 x0 a
即 y0 ax0 x0
2
O
x
y
2
2
2
3
2 2
,又 02 02 1 a b x0 a x0 a b 0 ,
的点 M 总在椭圆内部,则椭圆离心率的取值范围是(
1
A. (0,1) B. 0,
2
椭圆大题定值定点、取值范围、最值问题总结
椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在) 121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+= ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x xy y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()43200000032004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点.(1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---,,,,所以()22120021PF PF x y ⋅=--=,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x =-,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k +++-=,设()B B B x y ,,则1B x ==同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -=-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+. 4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k-+=+, 即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k=,所以222212m k k k +=+,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y xx y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E Dn y y m k ==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k =,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B ,,且3AP PB =, 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-,所以112m -<-或112m <, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-或112m <.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--,,,,,. 由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>. 所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k-+--+,解得213k . (3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅的取值范围. 解:(13)AP =,,设()(31)Q x y AQ x y =--,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-因为221182y x +=,即22(3)18x y +=,而22(3)2|||3|x y x y +⋅,所以18618xy -.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x 轴上.若右焦点到直线0x y -+的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=. (2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+,所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y += (2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=,所以()()112222x y x y λ-=-,,, 所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,,所以()22121221x xx x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭,因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===,,, 所以113λ<,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25||3PA PB -<t 取值范围.解:(1)由题意知c e a =,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=. (2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为25||3PA PB-<12x -<,所以()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为(()26223-,,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x ab+=,由题意可得2a b c ===,故椭圆方程为22142y x += 设AB 的直线方程:y m =+.由22124y m y x ⎧=+⎪⎨+=⎪⎩,,得22440xm ++-=,由()22)1640m ∆=-->,得m -<< P 到AB 的距离为d =则1||2PAB S AB d ∆=⋅=,)(2188m -=当且仅当2(m =±∈-取等号,所以三角形P AB . (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t .当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()331122-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=相切,得2||11t k =+,即221t k =+.所以()()()()()222222212122224443||4||1434t t k t AB x x y y k k t k ⎡⎤-⎢⎥=-+-=+-=⎢⎥+++⎣⎦. 因为243||43||233||||t AB t t t ==++,且当3t =±时, 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯,当且仅当3t =±时,AOB ∆面积S 的最大值为1,相应的T 的坐标为(03)-,或(03),.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m的函数,并求AB 的最大值. 解:由题意知,||1m .当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB =; 当1m =-时,同理可得AB =;当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a ba b+=>>上的三点,其中点A 的坐标为0),BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m,不是左右顶点),且以AB为直径的圆过椭圆C的,两点(A B=+与椭圆C相交于A B右顶点,求证:直线l过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点1M,,平行于OM(2)的直线l在y轴上的截距为(0),两个不同点.m m≠,l交椭圆于A B(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA MB,与x轴始终围成一个等腰三角形.。
三角函数给力协解椭圆范围与最值问题
..2
题)设椭圆与+缶一1(口>6>o)的左、右顶
口
图1
点分另一】为A,B,点P在椭圆上,且异于A,B 两点,o为坐标原点.
点评
本题利用正切函数的定义与单
调性,将I忌l的变化范围转化为夹角的范围,
从而与辅助圆联系起来,最终达到证明的
目的.
(1)若直线AP与BP的斜率之积为 一÷,求椭圆的离心率;
了南确定’,由
√2n‘一9
sin‘口一驴’I≤1 得
—;兰二≤1,解得n2≥45,当以2—45时长轴
最短,此时62一日2—9—36,得椭圆的方程为
丢+芸=L
点评 在第(1)问中,先求得椭圆的标 准方程,再利用点的参数式方程直接得最 值;第(2)问中,在不知口,6的情况下,再引入 辅助角∞,最后利用正弦函数的有界性顺利 得解.
~膏一、利用三角函数的定义
三角函数的定义建立了角、坐标、函数 值三者之间的联系,其中点的坐标架起了角 与函数值的桥梁.回归定义,可以让我们更 清楚地认识数与形本质的变化特征.
l志l>厄
V・
/,,,7溅 澍一 、、、\≯ √B
j
一、Q,. I~、
4k
D.
l
参例1
口
、、~一,,V、,
・・,,
(2012年高考天津理科卷第19
c。s么F。PF:一上£旦{千;去;鼍{铲
一2口,由余弦定理得
解析
由椭圆定义有I PF。}+I PF:l
(1)过程略.答案:等+yz一1.
oB
Fl F2 2—2I PFl|.『PF2 一(IPFl l+JPF2 1)2一I 2j PFl|.1 PF2
(2)s△∞s一寺『0A
sin么AoB一
椭圆的最大值和最小值问题
椭圆的最大值和最小值问题
嘿呀,那咱就来说说椭圆的最大值和最小值问题哈!比如说,一个椭圆像个扁扁的大鸡蛋,那你想想,在这个“大鸡蛋”上,哪里是最大的地方,哪里又是最小的地方呢?
比如说,咱来研究一个椭圆方程,那它的长半轴和短半轴不就决定了一些最值嘛!就好像你去一个游乐场,有的游乐设施刺激度最大,有的就比较温和,最值不就出来啦!
再想想看,如果给这个椭圆加上一些条件,比如限制在某个区域内,那这最大值和最小值不就更有意思了嘛!就跟你玩游戏有规则一样,在特定规则下找到最值,是不是超有挑战性呀!
哎呀,我就问你,这椭圆的最大值和最小值问题是不是特别神奇,特别值得好好琢磨琢磨呀!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4m2 4 4 2 8 | PQ | 2 m 4 5 m2 . 5 5 5 当 l 过 A 点时, m 1 ,当 l 过 C 点时, m 1 .
4 3
x2 y 2 1. 9 5
9 (2)设点 P( x1 , y1 ) ( 2 x1 3 ) ,点 M ( , y2 ) , 2 ∵点 F 、P、M 三点共线, x1 2 , y y 13 y1 9 13 y1 ). ∴ 1 2 , y2 ,∴点 M ( , 13 2( x1 2) 2 2( x1 2) x1 2 2 13 y12 y 13 y1 y 13 y1 ∵ k1 1 , k2 ∴ k1 k2 = 1 = . x1 3 3( x1 2) x1 3 3( x1 2) 3( x1 2)( x1 3)
APCB 面积的最大值为
62 ,求椭圆的方程. 3
y
y P
M
A P C
F
O
A
x
O
F
x
B
3 x2 y 2 相关题:如图,椭圆 M : 2 2 1(a b 0) 的离心率为 ,直线 x a 和 y b 所围成的矩形 ABCD 的面 2 a b 积为 8. (Ⅰ)求椭圆 M 的标准方程; (Ⅱ) 设直线 l : y x m( m R ) 与椭圆 M 有两个不同的交点 P , Q , l 与矩形 ABCD 有两个不同的交点 S , T .求 | PQ | 的最大值及取得最大值时 m 的值. | ST |
2
到,此时 P 的横坐标是 a . 综上所述,若 a ≤ 2c ,当 | PM | 取得最小值时,点 P 的横坐标是 若 a 2c ,当 | PM | 取得最小值时,点 P 的横坐标是 a 或 c
a 2 (a c) ; 2c 2
∴
x y 1, 9 5
2 1
2 1
5 ∴ y12 ( x12 9) . 9
设点 P( x, y) : x2 2 y 2 2b2 ,点 P 到直线 AC 距离为 d
x 2 y 2b 5
x 2 y 2b 5
5 13 ( )( x12 9) 65 x 3 65 1 9 ). ∴ k1 k2 = = 1 = (1 27 x1 2 27 x1 2 3( x1 2)( x1 3)
2
2
①当 5 m 1 时,有 S (m 1, 1), T (2,2 m),| ST | 2(3 m) ,
| PQ | 4 5 m2 4 4 6 2 1 , 2 | ST | 5 (3 m) 5 t t
| PQ | 1 3 4 5 2 其中 t m 3 ,由此知当 ,即 t , m ( 5, 1) 时, 取得最大值 5. | ST | t 4 3 3 5 | PQ | 5 2 ②由对称性,可知若 1 m 5 ,则当 m 时, 取得最大值 5. | ST | 3 5 | PQ | 2 5 m2 , ③当 1 m 1 时, | ST | 2 2 , | ST | 5 | PQ | 2 由此知,当 m 0 时, 取得最大值 5. | ST | 5 | PQ | 5 2 综上可知,当 m 和 0 时, 取得最大值 5. | ST | 3 5 例 2. (1)设点 F (c, 0) , B(0, b) , C ( x, y)
(2)设 P 是“果圆”的半椭圆
y
B2
A1
.F . . O M .F F
2 1
0
A2
x
B1
1
江苏省前黄高级中学 2013 届高三数学
椭圆中的最值和范围问题
例 1. 解: (1)
由 BF 3FC ,得: c, b 3 x c, y 解得: C ( c, b ) 代入椭圆方程得:
“果圆” 与 x , y 轴的交点, M 是线段 A1 A2 的中点. (1) 若 △F0 F1 F2 是边长为 1 的等边三角形,求该“果圆”的方程;
y2 x2 1 ( x ≤ 0) 上任意一点.求证:当 PM 取得最小值时, P 在 b2 c2 点 B1,B2 或 A1 处; (3)若 P 是“果圆”上任意一点,求 PM 取得最小值时点 P 的横坐标.
江苏省前黄高级中学 2013 届高三数学
椭圆中的最值和范围问题
x2 y 2 1 ( a b 0 )的左焦点为 F ,右顶点为 A,动点 a 2 b2 2 M 为右准线上一点(异于右准线与 x 轴的交点) ,设线段 FM 交椭圆 C 于点 P,已知椭圆 C 的离心率为 , 3 9 点 M 的横坐标为 . 2 (1)求椭圆 C 的标准方程; (2)设直线 PA 的斜率为 k1 ,直线 MA 的斜率为 k 2 ,求 k1 k2 的取值范围.
2
4 4 相关题: 解: (1) “果圆”方程为 x2 y 2 1 ( x ≥ 0) , y 2 x2 1 ( x ≤ 0) . 7 3
y (2)设 P ( x, ) ,则 | PM | 2 x
ac b2 2 y 1 2 c 2
2
2 ( a c )2 b2, c ≤ x ≤ 0 , x ( a c )x 4
例 1.如图,在平面直角坐标系 xOy 中,椭圆 C:
例 2. 如图,在平面直角坐标系 xoy 中,椭圆
x2 y 2 1 a b 0 的右焦点为 F ,上下顶点分别为 A, B , a 2 b2
直线 BF 交椭圆于 C 点,且 BF 3FC .(1)求椭圆的离心率; (2)若 P 点是椭圆上弧 AC 上动点,四边形
x2 y2 y2 x2 相关题:我们把由半椭圆 2 2 1 ( x ≥ 0 ) 与半椭圆 2 2 1 ( x ≤ 0 ) 合成的曲线称作“果圆” ,其 a b b c 2 2 2 中 a b c , a 0 , b c 0 . 如图,设点 F0 , F1 , F2 是相应椭圆的焦点, A1 , A2 和 B1 , B2 是
2
c2 a 2 (a c) (a c) 2 a 2 (a c) 2 ac 2 b2 即可. | PM | x . y 2 x 4 a 2c 2 4c 2 2 a 2 (a c) a 2 ( a c) 2 当x 时取到, ≤ a ,即 a ≤ 2c 时, | PM | 的最小值在 x 2c2 2c 2 a 2 (a c) 此时 P 的横坐标是 . 2c 2 a 2 (a c) a ,即 a 2c 时,由于 | PM | 2 在 x a 时是递减的, | PM | 2 的最小值在 x a 时取 当x 2 2c
1 3
16c 2 1 1 9a 2 9
4 3 1 3
所以: e
c 2 2 2 , a 2c , b c a 2
(2)由(1)椭圆方程可写为,点 C ( b, b) 直线 AC: x 2 y 2b 0 , S ABC
4 2 2 5 b , AC b 3 3
∵点 P 在椭圆 C 上,
6 2 2 6 2 2 , b 1 ,椭圆方程为: x 2 2 y 2 2 b 3 3
∴ k1 k2 的取值范围是 (, 相关题:(I)
x2 y2 1 . 4 x 2 4 y 2 4, (II) 5 x 2 8mx 4m2 4 0 , y x xy x 2 4 y 2 2( x 2 y 2 ) 3( x 2 2 y 2 ) 6b 2 ,所以 dmax
6 2 b 5
∵ 2 x1 3 ,∴ k1 k 2
26 . 9
26 ). 9
所以 Smax
1
b2 0 , | PM | 2 的最小值只能在 x 0 或 x c 处取到. 2 c 即当 PM 取得最小值时, P 在点 B1,B2 或 A1 处.
( 3 ) | A1 M || MA2 | , 且 B1 和 B2 同 时 位 于 “ 果 圆 ” 的 半 椭 圆
x2 y 2 1 ( x ≥ 0) 和 半 椭 圆 a 2 b2 y 2 x2 x2 y 2 2 1 ( x ≤ 0) 上,所以,由(2)知,只需研究 P 位于“果圆”的半椭圆 2 2 1( x ≥ 0) 上的情形 b2 c a b